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Abstract. Let K be a discrete valuation field with ring of intege9% . Let f: X — Y be a finite
morphism of curves oveX . In this article, we study some possible relationships between the models
overOg of X and ofY. Three such relationships are listed below.

Consider a Galois covef: X — Y of degree prime to the characteristic of the residue field, with
branch locusB. We show that ifY has semi-stable reduction ov&r, then X achieves semi-stable
reduction over some explicit tame extensionkbfB). WhenK is strictly henselian, we determine
the minimal extensioil /K with the property thaX; has semi-stable reduction.

Let f: X — Y be a finite morphism, witlz(Y) > 2. We show that ifX has a stable model
X over O, thenY has a stable modé) over Ok, and the morphisny extends to a morphism

Finally, given any finite morphisny: X — Y, is it possible to choose suitable regular models
X and ¥ of X andY over Ok such thatf extends to a finite morphisi® — Y ? As was shown
by Abhyankar, the answer is negative in general. We present counterexamples in rather general situ-
ations, withf a cyclic cover of any ordee 4. On the other hand, we prove, without any hypotheses
on the residual characteristic, that this extension problem has a positive solutioryvidenclic of
order 2 or 3.

Mathematics Subject Classifications1991): 14G20, 11G20, 14H30, 14H25.

Key words: branch locus, covers, curves, discrete valuation ring, models, semi-stable, simultaneous
resolution.

Let Ok be a Dedekind domain with field of fractiorfs. Let f: X — Y be a
finite morphism of projective, smooth, and geometrically connected curves over
SpecK). In this paper, we study some possible relationships between the models
of X and ofY. In the first part of the paper, we look at semi-stable and stable
models, while in the second part we investigate regular models.

Let us describe the content of this paper. Definitions and standard facts about
models are reviewed in the first section. LBtC Y denote the branch locus of
f, and letK (B) be the compositum, in an algebraic closurekgfof the residue
fields of points ofB. In the second section, we consider a Galois cder> Y
of degree prime tp and show that, i’ has semi-stable reduction ovEr, thenX
achieves semi-stable reduction over an explicit tame extension of thekfighl
(Theorem 2.3). WhelK is strictly Henselian, there exist extensiohg/K and
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Ly/K minimal with the property thak';, andY,, have semi-stable reduction. In

the third section, we assume thitis strictly Henselian and strengthen the result
obtained in the second section to show that for a Galois cover of degree prime to
p, the p-part of Ly /K is equal to the compositum of thepart of Ly /K and the
p-part of K(B)/K (Corollary 3.2). We later completely descrilg; in terms of
Ly K (B) and some vertical ramification data (Theorem 3.9).

Let f: X — Y be a finite morphism, witlg(Y) > 2. In the fourth section, we
show that ifX has a stable modé{/O, thenY has a stable modél/Ok, and f
extends to a (not necessarily finite) morphign — Y (Proposition 4.4). As a
corollary, we give a new proof a theorem of Lange which states thathias good
reduction, thert has good reduction.

Given any finite morphismy: X — Y as above, it is interesting in some situ-
ations to be able to compare the regular models ahdY over©@g. In particular, it
is natural to wonder whether it is possible to choose suitable regular nisdéls
and ¥ /0 of X andY such that the morphisnf extends to a finite morphism
¢: X — Y. Unfortunately, this is not always possible, as was shown by Abhyankar
in [Ab2]. In the sixth section of this paper, we give a local obstruction to this
extension problem, and then present counterexamples in rather general situations,
with f a cyclic cover of any ordel 4. On the other hand, we prove in the last
section that wherf is cyclic of order 2 or 3, then suitable regular modelsadind
Y can be chosen such th#textends to a finite morphism between these regular
models. The difficulties in the proof of this statement are due to the fact that we do
not make any assumption on the residue characteristics. Three preparatory lemmas
for Sections 6 and 7 are stated for the convenience of the reader in a separate
section, Section 5. The reader may refer to these lemmas on models that dominate
regular models as needed while reading the results of Sections 6 and 7.

The properties of models we are concerned with in this article are most often
local on Spe@ k). Thus, most of time and unless stated otherwi@g,will be
a discrete valuation ring. Thandenotes the normalized valuation &f ¢ a uni-
formizing elementk = Ok /() the residue field, angg = chark) > 0. The
special fiberY xspecoy) Speck) of a modely /O will be denoted byY,. The
generic fibery xspeco,) SPeCK) will be denoted byY k. For any finite extension
L/K, we denote by9; the integral closure 0P in L. It is a Dedekind domain
with finitely many maximal ideals ([Z-S], V.9, Theorem 21). With the exception of
section 4, all coverX — Y considered are Galois. In the last three sections, the
residue fieldk will be assumed to be perfect or algebraically closed.

1. Basic Facts on Models

Let us begin with a short review of facts and notation pertaining to models. In this
paper we call aurve overK a projective, smooth, and geometrically connected
curve overK . A modelX of X is an integral normal schen®, projective and flat
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over Spe¢Vk), such that the generic fibé€x is isomorphic over Spé&) with
the given curveX /K.

LEMMA 1.1. LetX/K be acurve, and leX/Ok be an integral scheme such that
Xk >~ X.If X, is reduced, thelX is normal.

Proof. The statement is local and we are reduced to the case of an opgigpec
with A/(¢) reduced andA[1/¢] integrally closed. Letr € FragA) be an element
integral overA. Thena € A[1/t], and thus it can be written ag't’, witha € A
anda ¢ (¢)if i > 0. Let(a/t))" + --- 4+ ap = 0 be an integral relation fox
over A. If i > 0, thena” is congruent to zero modul@) and, henceg < (z).
Contradiction. Thus < 0 anda € A.

A finite surjective morphism of schemes is calledaver A coverS — T of
integral normal schemes is calledzalois cover with grougG if the extension of
function fieldsK (T) — K (S) is Galois with groupG, and if T is isomorphic to
the quotientS/G. Let f: X — Y be a cover of curves over Sgét) and letY be a
model ofY over©@. Denote byN (Y, K (X)) the normalization of the schenigin
K(X),and byp: N(Y, K(X)) — Y the canonical morphism. By constructignis
a finite morphism (thu®v (¥, K (X)) is of finite type over Spe®)) if either f is
a separable morphism, 6 is an excellent ring. When we consid€(Y, K (X)),
we shall always assume that either of these hypotheses hold. When no confusion
may result, we may denote the mod&y, K (X)) of X/K simply by X.

Recall that the morphism: X — Y is unramified atv € X if and only if
(Rx,9)x = 0 ([A-K], 3.3). Hence the seRR of ramified points ofy is a closed
set of X, called theramification locus The mapg being a finite morphism, the
image ofR in Y is a closed seBB (endowed with the reduced induced structure)
called thebranch locusof X overy. If f: X — Y is separable, then the morphism
¢ X — Y is generically unramified and, thu®, # 4. Hence,B is either empty,
or is the union of finitely many components of codimension 1 and of finitely many
isolated points. As we shall recall in this paper, the singularities of the normal
model N (Y, K (X)) are intimately linked with the branch locus of the given map
fiX—>Y.

Let D be any irreducible divisor d§i. We say thaD is ahorizontaldivisor if D
dominates Sp&® ). OtherwiseD is contained in the special fib&, and we say
that D is avertical divisor. An irreducible divisoD of ¥ is a horizontal divisor in
B if and only if D is the closure iry of a point ofY that belongs to the branch
locus of the mapf: X — Y. An irreducible vertical divisorD is an irreducible
component oY}, and, as such, has a multiplicity > 1: Let& be the generic point
of D. ThenOy_ is a regular local ring of dimension 1. Thus it has a (normalized)
valuationv, and we definep to bev(z), wherer is an uniformizing parameter of
Ok. The irreducible vertical divisoD is contained inB if and only if either the
mape~1(D) — D is not separable, or an irreducible componErdf ¢ ~1(D) has
multiplicity in X, equal torg = rp -eg/p, Witheg,p > 1. Letn denote the generic
point of E in X,. Theneg,p is the ramification index ofy over&. An irreducible
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divisor D is regularif it is a regular scheme. An irreducible horizontal dividdlis
said to besmoothif the mapD — Spec©@y) is unramified.

1.2. REGULAR MODELS

We call a modely/Ok aregular model if the schemé@/ is regular. Whery is
a regular model, the finite morphisg;m X — ¥ is flat [Mat], 18.H. In this case,
the Theorem of the Purity of the Branch Locus [A-K], 6.8, shows tBds either
empty, or equal t@4, or pure of codimension 1 (i.e., is the union of finitely many
divisors of ).

Let y € Y be a closed point. LeDy, ..., D, be irreducible divisors ofy
containingy. Denote byu; a local equation oD, at y. We say that the divisors
D4, ..., D, havenormal crossingsat y (or meet transversally at) if uq, ..., u,
can be completed to a system of parameter®9f. This definition implies that
y is a regular point ofD;. Note however that the residue field pfmay not be
separable ovek.

The following lemmas are well known. We recall them here for the convenience
of the reader.

LEMMA 1.3. Let Y/0k be a model of a curv& /K. Let 0 € Y be a point
rational over an extensiol /K unramified ovelk. If y € {Q} N Y, is regular in

Y, theny is regular in Y.

Proof. The valuative criterion for properness shows that for each maximal ideal

p of @, there exists a map Spez; ,) — Y that extends the map Spdg — ¥
corresponding taQ. These maps glue together to give a map &fet — Y.
Since©; is unramified overg, the extensiornl. /K is separable. Thu®; is a
finite @x-module, and the image of Spéx; ) in Y is closed. Hence, the horizontal

divisor {Q} is the image of the map Spe2,) — Y over Spe€Uk). Lety €

{0} N Y, image of a poinp € Spec®;). The kernell of the associated ring
homomorphism9y , — O, , is a prime of height 1. Sincé. , is regular and,
hence, locally factorial, the primé is principal, sayl = (w). Note now that
Oy.,/(w, t) is isomorphic to¥;, ,/(t). SincetO, , is equal to the maximal ideal
of @ , by hypothesis, we find thatw, ¢) is maximal. Thusw is a local parameter

ony, aty.

LEMMA 1.4, LetY/Ok be a regular model of a curv&/K. Let C and D be
irreducible components iy, of multiplicitiesrc andrp, respectively. Lep € Y,
and letY’ denote the model af obtained by blowing ufy aty. LetE C Y’ denote
the exceptional divisor.

(a) If yis aregular point ofC that does not belong to any other componerfy of
then the multiplicity of£' in Y; equalsrc.
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(b) If y € C N D and does not belong to any other component¥ gfand if C
and D intersect transversally at, then the multiplicity o in % iSrc +rp.

Proof. Omitted.

1.5. SEMI-STABLE MODLES

Let Ok be any Dedekind domain. In this section we catuave over@g a normal
(not necessarily connected) scheph@ver Ok, flat, of finite type and of relative
dimension 1, with smooth generic fiber. We say tHais semi-stablgover Ok)

if every geometric fiber oY — SpecOk) is reduced and has at most ordinary
double points as singularities ([BLR], 9.2/6). Afx-scheme finite étale over a
semi-stable curve is semi-stable. @t be any Dedekind domain containiiy .

If Y is semi-stable ovaP, thenY, is semi-stable ove®, . Indeed, we only need
to check thatye, is normal, and this fact follows frorfy, being normal and the
closed fibers ofy, being reduced (1.1). ConverselyYfy, is semi-stable and if
O is finite overOg, theny is obviously semi-stable ove? . Let us recall the
following proposition due to Raynaud.

PROPOSITION 1.6.Let @k be a Dedekind domain. Let XX — Y be a cover of
curves ovel¥x . Assume thak is semi-stable ova® x. Then¥y is also semi-stable
overOk. Moreover, ifX is smooth at a point, theny is smooth atp(x).

Proof. The statement is local on Sgéxy ), so we may assume th&@ is local.
Since the special fiber ak is reduced, all irreducible components %f have
multiplicity 1. Thus Y, is also reduced. Le®x be the completion 0&k. Then
the special fiber ofys, — Spec(@K) is also reduced (since it is isomorphic to
Y,). Since in addition the generic fiber &f5, is normal, thens, is normal
(1.1.). SinceX s, is semi-stable, we are reduced to the case wiigrées complete.
Under this additional hypothesis, the proposition is proven in [Ray], Appendice.
The last statement concerning smoothness can be found in Raynaud’s proof at the
top of page 195.

Remark 1.7 We will use Proposition 1.6 in the next section in the case where
¢: X — Y is a Galois cover of degree prime to Proposition 1.6 can be proved
under this additional hypothesis in the following simpler mannerd.edenote the
Galois group ofp. For any ideall of @ on whichG acts, we have HG, 1) = {1}
since|G| is invertible in®« ([Ser], VIII, Section 2, Corollary 1). Thug9/4)¢ =
0% /16, Takingd = tOx, we find thaty, = X,/G. Since the quotient commutes
with formal completion, it is easy to see tHat has at most ordinary double points,
and that the image i, of a smooth poink € X, is smooth.

A model ¥ /0k of a curveY /K is said to besemi-stableéf Y — SpecOx)
is semi-stable. Note that sindé is geometrically connected, so is each closed
fiber Y, s € Spec@k). When such a model exists, we shall say thaK has
semi-stable reductiorGiven a possibly singular semi-stable mo#él9x of Y/K,
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the minimal desingularizatiorZ, of ¥ is a regular semi-stable model, and the
exceptional locus o, — Y consists of chains of smooth rational curves with self-
intersection—2. Note that this definition of semi-stability implies that the residue
field of each singular point ¢, s € SpecVy), is a separable extension /ofs).

A model ¥ /0O of a curveY /K is said to besemi-stable in a neighborhood of
a pointy € Y, if there exists a dense open 4é¢tof Y containingy and such that
U — SpecOy) is semi-stable.

The semi-stable reduction theorem for curves ([D-M], Corollary 2.7) states that,
given any curver' /K, there exists a finite separable extensigfk with the prop-
erty thatY, has a semi-stable mod¥l over @,. More generally, given any model
Y /O of Y/K, there exist such an extensidi K and a semi-stable modgl/0O,
with Y’ dominatingYe, . This last statement can be proved using rigid analytic
methods (see for instance [B-L], Theorem 5.5, and step 3 in the proof of Lemma
7.3, page 377).

1.8. GOOD MODELS

We shall say that a regular modg) @ of Y/K is goodif the irreducible com-
ponents ofY, are smooth, if each singular point & belongs to exactly two
irreducible components of,, and if these components intersect transversally.
Given any modek of Y, we may, using the embedded resolution of singularities,
obtain a good mode¥ of Y which dominate<z. The blow-up of a good model at

a closed point is again a good model. Note that a regular semi-stable model is not
necessarily a good model.

LEMMA 1.9. LetY/Ok be any regular model of /K. Let B be any divisor on
Y with smooth horizontal components. Then it is possible to perform a sequence
of blow-ups along closed points, starting wi$h to obtain a new regular model
Y'/Ok of Y/K such that the preimage’ of B8 in Y’ is a divisor with normal
crossings, and such that the horizontal part&sfis the disjoint union of irreducible
components. Moreover, ¥ is semi-stable, then so .

Proof.Let C andD be two irreducible divisors on the regular surfgtdf C and
D intersect at a closed pointof ¥, then the intersection multiplicityC - D), of
C andD is a nonnegative integer that decreases after a blow-up; thagissithe
blow-up of ¥ at y with exceptional fibe#, andC and D are the strict transforms
of C and D, then}"__.(C - D), < (C - D), (see [Sha], page 100). Moreover,
E intersectsC and D with normal crossings. Thus a sequence of blow-ups will
produce the desired modyl.

Assume now that is a regular semi-stable model. Since a horizontal com-
ponentD of B is smooth (and thus étale) by hypothesis, each poioit D N Y
is a regular point ofY, (Lemma 1.3) with residue field(y) separable ovek.
Hence,y belongs to a unique irreducible component of multiplicity 1%f and
the exceptional fibeE of the bIow-upg — Y has multiplicity 1 (Lemma 1.4)
and is geometrically reduced. Th@tsis regular and semi-stable. Since the strict
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transformD of D is again smooth, the next blow-up will also be semi-stable. Hence
Y’ is regular and semi-stable.

2. Towards Semi-Stable Reduction

Let X/K be any curve. The semi-stable reduction theorem states the existence of
an extensiorL /K such thatX; has semi-stable reduction, but this theorem does
not provide information on how to determine explicitly such an extengigk
and a semi-stable model fof;. Let X be a good model ok over Ok (see 1.8).
T. Saito [Sai] has given an effective method for determining, in terms of the graph
of X, whether there exists a tamely ramified extensIgfK such thatX; has
semi-stable reduction. When such is the case, the normalizatidyphas only
Hirzebruch—Jung singularities, and such singularities can be explicitly resolved
given the special fibeX, of X/Ok (see [Vie], pages 299-302, [Lip1], pages 206—
212, [Pin], pages 12-15, or [BPV], pages 80-85). Moreover, it is also known in
this case thaiX will achieve semi-stable reduction over a totally ramified exten-
sion L/K of order equal to the least common multiple of the multiplicities of the
components ofX;. Thus in the tamely ramified case, much is known concerning
L/K and the semi-stable model &f; over©,.

The situation is quite different wheXi achieves semi-stable reduction only after
a wildly ramified extensior. /K. In this case, it is usually not possible, given the
combinatorial description of(;, to make any guess regarding which extensions
L/K will lead to semi-stable reduction fox. The importance of Theorem 2.3
below lies in the fact that in many interesting cases, such as the case of a tame
Galois cover of the projective line (compare with [Bro], Section 4, and [Kau],
Section 4, for cyclic covers @' and hyperelliptic curves, respectively), it gives an
explicit description of an extensiah/K that leads to semi-stable reduction and a
semi-stable model oX; over@;.

Recall that if a grougs acts on a schem¥ andx € X, then thenertia group
I, atx is the set of automorphisms € G such tha (x) = x ando induces the
identity on the residue field of. Assume that the quotiet/G exists. Letx” be
the image ofc in X/I,; thenX/I, — X/G is étale ate’. Recall also that a model
X /0O is flat. Thus a closed point € X is smooth if and only ifc is smooth on
Xs. Moreover, whern is smooth, ther® , is regular since9 is regular.

LEMMA 2.1. LetX and ¥y be models of curves, and let X — Y be a Galois
cover of degree prime tp. Assume tha} is semi-stable anc; is reduced. Let
R and B be the ramification and branch loci ¢f, respectively. Let € X. Then
the following properties hold.

(@) If x ¢ R, theng is étale atx.
(b) If x € Ry, andp(x) is smooth in botHy; and B, thenx is smooth inX;;.
Moreover, the inertia groug, is cyclic.
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(c) If x is anisolated point ofr, thenx is an ordinary double point of;.

Proof. (a) Since¥ is normal and, hence, geometrically unibranch ([EGA],
0.23.2.1), Part (a) follows from [EGA], 1V.18.10.1.

To prove Parts (b) and (c), let us show first tB&t is geometrically reduced.
SinceX — Y has degree prime tp and since the curvé/, is geometrically
reduced, the residue fields of the component&ipfare separable extensions of
k. Thus, sinceX; is reduced, it is also geometrically reduced ([EGA], 1V.4.6.1).
Therefore, for any extensiaf, /Ok, X, has reduced special fibers and is normal
(1.1.). It is sufficient to prove the lemma after a base chalgek. So we can
assume thaX has semi-stable reduction ow@g with a regular semi-stable model
having smooth components, thatis algebraically closed, and that the generic
points of the horizontal components &fare all rational oveKk.

Let y: X — X be the minimal desingularization o€ ([Lip2], 27.3). Since
X, is reduced and has semi-stable reductiof; is semi-stable. The group
acts onX; let Z := X/I,, and denote by the image ofr in Z. ThenZ — Y
is étale in a neighborhood af Denote byx: X /I, — Z the canonical birational
morphism. Sincez is semi-stable in a neighborhood p&nd X /1, is semi-stable,
the components af~1(z) are smooth projective lines ovér Note ttlat% /1 is
regular at any point of ~1(z) smooth in(X/1,),. Thus the map¢ — X/I, is flat
over these points.

(b) Assume that is not smooth inX;. Since the points oR are rational over
K, ¢ is not an isomorphism (see 1.3). Singéx), and thusz, is smooth, there
is a componentA of A71(z) which meets the other components (&€/1,), in
one pointz’ only (5.2(a)). Letl" be a component o/ ~%(x) lying over A. Since
A\ {7’} is contained in the regular locus 8f/I,, we can use the theorem of the
purity of the branch locus to argue that— A is ramified only over;” and at
the specialization of a horizontal component®fin X,. (Note that there may be
no such specialization of.) Our hypothesis thap(x) is a smooth point onB
shows that there is a unique (rational) point in the branch locus ef X/I,
which specializes tq@. Thus the morphisni® — A is ramified over at most two
points of A. The Riemann—Hurwitz formula shows that any tame caver P%,
étale outside of two points, is a cover totally ramified in both points, @nsl a
projective line. Thud™ meets the other components Xf in a single point only.
SinceX is semi-stablel” is an exceptional divisor. This contradicts the minimality
of X — X, and thusx is smooth inX,.

Since|I,]| is invertible in@ ., we have H((o), Ox ) = {0} forall o € I,
([Ser], VIII, Section 2, Corollary 1). The reader will check that the canonical
homomorphism AW, (Ox..) — Aut(Ox, ) is injective when restricted té,.
Since Oy, , is a discrete valuation ring whose residue characteristic is prime to
|1.], I, is cyclic.

(c) If x is regular onX, thenx is an ordinary double point sinc& is semi-
stable. Ifx is not regular, then leF be a component of ~(x), and letA be its
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image in%/lx. Asin (b), we find thal” — A is ramified only over the intersection
points of A (sincex is isolated inR, no point of the ramification locus of —
X /I, specializes to a point df). Using the same argument as in (b), we conclude
that A must intersec(X/1,), in at least two distinct points. We now claim that
A can meet the components pfl(z) in at most two points. Indeed, l&& —
X‘/I denote the minimal desingularization of/1.. Let n be the composition
Z — X/I, —> Z. SinceZ is semi-stable in a neighborhood ofthe pointz
is a rational singularity, and we may apply Lemma 5.2.(a) to show that the dual
graph ofp~1(z) is a tree. Since the singularities &f/1, are resolved by chains of
projective lines, we conclude that the cuwe (z) is tree-like. IfA~%(z) contains a
curve that meets the rest bf'(z) in three or more points, then there exists at least
three curves in~1(z) that each meet the rest of the'(z) in exactly one point. We
obtain a contradiction as follows: each of these three curves must meet at least two
components ofX/1,);, but sinceZ is semi-stable in a neighborhood gfthere
are at most two irreducible components(df/1,), that interseck.~(z).

Since a componert of ¥ ~%(x) is smooth by construction, we conclude as in
(b) thatT" is a projective line with self-intersection2. The only configurations of
n smooth projective lines of self-intersectier are a cycle ok curves, or a chain
of n curves meeting the rest of the fiber at the first and last curves on the chain.
Since in our case the configuration is not equal to the whole special fiber, it cannot
be a cycle, and thusis an ordinary double point.

Remark 2.2 Part (b) of the above lemma is also an easy consequence of facts
on tame fundamental groups of regular schemes ([G-M], Theorem 2.3.2). The
Galois hypothesis can sometimes be removed in the statement of the lemma. Part
(b) of Lemma 2.1. is true for tamely ramified covers (see [Ful], 3.3 and 3.4). Saidi
([Said2], Théoreme 3.2) proved Part (c) for cov&rs— Y étale in a neighborhood
of x but possibly not ak. He uses a rather sophisticated ‘local Hurwitz formula
due to Kato, and to Matignon—Youssefi.

Let X/K be a scheme of finite type ovdf. For any finite subset of closed
pointsT of X, let K(T) denote the compositum in an algebraic closure&obf
the residue fields of the points ®f The fieldK (T') is the smallest extension &f
over which all points off" are rational.

THEOREM 2.3. Let f: X — Y be a Galois cover of curves ovéf, of de-
gree prime top, with branch locusB. Let M := K(B) and fix a prime ideal
p of Oy lying over (r). Assume thaty, has semi-stable reduction. L&/,
be a semi-stable model &f, such that the points oB,, C Y, (M) specialize
to distinct smooth points of,. Denote byA,..., A, the components o¥;
which are in the vertical branch locus &¥ (Y, K (Xy)) — Y%, with ramifica-
tion indiceses, ..., es. Let O /Oy, be a totally ramified extension of degree
lcm(es, ..., eqs). ThenN(Yo,, K(X1)) is a semi-stable model of, over ;.
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Moreover, the preimage undéi (Yo, , K (X)) — Yo, of a smooth point consists
of smooth points.

Proof. The existence of the desired (even regular) méte?,, is established in
Lemma 1.9. By Abhyankar's Lemma ([SGA1], Exposé X, 38}Y e, , K(X1.)) —
Yo, has no vertical ramification. Thus(Ye,, K(X.)), is reduced. Moreover, the
hypothesis on the specialization 8§, implies that the branch locus &f (%, ,
K(X.)) — Yo, consists of disjoint horizontal smooth components (@g) and
isolated points. Thus we can apply Lemma 2.1 to conclude.

Remark 2.4In Theorem 3.9 below, we study the smallest extensiok GB)
needed to achieve semi-stable reduction. Under the hypothesis that the Galois cover
f:X — Y is of degree prime t@, Theorem 2.3 shows that only a tame extension
of K(B) is necessary. T. Saito pointed out to us that this fact can also be obtained
by computing vanishing cycles an. The following example shows that when the
degree off is divisible by p, thenK (B) may equalK while any extensiorl /K
such thatX; has semi-stable reduction is a wild extension.

Consider the Fermat quotieit/Q, given by the equation” = u(1 — u). Let
fiX— ]P’b be the projection onto the-axis. Then the branch locus gfconsists
in the three points 0, 1, angb, all three rational ove®. It is shown in [McC] that if
27 — 2 is not divisible byp?, then the curveX does not admit semi-stable reduction
over any extension d which is tamely ramified ap.

Note that in this example, the special fiber of the natural mgdef ]P’(bp over
Z, (associated to Sp€€,[«])) is in the branch locus of the normalization map
»:N(Y, K(Xq,)) — ¥. Note also that the regular point= (p, 1/2) on % is a
smooth point of the branch locus of but that its preimage—1(y) is a singular
point on the special fiber a¥ (Y, K (Xq,))-

Remark 2.5Let K be of characteristic 2, and consider the cuky& given by
v2 +uv + u® + t = 0. The projection to the-axis X — P is an Artin—Schreier
cover. The branch locus of this cover is smooth at the peint), but the special
fiber of the affine chart Spe®«[u, v]/(v? + uv + u® + 1)) is singular at the point
(t, u, v). As we have seen in Lemma 2.1(b), this phenomenon cannot happen when
the cover is of degree prime ja More information on Artin—Schreier covers with
smooth branch loci in characteristic 2 can be found in [Tak].

3. The Extension to Semi-Stability

Let us assume in this section th@y is strictly Henselian. LeX /K be any curve.
We denote byLy/K any extension o minimal with the property thak has
semi-stable reduction ovdry. Let f: X — Y be a Galois cover over Spgf)
of degree prime tg, with branch locusB C Y. Recall thatK (B) denotes the
compositum, in an algebraic closure Kf of the residue fields of the points &f.
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Our aim in this section is to describe an extensignin terms of an extensiohy,
the extensiorkK (B), and some vertical ramification data.

In general, such an extensidry /K is not unique. However, when eithg(X) >
2 or X(K) # @, then there is a unique Galois extensibp/K minimal with
the property thatX has semi-stable reduction ovey (see [Des], 5.7-5.15). The
same is true for ang > 0 if one knows thatX has semi-stable reduction over
a tamely ramified extension &. Note that wherk is algebraically closed and
g(X) = 0, thenX(K) # ¢ ([Ser], X.7), and thusLy = K. In any case, it
is always possible to find a separable extendigik such thatX; /L has semi-
stable reduction. Indeed, since the cuigK is geometrically reduced, it has a
point defined over a separable extensidii K. Thus the results recalled above
imply the existence of a Galois extensiénM such thatX; /L has semi-stable
reduction. Note however Example 4.8 in [K-U], where a curve of genus 1 achieves
semi-stable reduction over a purely inseparable extensidh. &kecall (1.6) that
in general, givenf: X — Y and any extensioik x/K, we can find an extension
Ly/K contained inLy.

THEOREM 3.1. Let K be strictly henselian. Lef: X — Y be a Galois cover of
curves oveiSpec¢K), with Galois groupG of order prime top, and ramification
locusR C X. Then the following properties are true.

(&) The extensioK (R)/K is Galois.

(b) LetLy/K be any finite extension & such thatX has semi-stable reduction
overLy. Then[LyK(R) : Lx] < gcd2, |G)).

(c) If g(X) > 0and X has potentially good reduction, thefi(R) C Ly.

Theorem 3.1 has the following interesting application. Let us ggilart of a
Galois extension./K the following subextensioi.” of L/K. Under our hypo-
theses orK, the inertia groug of L/K is equal to the full Galois group df/K.
Thus the p-Sylow subgroupP of I is normal with cyclic quotient of ordet:.
Hence,l contains a unique cyclic normal subgropof orderm, and L is the
unique maximal extension & in L whose degree oveX is a power ofp. When
M /K is any finite extension, we cgtl-part of M the intersection oM with the p-
part of the Galois closure @ff /K . This extension is the unique maximal extension
of K in M whose degree oveX is a power ofp.

Let ¢ be any prime different fronp. We call£-part of a Galois extensiol /K
the unique subextension &f of degreet®® over K. WhenM/K is any finite
extension, we calt-part of M the intersection oM with the ¢-part of the Galois
closure ofM /K.

COROLLARY 3.2. Let f: X — Y be a Galois cover oveBpecK), with Galois
group G of order prime top. Let B C Y denote the branch locus g¢f. Letg be

any prime that does not divide the degreefofg may be equal tp). Then there
exist extension& y and Ly such thatLy € Ly and such that thg-part of Ly is

equal to theg-part of Ly K (B).
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Proof. Let Ly denote the set of extensioils,/K minimal with the property
that X achieves semi-stable reduction o¥er. Let Ly denote the same set relative
to Y. ForanyLl € Ly, Theorem 2.3 shows that there is an extendigi.} K (B)
of degree prime tg such thatX, has semi-stable reduction. Hence there exists
LY € Ly such thatLl C L. So theg-part of L} is contained in thej-part of
LLK(B). Conversely, anyL} € £x contains aL? € Ly (1.6.). Theorem 3.1
implies thatL} K (B) and L} have the samg-part (note thatk (B) < K(R)
and, by hypothesis; # 2 if |G| is even). Thus thg-part of L1 contains that of
L2 K (B). We have the inclusions:

g-part of L2K (B) C g-part of L% C g-part of L1 K (B).

This procedure can be continued in an obvious way to obtain a decreasing chain of
extensions oK. Since this chain becomes stationary after finitely many steps, we
canfindLy D Ly such thatLy andLy K (B) have the same-part.

The following general lemma proves Part (a) of Theorem 3.1.

LEMMA 3.3. Let K be any field of characteristip. > 0. Let f: X — Y be a
finite separable morphism of smodtbut not necessarily propgrcurves overk .
Assume thayf is tamely ramifiedthat is, for anyx € X, the ramification index
ex/f(x) IS prime top and the residue field extensid(x)/K (f (x)) is separabl
Let R C X be the ramification locus of. ThenK (R)/K is a Galois extension.

Proof. Since f is defined overk, Gal K"/ K) leaveskK (R) stable. Thus it
remains only to prove thakt (R) is separable ovek. To prove this fact, we may
assume thak is separably closed, and show thatR) = K. Letx € R and
y:= f(x). LetL := K(y) = K(x), andd := [L : K]. We will prove thatd = 1.

The base changé, — Y is ahomeomorphism. Denote agaimbthe preimage
in Y, of y. Then®y, , = Oy, @k L. SinceOy,, — Oy, , has trivial reS|due field
extension, its ramification index i& Consider the extensmﬂy) — (9XX It has
ramification indexe, > 1 and the tameness assumption implies that the residue
extension is trivial. Thus there exists an Eisenstein polynoi{dl) e (9Y>[T] of
degreer, such thanX = (DY)[T]/(P) Tensoring by, one gets

(9XLx =(9Xx ®kx L =(9YL JIT1/(P).

Let m be the maximal ideal ot9yL y. Ifd > 1, thenP(T) e (T, m)2. This
contradicts the regularity c(ﬁXL <. Sod = 1landy € Y(K).

EXAMPLE 3.4. The following example shows that the statement of Lemma 3.3
does not hold if the degree ¢fis divisible byp. Let K = k(a, b) denote the field

of rational functions in two variables. Consider the plane projective clrvE
defined by the affine equatia® + (u” — b)v 4+ au = 0. The reader will easily
check that this curve is smooth ovEr Let f: X — P} denote the projection onto
theu-axis. The pointy corresponding to the ide&k? — b) in K[u] is in the branch
locus of f and its residue field is inseparable ovér
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To prove Parts (b) and (c) of Theorem 3.1, we may assumekihat Ly. To
check that Part (b) holds whexX) = 0, note that a Galois morphisift X — Y
of degreed prime to p between curves of genus zero is ramified in at most three
points, with ramification indice&d, d), (2,2,d/2), (2,3, 3), (2,3, 4), or (2, 3, 5).
Except in the case wherk = 4 and the ramification indices a(g, 2, 2), at most
two of the indices are equal, and thus a point in the branch locus is define& over
or over a quadratic extension &f. The same statement holds for the cée2, 2)
since in this case the morphism can be factored into the composition of two cyclic
covers of degree 2, and the ramification of each cover can be analyzed separately.
The casdd, d) with d odd is the only case whel€| can be odd. Sinc — Y
is branched at two points, it is cyclic. Then it is easy to see that the extension
K (X)/K(Y) can always be given by an equation of the farfn= u, and thus the
branch locus is always defined ovEr

Wheng(X) > 1, Parts (b) and (c) are proved by applying the following propos-
ition to the minimal regular model (which is semi-stable sikce= L) of X over
(9](.

PROPOSITION 3.5.LetK be strictly Henselian. Lef: X — Y be a Galois cover
of curves oveSpedK ), with Galois groupG of order prime top. Assume thak
has a semi-stable modé&l over Ok such thatG acts onX. Letp: X — Y :=
X /G be the quotient map. LR} be the Zariski closure i1 of the ramification
locusR. Letx € {R} N X, and letC be the connected component{a} that

containsx.

(@) If X, is smooth at, thenC ~ SpecOk).

(b) If x is a double point of,, theng(C) has degre@ overOg, and|G| is even.
Moreover,Cx C X(K) ifand only ifp(Cx) C Y (K).

(c) Assume that is a double point of¢; and thatCx C X (K). Then there exists
a semi-stable modél; of Y which dominate$/ such that the points @f(Cx)
specialize to two distinct smooth points(®f;), and such thatVv (¥, K (X))
is semi-stable.

Proof. We will assume in the proofs of (a) and (b) thktis complete. Indeed,
assume that the proposition holds in this case. Denot& biye completion of .
ThenK (R) is tamely ramified oveK, and thusk (R) is tamely ramified ovek.
Therefore, sinc is strictly HenselianK (R) andk are linearly disjoint oveK .
Thus Parts (a) and (b) are true over

(@) SinceX; — Y, is tamely ramified atc, we can apply Lemma 3.3. to
conclude that is rational overk. Then the completion of the local rin@x , is
isomorphic toOk[[v]]. Let o be a generator of the cyclic inertia grodp (2.1.
(b)). Since the order af is not divisible by the residual characteristic, there exists
a change of variables — w such thato*: Ok [[w]] — Ok[[w]] is of the form
o*(w) = &w, with &, € Ok annth root of unity (see, e.g., [Lor], 1.3). Then the
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ramification of the inclusio® [[w]]°" C O[[w]] occurs at the ideaw). Thus
C is a section ofX overy.

(b) Let us now consider the case wherés not smooth. Thenr is an ordinary
double point ofX;; and, as such, is rational ovier

LEMMA 3.6. Let K be a discrete valuation field. LeX/0@x be a semi-stable
(not necessarily regular) model of a curke’ K . Letx be a singular point ofX;,
rational overk. Let G be a finite group of automorphisms &f. Assume that the
inertia group/, is not trivial and of order prime t@. Assume also that the elements
of I, either do not permute the irreducible componentsxgfpassing throughe

or, if X, is irreducible atx, do not permute the tangent directionsxatThenx is
isolated in the ramification locus 66 — X/G.

Proof. Since I, # {id}, x is ramified. Assume that is not isolated in the
ramification locus. Then there exists a closed pdine X which specializes
to x and such that the inertia group is not trivial. After extendingk if necessary
and replacingX by its base change, we can assume that rational overk . This
implies thatx is singular inX.

Lety: X — X denote the minimal desingularization of Then X is semi-
stable, andP specializes to a smooth poifitof X,. LetI' € (%) be the
irreducible component o, passing througtt. Sincel, < I,, the hypothesis
on the action off, implies thatl, acts onl", fixing the two intersection points of
I with the other components &€,. Furthermore, sinc& has multiplicity 1, the
morphismI’ — I'"/Ip has degredp and, thus,/p is a subgroup of AYl"). The
morphismI" — I'/Ip is ramified in at least three points (the intersection points
andX) andI' ~ P}. Using the Riemann—Hurwitz formula and the fact ttatis
cyclic, the reader will check that such a morphism cannot exist.

Let us return to the proof of (b). Sincein this case is not isolated in the
ramification locus of¢ — Y, Lemma 3.6. implies that, must either permute the
components ofG, passing through or permute the tangent directionsxatHence
I, is obviously an extension & J, — I, — Z/27 — 0. SinceX /I, — Y is
étale in a neighborhood of the imagexoh X /1., andX — X/J, is étale outside
of x in a neighborhood of (3.6, 2.1(a)), we may restrict our attention to the double
coverX/J, — X/I.. We claim that the image of in X/, is a smooth point.
This statement is local and follows from our next lemma.

LEMMA 3.7. Let K be a discrete valuation field. L&€/Ox be a good regular
model or a semi-stable model of a cut¥¢K . Letx be a singular point o X;) eq,
rational overk. Leto be an involution ofX, which fixesx and which either per-
mutes the components &f; containingx or, if X, is irreducible atx, permutes
the tangent directions at. Then the quotienl := X /(o) is regular at the image
y of x. Moreover, ifX; is reduced, thery is smooth at.

Proof. Let A be the formal completiofﬁx,x. By hypothesis, the maximal ideal
of A is generated by, u1, up, with a relation(t") = (uju5), n,r € N. We have
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@y,y = A“). Setu := u1 + o (u1), andv := u10 (u1). Consider the continuous
homomorphismp: Ok [[U, V]] — A defined byp(U) = u and¢(V) = v. Let
C =Im(¢) € A, One easily checks thét, u1} is a basis ford overC, and thus
A is integral overC. The maximal ideal o is generated by, u, andv. Sinceo
permutes the component$p~—" is an unit inC; and since eithet or r is 1, we find
thatC is regular. It follows that = A°’. Moreover, if X, is reduced, then = 1.
SoC/tC = k[[u]] is formally smooth ovek. Thus Lemma 3.7. is proved.

Let us now study the ramification and branch loci of the quotient Xap. —
% /1. Denote byx; andy; the images ok in X/J, andX/1,. LetC := Ox;1, .y,
Lemma 3.7. shows thal = Ok[[«]] and that sincg # 2, the ringA := Ox, v,
is generated ovef by an elementy satisfying a quadratic relation® — o (1) = 0.
Moreover, modulo(?), this relation must give an ordinary double point, so that
Weierstrass’ Preparation Theorem implies thét) = a(u)m(u), with a(u) a
distinguished polynomial of degree 2, amdu) a unit. Sincep # 2, A contains
the square root ofi(1). So we can assume that(z) = 1. ThusA is generated
overC by {1, w}, with w? = a(u). Thus the ramification locu® is defined by(w)
in a neighborhood af. This achieves the proof of Part (b) of the proposition since
A/(w) = C/(a(u)) and the latter has degree two ov&g.

Let us prove Part (c) of Proposition 3.5. Consider the minimal desingularization
X1 — X of X. ThenG acts onX 1, and we denote by, the quotient. Clearlyy,
is semi-stable and dominat&s SinceX’; is regular, the points ax specialize to
two distinct smooth points; andx; of (X1), (use Part a)). Proposition 1.6. implies
that the points in the image @fx also specialize to smooth points @1),. We
claim that these points are distinct. Indeed, the Going-Down Theorem 4.2 implies
that if the two points in the image @ pass through the same poimof (Y1)s,
then there are two points of the ramification locusfothat specialize ta; (use
the fact that the morphisnyi is Galois), which is a contradiction.

Remark 3.8t is natural to wonder, in the case where the groupf X — Y
has order divisible by, whether thep-part of the extensiorL.x/K can also be
described in terms of thg-part of Ly /K and of some explicit data coming from
the geometry of the covef: X — Y := X/G. We showed in Remark 2.4 that,
contrary to the tame case, this ‘explicit data’ cannot be the field of ratiorklif)
of the branch locus of.

The example presented in 2.4 is a wild coyerX — P, whereX is given
by the affine equation” = u(1 — u), and f is the projection to the-axis. The
reader will note that a twist ok has good reduction over a tame extensiorkof
Indeed, the curveX is isomorphic overX to the curve given by M — u? = v”.
Thus the twist 14 — u? = v? /4 is isomorphic to 1 z2 = v”. Theorem 2.3. can be
applied to the hyperelliptic curve = 1—v” to show that this curve achieves good
reduction after a tame extension &f (the reader may also proves this fact using
this explicit equation). Thus in this example thepart of the extensiod x /K is
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in some sense ‘explained’ by the fact that a twist¥ohas good reduction over a
tame extension ok .

The following is an example of an elliptic cury&/ K over the maximal unrami-
fied extensionk of Q, such that all its points of order 2 a#é-rational and such
that the extensiolh. s /K has order 24. In particular, none of the twists®)fK has
good reduction ovekK. To find examples of such a curve, one can use the tables
in the corollary to Theorem 3 of [Kra]. The cure@ = u(u + 1)(u + 4) is such a
curve with discriminant 3% and conductor 24. Note thgk ; : K] is divisible by
3, even though 3 is prime t@ and the points of the branch locus areklrational.
As we saw in Corollary 3.2, this cannot happen wipethoes not divide the degree
of the morphismf: X — Y. Note also that the minimal extension &fsuch that
one of the twists oz has good reduction is explicitly computable ([Ive]).

Let us consider a final example ofpacover. LetK be the maximal unramified
extension ofQ,(¢,), with uniformizers := 1 — ¢,. Letm > 1 be an integer prime
to p. Consider the curv&(/K given by the affine equation”? = u™ + ¢~7. The
automorphism — ¢,v allows us to viewX as ap-cover ofP1. The branch locus
of this cover is only defined over a tamely ramified extensioR péven though¥
has already good reduction ov@¥ . Indeed, the change of variahle= w — 1/¢
shows thafX has good reduction ovéry, with reduction of the formw”+w = u™.

Given a Galois cover: X — Y of degree prime t@, Theorem 2.3 exhibits an
extensionL /K such thatX; has semi-stable reduction. A ‘piece’ of this extension
is described using the vertical ramification indices of a well-chosen morphism of
modelsN(Y, K(X)) — ¥%. In our next theorem, we determine exactly which
vertical ramifications need to be ‘killed’ foX to obtain semi-stable reduction.

THEOREM 3.9. Let K be strictly Henselian. Lef: X — Y be a Galois cover
of curves overkK, of degree prime tg, with branch locusB. Let M := K(B).
Assume that,, has semi-stable reduction. L&t/©,, be a semi-stable model of
Yy such that the points a8, C Y, (M) specialize to distinct smooth pointsif.
Denote byAs, ..., A, the components ¢f, which are in the vertical branch locus
of N(Y, K(Xy)) — Y, with ramification indices, . .., e;. Denote by{B,,} the
closure of By, in %. Consider the se¥ of components\ of Y, such that either
pa(A) > 1or A contains at least three points 0By} U (Y)sing: If F is empty,
then X, has semi-stable reduction ovef. If ¥ is not empty, leL be the totally
ramified extension aff of degredcm(e; | A; € F).

(&) ThenL contains an extensiohy.

(b) Assume thag(X) > 2or, if g(X) = 1, that X has potentially good reduc-
tion. Then[L : Lyx] < gcd2, |G|). Moreover,L/M is the unique minimal
extension o/ such thatX; has semi-stable reduction.

Proof. (a) Let Y be any semi-stable model &, such that the closure a8
in Y is contained in a smooth open subsetp{Lemma 1.9). Consider the set
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F = F(Y) of componentsA of Y, such that eithep,(A) > 1 or A contains at
least three points ofB} U (Y)sing- If F = ¢, then eithery ~ P}, and|B| < 2,
or Y is an elliptic curve with multiplicative reduction argl = ¢. In the first case,
g(X) = 0, and since the branch locus fpfis M-rational, X (M) # @. ThusX/M
has semi-stable reduction. In this second casés also an elliptic curve and is
isogenous td’; thus X has also multiplicative reduction. ThereforeFifis empty,
X has semi-stable reduction ovéf and (a) holds.

Assume for the remainder of this proof that # ¢ (this is true under the
assumption of (b)). LeY — Y’ be the contraction of the componentsiafwhich
do not belong ta¥ (see [BLR], Section 6.7, Proposition 4). We leave it to the
reader to check that the closu@’ of B in ¥’ is again contained in a smooth
open subset off’. This follows from the fact that the exceptional components in
the minimal desingularizatio§, of ¥ do not belong t&% (¥). Moreover, the reader
will check that:

LEMMA 3.10. The modelY’ of Y described above is the unique semi-stable
model minimal among all semi-stable mod&lsof Y for which all points of B
specialize to distinct smooth points &f. The construction off’ commutes with
base change.

Make the extension®; /@, to Kill the vertical ramification. Then, as in 2.3,
Lemma 2.1 can be applied to show ttYy;, ., K (X)) is semi-stable. Hencd,
contains an extensiohy.

(b) Using Theorem 3.1(b), we see that to prove the stated inequality, it is suf-
ficient to prove that. € LyM. Let X := N(Y', K(Xy)). Let us show first that
L is the smallest extension @f such that the normalization &€, has reduced
special fiber. LetE/K be such an extension. For anyy € ¥, let & denote the
generic point of a component ot lying over A;, and letn be a point of the
normalization ofX ¢, lying overé. Then we have a commutative diagram

(9%‘ (977
Ok Of

of discrete valuation rings. Comparing the ramification indices in this diagram, we
find thate; divides[E : K]. Thus[L : K] divides[E : K]. SinceL/K is totally
and tamely ramified anf is strictly henselian, we find thdt C E.

Let F := LxM. Let W be the stable (resp. smoothgfX) = 1) model of
X r (see the beginning of Section 4). By uniquenes$iG acts onWw. Applying
Proposition 3.5 tow — W/G, we see that there exists a dominant morphism
Y, — W/G such thaty; andN (Y1, K (X)) are both semi-stable, and the Zariski
closure ofBy in Y is smooth and contained in the smooth locug/eiwhen|G]|
is odd, pickY, := W/G). ThusY, dominates%ﬁv and, henceN (Y1, K(Xr))
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dominatesV (¥, . K(Xr)). In particular,N (Y., K(XF)); is reduced. Thug C
F and, hencelL = F.

Suppose thatv /M is a subextension df such thatX, has semi-stable reduc-
tion. ThenN contains an extensioh’, /K, and the discussion above shows that
L' M = L. SinceL', M < N, we find thatN = L.

Remark 3.11Keep the notation and hypotheses as in 3.9(b). SineeF’, we
find that we have a dominant morphisgfa — ¥, . Assume thatG| is odd. Then
Y1 = W/G by construction, and sinc¥ (Y, , K(X.)) is semi-stable (Theorem
2.3) and dominated byv, it follows that N (Y, , K(X.)) = W. In particular, if
g(X) > 2, thenN (Y, , K(X.)) is the stable model of;,. When|G]| is even, the
situation is more complicated, but it should also be possible to find a semi-stable
modelY” /Oy of Yy such thatV (Y, , K(X1)) = W (i.e., stable ifg(X) > 2 or
smooth ifg(X) = 1).

4. Extending Covers to Stable Models

Let X be a (proper, smooth and geometrically connected) curve Kvékssume
thatg(X) > 2. A semi-stable model (see 1.%)is said to bestableif any irredu-
cible component of the geometric special fib&risomorphic tdP! meets the other
components ofX; in at least three points ([D-M], Definition 1.1). A stable model
X together with the isomorphis x = X is unique ([D-M], Lemma 1.12). Let
X be the minimal regular model af over @x. ThenX admits a stable model if
and only if Xg is semi-stable. In fact, given any regular semi-stable modef X,
the stable model oX is obtained by contracting all the smooth rational curves of
self-intersection-2 in X, ([D-M], Section 1). Letks" be the strict henselization
of K. Since the minimal regular model commutes with étale extensiotdx qbee
for instance [Lil], Section 8, Lemme 11X has a stable model ové, if and
only if X gsh has a stable model oveérysh.

Let X¢ and ¥ be stable curves ovafx with smooth generic fiberX andY,
respectively. Letf: X — Y be a finite morphism. In this section, we investigate
whether it is possible to extendl to a morphism fromX to Y. It is easy to see
that, in generalf cannot be extended to a finite morphism, uni¥sis assumed to
be smooth (see Corollary 4.10 below). However, we prove in Proposition 4.4 that
the answer to the above question is positive if one does not require the extended
morphism to be finite.

To begin, let us recall some well known facts on the birational geometry of
normal surfaces. LeX be a curve ovelk. Let @ be a valuation ring oK (X)
dominating @g. For any modelWw of X over O, let Spe€®) — W be the
birational morphism given by the valuative criterion of properness. The image of
the closed point of Spé®) in W, is calledthe center of9 in W. Note that for any
generic poing of W, O is a discrete valuation ring of (X) as'W is normal.

The following lemma is well known and useful.
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LEMMA 4.11. Let X be as above. LeX and ‘W be two models oX over Og.
Assume that for any generic poifitof ‘W,, the center o9+ ¢ in X is a generic
point of X;. Then the birational mapé — W induced by the identity maj x ~
Wk is a morphism.

Proof. LetI" € X xq, W be the graph of the birational map: X — W.
Suppose that there exists a fundamental poiat X of T (see [Har], V.5.1)x is
closed. Letp;: ' — X be the first projection. Then Zariski's Main Theorem (see
for instance [Har], V.5.2) implies thaf (x) := pz(pil(x)) is connected and of
dimension> 1. So there is a generic poifitof ‘W, which lies inT (x). SinceT ~*
is defined at, we haveT ~1(&) = x. This contradicts the assumption tHat!(£)
is a generic point ofc;.

4.2. Another useful tool in this section is the going-down property ([Mat], 5.E.v,
p. 34). LetB be an integral domain, let be a normal subring oB over which

B is integral. Letm be a prime ideal ofA, letn be a prime ideal oB lying over

m. Then, given any prime idealcontained inm, there exists a prime ideglof B
contained im and lying ove (i.e., such that N A = p).

Let E be a (possibly not normal or not reduced) connected curve over an algeb-
raically closed field. For any closed point € E, denote bymg , the number
of points lying overx in the normalization ofE (which is, by definition, the
normalization ofEeg).

LEMMA 4.3. Lety:: ' W — Z be a finite surjective morphism of normal ftaj-
schemes of finite type of dimensidnLetz € Z; be a closed point and lat e
¥ ~1(z). Let A be any irreducible component &f, containingz.

(a) There is an irreducible component &, containingw which maps surject-
ively ontoA.

(b) Assume thakK is complete and thak is algebraically closed. LeE be the
union of the irreducible components vf1(A) passing byw. Thenmg , >
mAa ;.

Proof. (a) Apply the going-down property to the case whdre= @z, B =
(V. O)., mis equal to the maximal ideal of, andn is equal to the maximal ideal
of B corresponding taw. (b) Using the embedded resolution of curve singularities
([Sha], page 38), there is a birational morphmmz — Z such that the strict
transformA of A by 7 is smooth. LetW be the normalization o, in K (W).
Then one has a commutative diagram

A W

&

=
—
B
<=

N2

z
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Let E be the strict transform of by A. To prove Lemma 4.3, it is enough to show
that the mapp A Yw)NE — 771z) N A is surjective. Letw; € A1 (w) N

E, z1 = ¥ (wy) andz, # 7, be another point ofr ~1(z) N A. Sincer~1(z) is
connected, there is a chain of irreducible components. .., A, of 771(z) such
thatz; € A;andzz € A,. Using (a), one gets a connected chain of irreducible
componentd’y, ..., I, ['41 of W, such thatw; € I'y, ¥(I';) = A; foralli <r,
andy (I',41) = A. Letw, € I', N T',41 be a point lying ovet,. By construction,
A(Uigi<, I'y) containsi(w;) = w and is connected. Moreover(Us¢,<,I') <

v 1(2), and thus is equal te. Hence,w € A(I',;1) andT,,; C E. Thusw, €

A~ Lw) N E with ¥ (wy) = zo.

The above lemma is also proved in Youssefi's thesis in the context of valued
function fields ([Y-M], Remarque, page 120).

PROPOSITION 4.4.Let Ok be a discrete valuation ring. LéX and ¥ be stable
curves ovelx with smooth generic fiber¥ andY (in particular, g(Y) > 2). Let
f:X — Y be a finite morphism. Then the following properties hold:

(&) The morphisny extends to a (not necessarily finite) morphisrd@fschemes
X —> Y.

(b) Lety e Y, be a singular point. Ifp~1(y) is finite, then it is contained in the
singular locus ofX;.

Proof. (a) We need to show that the rational m¥p— Y is a morphism. Let
O be any discrete valuation ring dominatid. If X9, — Ye, iS a morphism,
thenXr — Yg is a morphism for some suldx-algebraR of @, of finite type.
LetT; C X xo, Y be the graph ofX — % and letp:T; — X be the first
projection. SinceR /O kis flat and of finite type (thus universally open), the graph
of Xrg — Yris (Ff)R. So pr is an isomorphism. BuR /Oy is faithfully flat,
so p is already an isomorphism. This means that—> Y is defined everywhere.
Since the stable model commutes with base change, we are allowed to make any
extension®; /O in the course of the proof. Hence, we will assume tKats
complete and that is algebraically closed.

Lety: W — Y be the normalization of in X. It is a finite morphism sinc&
is complete, hence excellent. For any irreducible compoheot W, a theorem
of Epp ([Epp], Theorem 2.0) proves the existence of a discrete valuatior9ging
finite over Ok with the following property: letW’ be the normalization oW, ,
then any irreducible component 6f; lying over I' is of multiplicity 1. Let F
be the compositum of all thé,’s. Since a component of multiplicity 1 remains
of multiplicity 1 after any base extension, the normalizatior%f, has reduced
special fiber. Thus, after a suitable base change if necessary, we may assume that
W, is reduced.

The statement (a) is equivalent to saying that the birational ¥ap W is a
morphism. Letr: W — ‘W be the minimal desingularization 6. We claim that
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for any irreducible componert of W, the strict transforn” of I" in ‘W cannot be
exceptional of the first or second kind (thatscannot be isomorphic tB* with
['2 = —1 or —2). This claim implies tha® is the minimal regular model and that
I is mapped onto a component &f,. Lemma 4.11 shows then that — W is a
morphism.

It remains to prove the claim. L&t be a component 6, such thaf” is excep-
tional of the first or second kind. Let be its image ir}f. Lety € A be a singular
point of Y. Letx € 7 ~1(y~*(y))NI and letw = 7 (x). We want to show first that
x is singular in'W,. It is easy to see, using Lemma 4.3, thay, , > my, , > 2. If
7 is an isomorphism ovap, we are done. Otherwisg, *(w) is a connected one-
dimensional curve. Hence there is an irreducible componént W, contained
in n‘l(w)Nand containinge. SoI'" # I', andx € I' NI, Thusx is singular in'W;.

Sincerl is rational and dominates, the latter is also rational. Sinég is stable,
either A contains at least three intersection points, or it contains one double point
and one intersection point. By hypothedisis regular. So there are at least three
points inT" lying over singular points of; contained inA. These three points are
all singular in'W, as we just showed, but this contradicts the hypothesis.drus
the claim is proved.

(b) We may assume tha& is complete and is algebraically closed. Then (b)
is a consequence of Lemma 4.3(b) or Proposition 1.6.

T. Saito informed us that Proposition 4.4(a) is proved in [Moc], Lemma 8.3, in
the case where the morphisfmn X — Y is étale.

Remark 4.5Note that Proposition 4.4(a) is not true if one replaces ‘stable
curves’ by ‘minimal regular models’. Indeed, consider a Galois cguef — Y
with Galois groupG. Let X5/ Ok be the minimal regular model &f and letx € X,
be an intersection point of two irreducible componehisandI', of X,. The
group G acts onX. It may well happen that the inertia grodpis nontrivial and
leaves fixed each;. If X is semi-stable, then the imageof the pointx in the
quotientX /G is a singular point (see, for instance, the beginning of the proof of
6.2). Thus we may expect that the minimal regular mdglaf ¥ has ‘too many
components’ coming from the desingularizationydor the morphismy to extend
to a morphism fromix to Y.

Remark 4.61f X — Y is separable, then Proposition 4.4(a) can be proved in
a somewhat simpler manner as follows. As explained before, we are allowed to
extend the base field. Let us do it in such a way that: (1) the Galois closure
Xof X > Yis geometrically connected and smooth; (2) the residue fiekl
algebraically closed; and (3§ admits a stable modet over Ok. Let G denote
the group Ge(IK(X)/K(Y)) Let H be the subgroup G@?(X)/K(X)) of G. Then
%, := X/H and Y, = %X /G are semi-stable (Proposition 1.6), afibxtends to
¢1: X1 — Y1 by Galois property. Lel” be any component afX(1); mapped to
a closed point of the stable mod# of X. ThenT" ~ P{ and meets the other
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components ofX 1), in at most two points. By Lemma 4.3, any pointloflying
over a singular point ofY1); is a singular point otX1),. We conclude thap, (T")
is isomorphic td?; and meets the other componentg ), in at most two points.
So ¢, (T") is mapped to a point of the stable modglof Y. Lemma 4.11 implies
then thatyp; induces a morphisr: XX — Y which extendsf.

COROLLARY 4.7. Let f: X — Y be a finite morphism of curves ové&r, with
g(Y) > 2. Assume thaX admits a stable modéeX over k. ThenY has a stable
modelYy over@x and f extends to a morphisi — Y.

Proof. Let L/K be a finite Galois extension with Galois groGpsuch thaty;
admits a stable modél’ over the integral closuré, of O in L. Proposition 4.4
implies that f; extends to a morphisifXy, — Y’. So f extends to a morphism
X — Y :=Y'/G overOg. SinceX, is geometrically reduced, so §,. Hence
Yo, isnormal (1.1.). The morphisf’ — Y, is finite and birational, thus itis an
isomorphism. S@/ is stable. Thug admits a stable model ovéry .

We may also use Néron models to prove thalbas a stable model oveéry.
Indeed, a curve of genus 2 admits a stable model if and only if the Néron
model of its Jacobian has semi-Abelian reduction ([D-M], Theorem 2.4). Since
the Jacobian J&X) of X is isogenous to a product J&) x A, Corollary 7 in
[BLR], Section 7.3, implies that the Néron model of Jagis semi-Abelian.

Remark 4.8Let us consider in this remark the case whe(E) = 1. If Y has
potentially good reduction, then Proposition 4.4. and Corollary 4.7. still hold if
one replaces ‘stable model Bf by ‘smooth model ofY’. The proof is exactly the
same.

If Y has potentially multiplicative reduction antt X — Y is any cover ofY
such thatg(X) > 2 andX has a stable model ovéry, thenY has multiplicative
reduction overg already. This can be seen easily using Jacobians. However, it
may happen that the morphisyfncannot be extended to a morphism between the
stable model ofX and a semi-stable model of. Let us consider the following
example.

Let K be complete with algebraically closed residue fieldnd p # 2. Let
G = Z/nZ, with n prime to p. By gluing together two suitabl&-covers ofP%,
we can construct a semi-stable cude over k with a faithful action ofG, and
such that (1)¢, has two smooth irreducible componemitsandI', that intersect
at exactly two points, (2§57 leaves fixed these points as well as edichand (3)
g(Ty) > 1,g(l'2) = 0,andg(T'1/G) = 0. Let X! = X,/G. Then X is the
union of two smooth rational lines that intersect transversally in two distinct points.
Consider the étale map of degree two fro¢h to a rational curve with a node. Let
us denote this latter curve 3.

Our aim is to lift the compositioX;, — Y, to a finite morphism of models. To
do so, we will use some results of Saidi. llethe a semi-stable model of a Tate
elliptic curveY/K, with special fiber isomorphic t&;. After making a ramified
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extension if necessary, we can use [Said], 5.7, first to lift the morpbism> Y,

to a finite morphisnX’ — Y of semi-stable models, and then to lift the morphism
X; — X to a finite morphism of semi-stable modets — X' (the schemeX

is normal by 1.1). Lep: X — Y denote the composition, and |ét= ¢k . Let Z

be the stable modet over Ok. Its special fiber consists in the curife with two
points identified.

We claim that the morphisnf cannot be extended to a morphism franto
any semi-stable model df. To prove this fact, ley’ be any semi-stable model of
Y. Let us show first that if a morphistd — Y’ exists, thery’ = Y. Indeed,Y, is
irreducible. Let, &, n, andn’, denote respectively the generic pointd'ef Z,, Y
andy;. ThenOx = Oz dominates bott®y , and 9y /. ThusOy , = Oy
andy’ = ¥ (Lemma 4.11). If a morphisrZ — Y exists, then it is finite. Thug
is the integral closure d§ in K (X) and, henceX = Z, which is impossible.

Remark 4.9 As pointed out by R. Coleman, the following variation on Pro-
position 4.4(a) holds without the assumption tlga¥) > 2. Let X and ¥ be
semi-stable curves ovéx with smooth generic fiber¥ andY. Let f/: X — Y
be a finite morphism. Then after a suitable extensignof @k, there exists a
semi-stable modeX;’/©, dominating X, such thatf extends to a morphism
X — y(DL'

To prove this statement, we may assume fha complete. LeZ be a model of
X which dominates both¢ andN (Y, K (X)). Then after a finite extensiaf, /O,
there is a semi-stable mod¥! /@, of X, which dominatesZy, (See reference just
before 1.8). Thus¢’ dominatesX, and f extends taX’ — Yo, .

COROLLARY 4.10. Let f: X — Y be a finite morphism of curves ovéf.
Assume thap(Y) > 1, and thatX admits a smooth modét. ThenY admits
a smooth mode¥, and f extends to a finite morphisté — Y.
Proof. Assume thag(Y) > 2. Let Y be the stable model df over Ok, which
exists by Corollary 4.7. Lep: X — Y be the morphism which extends Since
X, is irreducible,¢ is finite. Thus Proposition 4.4(b), implies thit is smooth,
and the corollary is proved whey(Y) > 2.
Let us now present a different argument that also applies to the case where
g(¥) = 1. Let J(X) (resp.J(Y)) be the Jacobian aoX (resp. ofY). ThenJ(X)
has good reduction, and so dag€l) ([S-T], Section 1, Corollary 2). Sinc&
is smooth, it has a section over some étale extensiofizof[EGA], IV.17.16.3
(i)). Let Y be the minimal regular model df over Ok. Then by composition
Y also has an étale quasi-section. So the identity component of the Néron model
of J(¥) over Ok is isomorphic to Pig; ,  ([BLR], Section 9.5, Remark 5} is
semi-stable, all the irreducible componentsygpfare smooth and the graph #f
is a tree (loc. cit. Section 9.3, Corollary 12(c)). Singg&) > 1 and the graph
is a tree,Y, contains an irreducible component of positive genus. As before,
we may assumé& complete. In particular, the rin@ is excellent. Consider the
normalizationX’ := N (Y, K(X)) of ¥ in K(X). ThenA is dominated by some
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irreducible component of X, of positive geometric genus. Sint&¢is smooth"

is the unique component o€ with positive geometric genus, and thasis the
unique such component &f,. Hence,Y, = A and¥ is smooth. Any irreducible
component ofX! dominatesA, and thus has positive geometric genus. Therefore,
X! = I'. SinceX is smooth andg(X) > 1, X is the uniqgue model oX with
integral special fiber of positive geometric genus. Hed¢e= X and we have a
finite morphismX — Y.

Remark 4.11The fact that the good reduction &fimplies that ofY is already
known, and can be found in the literature in [Lge], Section 3, Lemma 1, in the case
whereX (K) # ¥, and in [Y-M], théoréme 2.2, in the general case; see also [N-S],
Lemma5.1.

The hypothesis thag(Y) > 1 is necessary in the statement of the corollary.
Indeed, here is a counterexample to Corollary 4.10 whea P. LetZ — Y
to the cover corresponding to the field extensiky) = K(y) — K(Z) =
K (Y)[z]/(z? — yz +t), wheret is an uniformizing parameter &f. ThenZ ~ PL
since Z has rational points at infinity. Consider the modgl= Spe@[y] U
Spedx[1/y] ~ IP%K of Y.PutZ = N(Y, K(Z)). ThenZ is regular, andz; is the
union of two projective lines of self-intersectienl. One can contract one of these
lines, with contraction morphist@ — W, so thatw ~ IP%K.

Let X — ‘W be a finite cover withX¢ smooth overVk. SinceWx = Z, one
obtains a coveX := Xx — Y by composition. We claim that this cover cannot
be extended to smooth models. Assume for simplicity g@&) > 0. Assume
that X — Y extends to a cover of smooth mod&8 — Y'. ThenX’ = X by
uniqueness of the smooth model ¥fover Ok. Let & (resp.£’) be the generic
point of Y, (resp. ofY). Then®y . and Oy . are discrete valuation rings with
same quotient field (Y) and both dominated by the valuation ring induced by
the generic point ofX,, so they are equal. This implies thjt = Y and X =
NY, K(X)). But N(Y¥, K(X)), has at least two components since the same is
true forN (Y, K(Z2)), = W;, so there is contradiction.

Remark 4.12Corollary 4.10. holds even whepY) = O if f: X — Y is
Galois with Galois groug': in this case the quotierX /G is smooth (Proposition
1.6.). Unfortunately, the general case of Corollary 4.10. cannot be deduced from
this Galois case. Indeed, l&f — Y be any separable cover. L& — Y be
the Galois closure ok overY. Assume thafX has good reduction. One can ask
whether X also has good reduction. The answer to this question is negative in
general. Consider for instance the cover— Y = PL in Remark 4.11 Letd
be the subgroup Gat (X)/K (X)) of G. If X had good reduction, then the cover
X — Y would extend to a Galois cover of smooth mod&lsH — X/G. But we
saw in Remark 4.11 that this is impossible.

Remark 4.13Assume that’ has a smooth mod&l over@g. LetX — Y be an
étale Galois cover of grou@. A theorem of Grothendieck states that if the order of
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G is prime to the residue characteristic= chark), then after a base change of the
ground field,N (Y, K (X)) is smooth and étale ovéf. This can be deduced easily
from Theorem 2.3. I{p divides the order o6, then the situation is more complex.
See [Ray], especially Section 3, for further information. In particular, it is possible
to construct examples whekemay not have potentially good reduction.

Finally, let us state the following lemma which pertains to the problem of ex-
tending finite covers. Given a morphisfit X — Y and a modely of Y, the
process of normalization produces a mod&ly, K (X)) of X that is in general
finite overy. But in general, given a modé&$ of X, it is not possible to construct a
modelY and a finite morphistX — Y. The following lemma shows the existence
of a modelY and a rational map¢ — Y with some finiteness and surjectivity
properties.

LEMMA 4.14. Let f: X — Y be a finite cover of curves ovéf. Let XX and Y’
be models of andY over Ok, respectively. Then there is a modglof Y over
Ok which dominateg}’ and such thatf extends to a rational ma — % which
is quasi-finite in codimensioh. If K is Henselian, then there is a modgl of Y
over Ok such thatf extends to a rational ma — Y” which is quasi-finite and
surjective in codimensioh.

Proof. Let & be the generic point of an irreducible component)f. Then
O’ = Ox¢ N K(Y) is a valuation ring ofK (Y). Let us show first that there is a
modelZ of Y such that the center @’ in Z is a generic point of;.

Let p be the center o’ in Y'. The residue field 0®’ is a sub-extension of
finite index ofk(¢), so it has transcendental degree 1 duéie can easily deduce
that®’ is a prime divisor ofY’ of centerp in the sense of Zariski (see [Art], Section
5). By a theorem of Zariski, after a suitable blow-#p— Y’, the center of9’ in
Z’ will be a generic point ofz; (op. cit., Theorem 5.2). The normalizatié of
Z' satisfies the required condition. By induction, one constructs a nipaeé|Y
dominatingy’ and such that the local ring of any one-codimensional poiriof
dominates the local ring of an one-codimensional poirfy of

If K is Henselian, one can contract the irreducible componeriys wfich are
not dominated by a component &f; ([BLR], Section 6.7, Proposition 4). After
such a contraction, the new modg| fulfills the required conditions.

5. Models that Dominate Regular Models

In this preparatory section, we study some properties of the fibers of a birational
morphismZ — Y% wheny is assumed to be regular. As we shall see, these fibers
behave as if they belonged to the special fiber of a regular mode} g€ompare

with [Li2], Section 3.2). The results of this section will be used to prove the main
results of the next two sections. The reader may skip this section and refer to it as
necessary while reading the following sections.
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Let Z be a model. We denote byT") the multiplicity of a vertical diviso" in
Z. Let Z' be another model aZk and letr:Z" — Z be a morphism of models.
Let I be the strict transform of in Z'. WhenT is smooth,Z' — Z induces
an isomorphismi’ — T, andr(T') = r(I'). To simplify our notation when no
confusion may result, the strict transfoifwill be denoted again by. We shall
say that a poink of ' is aninterior pointof I in Z if Z; is irreducible atx. If
n:Z' — Zis any birational morphism ande Z, we may denote the fiber—1(z)
simply by Z'.

Let W/Ok be a normal model of a cun# over a discrete valuation fiel& .
Let wo be a closed point oW,. SetW, (wg) := {P € W | {P} N W, = {wo}},
where{ P} denotes the Zariski closure oP} in ‘W. Note thatW, (wo) depends on
the choice of the modeélv, even though this dependence is not explicitly indicated
in our notation. Note also that K is Henselian, thefiP} N ‘W, is alway reduced
to a single point.

LEMMAS.1. Let K be Henselian with algebraically closed residue figld_et
X /O be a regular model of a curv& /K. Fix a closed pointc € X,. Denote
byTy,..., T, the irreducible components &f; containingx, with multiplicities
ri, ..., I, respectively.

(@) LetP € X, (x). Then[K(P) : K] € Y_!_, ;N. (N denotes the set of positive
integers)

(b) Assume tha¥ is a good model as ih.8. Then there exists a poift € X, (x)
suchthafK(P) : K1=Y"_,r:.

(c) Assume thaf is a good model and that belongs to two distinct components
'y andT; of X. Letr: Z — X be a morphism of models &fsuch thatl” :=
m~1(x) is irreducible of multiplicityr; + r, and meets the other components
of Z, in two distinct points, and such thatis an isomorphism ovek \ {x}.
Thenr is the blow-up of¢ with (reduced) center. In particular, Z is regular.

Proof. Consider the closed subscherf®} as a divisor onX;. Then[K (P) :
K]1={P} X, =Y, r:({P}-T;). This proves (a).

(b) SinceX is a good modelp = 1 or 2. Assume first that = 1. Letu €
O« be alocal equation o'y at x. Sincex is regular inl";, the maximal ideal
of Or,» = Ox../(u) is generated by the image of sorthes O .. Thus(u, h)
is the maximal ideal 0®; .. Let D be an irreducible component of dh). Then
D intersectsl'; transversally ak, and thus the generic poirit of D belongs to
X (x). Itis easy to check thak (P) has degree; overk.

Consider now the case = 2. Let X’ — X be the blow-up with center.
Denote byE the exceptional component. Thé&hhas multiplicityr; + r, (Lemma
1.4.). Letx; be an interior point of£. From the case = 1, we get a pointP €
X, (x) C X (x)with[K(P) : K] =r1+ 1.

(c) LetZ — Z be the minimal desingularization &. Denote byl the strict
transform ofl" in Z. The compositiorZ — X is a birational morphism between
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two regular schemes and in thus a sequence of blow-ups. The first blow-up is the
blow-up of the pointr and thus its exceptional fibey is a component of multipli-
city 1 + r2. Any component o lying overx has multiplicity inr;N + r,N. The
only components o, that have multiplicity equal te, + r, are components that
are obtained by blowing up smooth points on components of multipligity .
Since the mode¥ is obtained by contracting all the componentsZyflying
over x exceptl’, and sincd™ meets the rest of the fiber in two distinct points, we
see thaf” can only be the component. SinceZ is the minimal desingularization
of Z, none of the added components are rational of self-interseetibm Z. On
the other handZ is not a minimal regular model, and thOsnust be an exceptional
divisor. Intersection theory of shows then that the  multiplicity of any component
that intersects$’ is strictly smaller tham,+r,. Hence,Z = Z, andZ is the blow-up
of X alongx.

In the sequel, we will need the following terminology used in graph theory.
Recall that avertexof thedual graphassociated to a curve represents an irreducible
component of the curve, and that two vertices are linked by as many edges as the
number of intersection points of the corresponding irreducible components. Recall
that the degreé(v) of a vertexv of a graphg. is the number of edges gfattached
tov. Whend(v) = 1, the vertex is calleterminal and wherd (v) > 3, the vertex
is called anode A terminal chain of a grapf attached to a vertexis a connected
component of \ {v} that contains a terminal vertex but does not contain any node.

LEMMA 5.2. Assume that is algebraically closed. Le§ /O be a normal model
of a curveY/K, and letr: Z — Y be a proper birational morphism witlz;
normal. Fix a closed point € Y, such thatr ~(y) is one-dimensional.

(&) Assume thayp is a rational singularity. Then each irreducible component of
7~ 1(y) is isomorphic toP;. If Z is regular, then the graph of ~1(y) is a
tree. In general, the graph of ~1(y) may contain loops, but only because
of the existence of the following configuration of curves.llset .., ", be a
sequence of > 2 distinct components of ~%(y) such thatl; N i1 # 9,
i=1,...,n—1andl, N Ty # ¥. Then there is a single pointin 7 ~1(y)
suchthatl; NIy, ={x},i=1,...,n—1,andT’, NIy = {x}.
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(b) Assume thay is a good model and that is regular. ThenZ is also a good
model andr ~1(y) contains at least one exceptional divigor ThenI" meets
the other components @&, in at most two points. Moreover, If is unique,
then the graph ofr ~1(y) can be described as in Figure 1.

Each vertexs in Figure 1 represents a smooth rational curve. The synbol
indicates the position of the unique curve of self-intersectidnThe special
fiber Y, meetsr ~(y) in one or both component$ and B, and nowhere else.
The symbols= and < next to a chain indicate that the multiplicities decrease
(resp. strictly increase) along that chain when read from left to right. We have
r(C1) =r(C)),r(Ca) > r(Cy), r(Cy) =r(C5), etc.

(c) Keep the hypothesis of (b). LEt, ..., ', be the exceptional divisors &
contained inr ~%(y). Thenmax{(r(I';) | 1 < i < m} is also the maximum of
the multiplicities of the componentsofi(y).

Proof.(a) Sincey is a rational singularityR'z, 05 = 0 ([Lip2], 1.1 and 1.2 (2)).
Let C be any connected reduced curve aveontained int ~(y). Letd C @4 be
the sheaf of ideals defining. Then the sequence® 4 — Oz — O¢c — 0is
exact. The long exact cohomology sequence gives an exact sequence

R'7.04 — R'7,.0c — R°m,J.

The last group vanishes since the fibersrohave dimension at most 1. Thus
HY(C, 0¢) = 0. If Z is regular, then intersection theory @ shows that each
component o€ is a projective line, and that the dual graphCos a tree. WhetZ is
not regular, leZ — Z denote the minimal desingularization &f and denote by
the compositiorZ — Y. The curver ~(y) is obtained by contracting components
of the curven~1(y), whose dual graph is a tree. The last statement of (a) follows.

(b) The morphisnz — Y consists of successive blow-ups of closed points, so
Z is good. Sincey is a regular pointg ~(y) must contain an exceptional divisor
I". One can contracl’ and get a new regular modg&l; dominating¥. All the
components ofz; that meetl" then meet each other at a same poinZin But
Z, is a good model, so there are at most two componenis ivhich intersect”.
Assume thafl" is the unique exceptional divisor af~1(y). Then exactly one of
the components of ~(y) that meetl™ becomes the unique exceptional divisor of
(Z1),. Now it is easy to check by induction on the number of components that, in
case wherd" is the unique exceptional divisor in-%(y), the shape of the divisor
7~1(y) is as indicated in Figure 1.

(c) We proceed by induction on the numberf components ofr ~(y). If
n = 1, the statement holds. Af > 1, contractl"; to get a new mode¥, and a fac-
torizationZ — Z; — Y. Then the exceptional divisors 0%1), arel',, ..., T,
and possibly the image of a component, §gyc 7 ~(y), that intersect§’; in Z.
Sincer(I'g) < r(I'1), (c) holds.
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We now apply the above lemma to study the exceptional locus of the minimal
desingularization of a singular point &f.

LEMMA 5.3. Assume thak is henselian and is algebraically closed. L&y /O
be a good model (see8) of a curveY /K, and letr: Z — Y be a proper birational
morphism withZ normal. Fix a closed poiny € Y, such thatr ~(y) is one-
dimensional.

(@) LetI" be a component of ~1(y) of multiplicity » and letz be an interior point
of ' in Z. Thenz is singular inZ if and only if there exist® € Y, (z) such
that [K(Q) : K] < r. Assume now that is singular inZ and letZ — Z
denote the minimal desingularization of ThenZ, consists of a chain of
vertical divisors. Moreover, as one moves away from the compdhaiing
the chain, the multiplicities of the components are strictly decreasing.

(b) LetI" be a component of ~%(y). Assume thal' meets a componeii, in z;
and a second componenh} in z,, with z; # zo. If the multiplicities ofl"; and
", are strictly smaller than-(I"), then all the interior points of are regular
in Z.

(c) Letz be a point ofr ~1(y), singular inZ, and which belongs to exactly two
componentd™; and I', of Z,. Let zZ — Z be the minimal desingulariza-
tion of z. Then each component & has multiplicity less than or equal to
max(r(I'y), r(I'2)}.

Proof. We shall use the following common construction in the proofs of (a)—
(c). Let z be a singular point ofz. Let Z — Zg be the contraction of all the
components ofr ~%(y) except for the components that contairiThis contraction
is an isomorphism in a neighborhood ofLetA: W — Zy be the minimal desin-
gularization ofZo. Let Z — Z be the minimal desingularization efe Z. Then
Z is isomorphic toW in a neighborhood of,. Moreover, Z, is isomorphic to
17Y(z). Thus it is enough to prove the statements (a)—(c)Afor(z). Denote by
n: W — Y the compositionW — Z, — Y. Since the regular modé&V is the
minimal desingularizationyp has the property that the only possible exceptional
divisors contained im~(y) are the strict transforms of the componentsrot (y)
that meet. Note that sinceWw is not the minimal model, at least one of these strict
transforms must be exceptional.

(a) Assume that is singular, and consider the morphignintroduced above.
ThenT is the unique exceptional divisor contained;int(y). Sincez is an isolated
point, we find, using Figure 1 in the case of the morphisriv — Y, that the
only possibility forA=1(z) is to correspond to the terminal chain attached to the
exceptional curvd’. This proves the statement abafit (which is isomorphic to
A71(2)).

Let A be acomponent 6f~1(z). Then, as we just showed(A) < r.LetQ € Y
be a closed point of degré& (Q) : K] = r(A) specializing to an interior point of
A (use 5.1(b), sincév is a good model). The® € Y, (z) and[K(Q) : K] < r.

If z is regular, then Lemma 5.1(a) implies th&t(Q) : K] > r forall Q € Y, (2).
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(b) Assume that there exists a singular interior paigtI’ C Z,. Let W be the
model constructed using € Z as above. Thel is the unique exceptional curve
onn~1(y), and thus Lemma 5.2(b) implies thAtcan meet the rest of X(y) in
at most two points. Sinceis singular,I” certainly meets;~(y) atz. To obtain a
contradiction, we will show that each gives rise to a component 8, that meets
I" in z;. We need to consider two cases. First;ifc 7 ~1(y), then there is a point
Q; € Y of degreer(T';) that specializes to an interior 8 C Z (use 5.1(b), since
the curvel’; contains a point smooth it%)eq and regular iriz). So Part (a) shows
thatz; € I is singular inZ, since Q; specializes ta; € Zg andr(I';) < r(I).
Hence, a component o, meetsI” in z;. Second, ifl’; is not a component of
7~1(y), then it is not contracted i,. Thus again a component 6f, meetsI’

n Zi

(c) Consider the modeW associated tq as above. The only possible excep-
tional divisors in'W areI"; andT',. Thus (c) is a consequence of Lemma 5.2(c)
applied tow — Y.

6. Normalization of Regular Models

Let f: X — Y be a cover of smooth, proper, and geometrically connected curves
over K. It is natural to wonder whether there exist regular modéland ¥ of X
andY respectively, and a finite morphisgn X — Y such thatpx = f. Note that
in this caseX = N(Y, K (X)) sincey is finite. We shall say that can be extended
to a cover of regular model§ such a cover: X — Y exists.

This question was considered by Abhyankar in [Abl]. fetX’ — Y’ be a
finite morphism of normal schemes of dimension 2. The morphisia said to
have the property of simultaneous resolution of singularities if there exist a regular
schemeX and a birational morphismy: X — X', a regular schem& and a
birational morphismzy: Y — Y’, and a finite morphisnp: X — Y such that
f omxy = my o ¢. Given any cyclic groups of ordern > 3 and any fieldk of
characteristic prime te, Abhyankar gave examples 6fcovers of normal surfaces
X' — Y overk which do not satisfy the property of simultaneous resolution of
singularities. In this section, we give local obstructions in some cases to a positive
solution to the extension problem (6.2 and 6.4), and then use these local obstruc-
tions to construct global examples of cyclic étale morphisms of cufves — Y
of degreen > 3 where the extension problem has a negative answer (6.6). We treat
the case of covers of degree 2 and 3 in the next section.

Throughout this section, we assume tliatis complete ande algebraically
closed.

6.1. THE LOCAL CASE

Let us recall some facts about intersection theory in the following special case.
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Let W and Z be local regular schemes of dimension 2, with closed paingd

z, respectively. Letp: W — Z be a dominant finite morphism. Consider two
irreducible divisorsl'y, I'; in ‘W. Let A; := ¢(T';). Assume thatA, # A, and

¢ 1(A1) = I'y. Definep*Aq = er,/a,I'1, Whereer, /4, is the ramification index

of 'y over Aq, and g,y := [k(['2) : k(A2)]A,. The projection formula is the
equality A1 - ¢, I> = [k(w) : k(z)]e*A; - T',. Since this equality is a local property
on Z, the reader will have no difficulty in proving it by adapting to the local case
the proof given for arithmetic surfaces in [Lan], lll, Theorem 4.1. It follows from
the definitions that the above formula is equivalent to

(A1 - Ap)degy = er,/a,eryalk(w) 1 k(2)](T'1 - T'p). (1)

In particular, ifk(w) = k(z) andl'y - T, = A1 - A, = 1, then

degy = er,/aery/a,- (2)

Recall that a sequence of irreducible componexts. .., A, of a modelZ is
called achainif A; N A1 is asingle pointforall <n —landifA;,NA; =0
wheneveli — j| > 2.

PROPOSITION 6.2.Let W = SpecUk|[u, v]]/(uv — t)). Let G be a group of
Ok-automorphisms oW of ordern > 4. Assume thaG does not permute the
two irreducible components 6¥;. Then for any proper birational morphisgh —
W /G with Y regular, the normalizationV (Y, K (W)) is a singular scheme.

Proof. Since the components 6¥, are not permuted by, (W/G), has two
irreducible componenta’ and A”. The quotientW /G is semi-stable ove®g
(Proposition 1.6). Thus, iW/G were regular, then the componemts and A”
would intersect transversaly, and this would contradict the projection formula re-
called above. Hencé&y /G is singular. Assume that there exi$ts— W/G as in
the statement of the proposition with := N (Y, K('W)) regular. We can choose
Y to be minimal with respect to this property.

In the first part of this proof, let us show th@f, consists of a chain of irre-
ducible components. Decompose the morphigm— W/G into a sequence of
modificationsy = Y, — Y,-1 — - = Yo — W/G, where eachy; is
regular,y,.1 — Y; is the blow-up along a closed point i&;),, andYo — W/G
is the minimal desingularization 6 /G. Since'W/G is semi-stable(Yo); is a
chain of rational curved\’ =: Aj, Ay, ..., Ay := A", crossing transversaly. Let
Xo := N(Yo, K(W)), and letp: X0 — Yo be the canonical morphism.

We claim thatp=1(A,) is irreducible for alli, and thaip™(A1), ..., o 1(Ay)
is a chain of components @fXy),. Denote byl andI'” the (smooth) compon-
ents of W,. Then (up to renumbering) we can assume that(A;) = I and
¢ 1(Ay) = I'”. Fix an integeri with 2 < i < £ — 1. LetI'; be a component of
(Xo)s lying over A;. Using repeatedly 4.2 (or its geometric form in Lemma 4.3(a)),
we can construct a sequence of componénats.., I';, ..., 'y, with o(I';) = A;
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Figure 2.

andl’;NI41 # @. In particular,"y = I andI’, = I'”. Denote byr: X — W the
natural morphism. Sinc® is regular at its closed point, Lemma 5.2(a) provides
information on the dual graph of the curve (w). In particular, two distinct
componentd”, andI"y cannot intersect in more than one point. Sitigh), is a
chain, Lemma 5.2(a) implies that the sequehge. . ., I', must also be a chain. If
there exists a different compondrjtof (Xo), lying overA;, then we can construct
a different chain of component$” )1« j<¢ with I'; = I andI", = I'". Moreover,
sinceXo — W is an isomorphism when restricted 6, the component§’, and
I'; intersectl™ at the same point; hencB; N T, # @. Similarly, ',y NT,_; # 0.

If two such chains existed, then the dual graphrof(w) would contain a true
loop, and this would contradict Lemma 5.2(a). The claim is thus proved.

Note that each componeat(A;), j = 2,..., £ — 1, has multiplicity greater
than one: the minimal desingularizati(ﬁo of X, is obtained by a sequence of
blow-ups fromWw, and any component it0Co), has multiplicity greater than one
except for the components corresponding’t@ndI’”. Denote byx; the intersec-
tion of o 1(A ;) andp (A ;11). We claim thatp=*(A ;)\ {x;_1, x;} is contained in
the regular locus oX,. Indeed, consider the mod#ly; where all the components
¢~ 1(A;) of X have been contracted except foe= 1, j, and4. Sincep1(A1)
andg~1(A,) have multiplicity 1, our claim follows from Lemma 5.3(b) applied
to Xo,;. Now the minimality ofY implies thaty, — Yo is the blow-up along
an intersection point ofYo),. In particular, (Y,), is still a chain of irreducible
components. Repeating the same argument$/folf,, ..., ¥, = Y proves that
Y, is a chain.

Renumbering the components if necessary, we Wjite= Ui <y A; with
A1 = A", Ay = A”andA; N Aj,q is asingle point. Lep, be the canonical map
X — Y. Using similar arguments as above, we see mél(Aj) is irreducible,
and thatp, *(A;) N ¢, (A;11) is a single pointr;. The special fibersc,, ¥, are
represented in Figure 2.

Denote bym ; the multiplicity of A; in Y, and byr; that ofgaq—l(Aj) in X;,.
Since Y is obtained by successive blow-ups of closed points starting ffgm
Y. is a divisor with normal crossings. Similarly, the same is true Xgr The
projection formula (2) applied to the localization of at x; implies thatn =
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(rj/mj)(rjy1/mjs1). Sincem, = r; = 1, we see that; = m; if j is odd and
rj = nm; if jis even. Sinceny = ry = 1, N must be an odd number. We will
show by induction ory that, forall 1< j < (N — 1)/2,

m2]+l maX{mZJ 1, 2’/”2]} (3)

Sincer, = nm, dividesr; + r3 = 1 4 mg3 (intersection theory on the regular
schemeX), we havens > 2m,. Thus, the inequality (3) is true fgr= 1. Assume
that it is true forj and thatj + 1 < (N — 1)/2. For the same reason as before,
Majy3 = NMojyp — Mpji1. Butmojio > majq — my; (intersection theory ofy),

SO

majiz = (n — Dmaji1 —nmaj = (n/2 — Dmajiq = mojia,

(the last inequality holds because> 4). On the other hand ;3 > mj3 +
maji1 = nmaji2, SOmajiz = 2myjip, and the inequality (3) is proved for all
j < (N —1)/2. In particular, sinceV is odd, we find thatny > 2. This is a
contradiction.

6.3. THE GLOBAL CASE

LEMMA 6.4. Let X be a curve of genug(X) > 1 over K. Denote byX, its
minimal regular model ove®x. Let G be a finite subgroup oAuty (X). Assume
that there exists € (Xg), such that in a neighborhood of X, is semi-stable and
not smooth, and the inertia group does not permute the irreducible components
of (Xo), passing throught. Then if|l,| > 4, the coverX — X/G cannot be
extended to a finite cover of regular models.

Proof. Denote bym, the maximal ideal o9, ,. Then them,-adic completlon
(9 of O, x is isomorphic toOk[[u, v]l/(uv — t), I, acts falthfully on Spe(c(9 )
and does not permute the irreducible components of (E&:pe@ k). Let y be the
image ofx in Yo := Xo/G and let®, be them,-adic completion 019y, ,. Then
Spec®,) — Spec0,) is a Galois cover with group,.

Assume thak — X/G can be extended to a finite morphisxh— Y between
regular models. The dominatesX,, soY dominatesy,. The fiber producg =
Y Xy, Speg@},) is regular since it is formally smooth ovéf, and the projection
% — Spec0,) is proper and birational. The fiber productx y, Spec?, ) is regu-
lar (formally smooth ovelX), and finite ove%x%Spec((D ) = y Since Spewx)
is a connected component &y xy, Specd,), this implies thatN(y K((9 )) is
regular. But this is impossible by Proposition 6.2.

Remark 6.50ne can give a stronger conclusion under the assumption of the
above lemmafor any extension of discrete valuation fieldlgK , the coverX; —
Y; cannot be extended to a cover of regular models.

Actually, (Xo)e, is semi-stable on a neighborhood of the poihtying over
x. Consider the minimal desingularizatign X; — (Xo)e,. One can see that no
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irreducible component afX,), lying over a component afXo), passing through

x is exceptional. ThusX; is isomorphic to the minimal regular model a&f;
over @, in a neighborhood of’. We may then apply Lemma 6.4. to the data
(X.,G,x', I).

PROPOSITION 6.6.Let K be a complete discrete valuation field with algebraic-
ally closed residue field. Letn > 4 be any integer prime t@p = chark) > 0.
Then for anyg > 0, there exists a cyclic cove¥ — Y of ordern, with g(Y) = g,
which cannot be extended to a finite cover of regular models. More&ves, Y
can be chosen to be étalegif> 1.

Proof. Denote byG = (o) a cyclic group of order. In the caseg = 0, it is
possible to construct explicitlylhe desired cové&rs— IP’}(. Let P(u) € Oklu]
be a monic polynomial such th&(u), its image ink[u], is separable and does not
vanish at 0. Assume moreover thednd degP) + p are coprime (when the residue
characteristic is Op > 1 will denote a fixed integer coprime 9. Let X/K be
the curve whose function fiel& (X)/K is the field of fractions of the domain
Klu,v]/(" — W? — tP""u)P(u)). The curveX has genusn — 1)(deqg P) +
p —1)/2. Letg, € K is a primitive nth root of unit. Leto acts onK (X) as
o(u) = u ando (v) = ¢,v. The quotientX /G is isomorphic toP%. The minimal
regular modelX, of X over Ok is semi-stable. Indeed,Xo), consists of two
smooth components; one of the components is the normalization of the reduction
of v" — (u? — t""~"u) P(u) modulor, which has genus equal to — 1) deg P)/2.
The other component is obtained as follows. Make a change of variablesg'u,
andv = t”vy. Thenv] = (u] — u1) P(¢"u1). This equation moduldr) gives
rise to a smooth curve of genys — 1)(p — 1)/2. Since the genus of these two
components add up to the genusxafwe see that the reduction &f s stable and
that the components can intersect only in a single poirfiNote that we can also
use Theorem 3.9 to determine the stable modeé{)ofTo check that is a regular
point in Xo, we need only to note that its image under the quotient map of the
stable model is a point of multiplicity. With the notation of Lemma 6.4, we find
thatl, = G. SoX — PL cannot be extended to a cover of regular models.

Now assume thag > 1. LetC/k be a smooth proper curve of gengs- 1. Fix
two distinct pointsys, y» € C. There existD € Pic°(C) and f € k(C) such that
div(f) = y1—y»+nD. Consider th&s-coverE — C defined byk(C)[v]/(v"— f).

It is totally ramified aty; andy,, and étale elsewhere. L&t/ k be the stable curve
obtained by gluing together the preimagesHrof y; and y,. Let x denote the
unique singular point of¢,. The action ofG on E induces an action ofx,. The
morphismX, — X,/G is étale away fromx, and we claim that this cover is of
Kummer type (see [Said], 5.6(iii) and [Said2], 2.1). Indeedx)die the preimage
of y; in E. Thenv is a parameter of atx;, while v~ is a parameter of at x,.
Let o be a generator of GAI(E)/k(C)). Then there exists awrth root of unitg,
such thatr (v) = &,v ando (v™1) = & 1v~L. Sincex; andx;, are the points of
lying overx € X, this shows tha¥(, — X,/G is of Kummer type.
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Let Y, := X,/G and lety be the singular point of,. As in [Said], 6.3, one
can lift Y, to a semi-stable curvl /@ such thaty is a singular point of{ of mul-
tiplicity n. (As stated, [Said], 6.3 applies only wh&h has smooth components.
However, a slight modification of the proof of 6.3 leads to a proof of the desired
lifting.) Now X; — Y, can be lifted to aG-cover X — Y of semi-stable curves
of Ok (see [Said], 5.7). Note that the lifting in 5.7 can be mad@&iodirectly,
and not to an extension @y because the multiplicity of is a multiple of the
order of the inertia group at). We havel, = G and the multiplicity ofy in ¥ is
n = |I,]. Since the multiplicity ofr in X is that of y divided by|I,| (see the proof
in [Ray], Proposition 5, Premier cas), the poinis regular inX. We may thus
use Lemma 6.4 to conclude th&ty — Yk cannot be extended to a finite cover
of regular models. Finally, by construction, the arithmetical genuX pfand Y x
are (g — Dn + 1 andg, respectively. Using Hurwitz's formula, we see that the
morphismX x — Y is étale.

7. Cyclic Covers of Degree 2 or 3

The counterexamples presented in the previous section are all cyclic covers of
degree at least 4. In this section, we treat the case of cyclic covers of degree 2
or 3. In [Ab2], Theorems 9 and 10, Abhyankar proved that:it¢’ — Y’ is any

cyclic cover of degree 2 or 3 between normal algebraic surfaces over afield
whose characteristic is prime to dgQ, then there are suitable desingularizations

X — X' andy — Y of X' and Y’ such thatf extends to a cyclic cover

¢: X — Y. In Theorem 7.3, we prove this result for normal models of curves,
without any assumption on the residue characteristic. The method of proof that
we use applies only to relative curves over an one-dimensional base. However, a
version of this theorem ought to hold in the more general setting of cyclic covers
¢ X — Y of degree 2 or 3 between two normal excellent schemes of dimension
two.

LEMMA 7.1. Let A be a Noetherian factorial local ring and leF be a finite
group of automorphisms of. Let B := A®. Assume tha# is finite overB. Letq
be a prime ideal of heightin B, and letp be a prime ideal ofA lying overg. If the
extensionB, — A, has trivial residue field extension, thgris a principal ideal.
If in addition B/q is regular, thenB is regular.

Proof. Since A/B is finite, the primep is of height 1, and is thus principal,
generated by an element We claim thatg is generated by := Normy,z(v).
Let S := B\ q. We may apply the theory of Dedekind domains to the extension
S~1A/By. In particular, since the extension of residue fields induced B, is
trivial, we conclude that Norgas, 5, (p) = qBq = (u). Hence, any elemeistof q
can be written ab = auB, with o, 8 € B andg ¢ q. Considering the factorization
of Bb = au in A, we conclude that = yu for somey € A. Since bothh andu
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belong toB, y is fixed byG and is thus inB, soq = u B. Finally, if B/q is regular,
then B is regular sincej is principal.

The following corollary is an immediate consequence of Lemma 7.1.

COROLLARY 7.2. Let X be a regular model ove®k of a curveX/K. Fix a
closed pointr € X;. LetG be a finite group acting ot/Ok and fixingx. Denote
by ¢: X — X /G the canonical morphism. L&t be an irreducible component of
X, that passes through. If ¢(x) is regular ine(I") and if »(T") = |G|r(e@)),
theng(x) is regular inX/G.

THEOREM 7.3. Let Ok be a Dedekind domain with perfect residue fields. Let
f:X — Y be a Galois cover of curves ovér, with Galois groupG. Let W/Ok

be a regular model o /K. Assume thaG acts on'W. If, for every closed point

x € ‘W, the inertia groupl, has order at mos8, then f can be extended to a
G-cover of regular models.

Proof. Let Yo be a good model of (see 1.8) which dominate® /G. Let X
be the minimal good model of dominatingN (Yo, K (X)). ThenG acts onXG.
Denote bysS, the (finite) set of points of¢y whose images ity/ G are singular. If
So is empty, Theorem 7.3 holds. §f is not empty, consider the blow-ig; — X
alongSy,. ThenX; is a good model, an@ acts onX;; sinceSy is globally fixed by
G. Define similarly the sef; C X relatively to the quotien; — X1/G. One
defines in this way a sequence of blow-dps — X,,_1 and a sequence of subsets
S, C X,. Note thatS,, is contained in the preimage 6f,_;. We will prove that
Sy is empty if all nontrivial inertia groups have order 2, and thiaor S, is empty
if at least one inertia group has order 3.

We may assume th& is Henselian and algebraically closed. Indeed, all of
the above operations (taking regular models, blow-ups, quotients) commute with
étale base change, afig is assumed to have perfect residue fields.

Let us note now that to prove Theorem 7.3, it is sufficient to consider the cases
where|G| = 2 or 3. SinceY, dominatesW/G, X dominatesW. Letxg € Sp, let
w be its image inw. Thenl,, € I,,. ThusH := I,, has order 2 or 3. Consider the
quotientX,,/H. Denote byx; the image ofx in Xo/H, and byn,, the canonical
map X,,/H — Xo/H. Then it is easy to check th&,,/H — X,,/G is étale
in a neighborhood ofy,;(x(). Thus in a neighborhood of the preimagexgfby
X — Xo, the quotient map¢,, — X,,/G behaves exactly liké¢,, — X, /H.
Since the study of singularities in the quotient is a local problem, we can replace
G by H, and suppose thay = {xo}, |G| < 3.

The groupG fixes xo as well as each component &f; passing througho;
indeed, there are at most two components thromghand if G permuted the
components, thenG| = 2, and Lemma 3.7 would imply that the image xef
is regular. LetY := Xo/G and lety: Xo — Y be the canonical morphism. We
will distinguish two cases.
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blow-up
along x,
[ TP\
. Y1 Yz
b /Yo\ 1A, b, A,

Figure 3.

First case Suppose thaty belongs to two irreducible componerits andI'»
of (Xo),. Letr; := r(I";) andA,; := ¢ (I';). Then Lemma 5.2(a) shows that is a
smooth rational line, and Corollary 7.2 shows then i&;) = r; (sincey (xp) is
assumed to be singular, af@| is prime). Consider the blow-up: X1 — X with
centerxg (Figure 3 below). Themr ~1(xq) consists of a divisofg of multiplicity
ro = r1 + rp, andIg is stable undeG. Let x;, i = 1, 2 denote the intersection
I'; N Ty If the imageAq of I'g in X1/ G has multiplicity ro/|G|, then X1/ G is
regular in a neighborhood af, (Corollary 7.2), and thus; is empty. So suppose
thatr(Ag) = ro. Denote byy; the intersection poinf; N Agq, fori = 1,2. The
pointsy; andy, are singular (use the projection Formula 6.1).

LetY; — X1/G be the minimal desingularization 66,/ G aty; andy, (Figure 4
below). LetA be any component afy,), lying overy;, and letl" be a component

of N(Y1, K (X)), lying over A. ThenI" is mapped to the regular point € T'1NTy

of X;. Thusr(I') € 1N + rgN. On the other hand, Lemma 5.3(a) implies that
r(A) < ro. Sor(I') = |G|r(A). HenceN (Y1, K(X)) — Y, is totally rami-
fied overA, in particular it induces a bijection between the set of the irreducible
components oN (%1, K (X)), and the set of irreducible components(f),, .

Let Az be a component afy,), lying over y; that intersect\q. LetI'3 be its
preimage inN (Y1, K(X)). Define similarlyA4 andT4. Thenr(T';) = |G|r(A;)
fori =3, 4.

Note thaty, is a desingularization ofy, and that the only divisor oY)
lying over yg that could possibly be exceptional 4. Sincer(Ag) = r1 + 1o >
max{r (A1), r(Ar)}, Lemma 5.3(c) shows thaty is in fact exceptional. Sa(Ag) =
ri+r2 = r(A3)+r(Ag). When|G| = 2, the equalityG|(r1 + 1) = r(['3) +r(Ty)
is impossible, and thus; is empty. WhenG| = 3, this equality is only possible
if r(A3) = (r1 + r9)/3 andr(Ag) = (r2 + rg)/3. In this caser(I's) = r1 + rog
andr(T'y) = rp + ro. Lemma 5.1(c) implies then that; andI'4 are obtained by
blowing-up X, at x; and x,, respectively. LetX, — X3 be the blow-up with
center{xy, x,}, represented in Figure 5.

https://doi.org/10.1023/A:1001141725199 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001141725199

98 QING LIU AND DINO LORENZINI

A0
minimal
r
/ P \ desingularization _ /[ 'z A, -
Yy Y2 ofy,y, 3
b, A, b
Figure 4.

blow-up

aong {x;, X,} (ro+r)r,

(rO + rJ.)r3

Figure 5.

It follows from Lemma 5.3(b) tha®(,/ G is regular at all interior points ok,
and Corollary 7.2. implies tha¥;,/G is regular at all points oAz U A4. This
achieves the proof of the theorem in the first case.

Second case Assume thakg is contained in a unique compondry of (Xg);,
with multiplicity ro. Let p: Y1 — Xo/G be the minimal desingularization ¢f.
Let Ao denote the image dfy in Y;. As in the previous case, we may assume that
r(Ag) = ro. According to Lemma 5.3(a), the preimageyefin Y, consists of a
chain of componenta;, Ao, ..., thus(Y,), has the form represented in Figure 6
with r(A;11) < r(A;) for alli > 0. As in the first case (Figure 4), the preimage
[; of A; in N(Y1, K(X)) is irreducible,r(I';) € roN, andN (%1, K(X)) — Y1 is
totally ramified overA;. Write r(T';) = a;ro, r(A;) = a;ro/|G| wWith |G| > a1 >
ap > ---. Moreover, ifa; = 1, thenr(I";) = rp, and Lemma 5.3(a) implies that the
interior points ofl"; are regular inV (Y%, K (X)).
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Let us show that; € T’y NIy is regular. LetP € X, (x3), and letQ =
V(P) € Y. Then[K(P) : K] € roN, and[K(Q) : K] € airgN/|G| + roN.
Since[K(P) : K(Q)] = 1 or |G|, and sincgG]| is prime, it is easy to see that
[K(P) : K] > airo. Lemma 5.3(c) implies that; is regular.

If a1 = 1, thenp~(yp) = A1, and in this case we have proved above that
is contained in the regular locus (Y1, K(X)). It follows thatN (Y1, K (X)) —
Xo is the blow-up ofXy with centerxg. Sincea; = 1 is automatically true when
|G| = 2, Theorem 7.3 is proven in this case.

It remains to treat the case wheg| = 3,a; = 2 anda, = 1. We proved
already that the interior points df, are regular. Lemma 5.3(b) implies that the
interior points ofl'; are also regular. The projection formula (6.1) shows that the
intersection point of", and Tz is singular. Lety, € Ay N A,. Let Y, — Y, be
the blow-up with centely,. Denote byAsj its exceptional divisor and by; the
preimage ofAz in N (Y., K(X)). ThenI'szis irreducible.

Let us show that(I'3) = r(A3) = ro. Let y3 =TI3NT}y. If »(I'3) = 3r(Asz),
the projection formula 6.1 shows that the poigtis singular. Consider the min-
imal desingularizatiorz of N (Y., K (X)) at y3. Any component ofZ abovey;
has multiplicity arg, with @ < 3 (Lemma 5.3.(c)). Moreoverry/|G| or arg €
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2rg/3N + rgN. We see that we must hawey € 2ro/3N + N, and that the only
possibility isa = 3 et 39 = 3(2rg/3) + ro. Consider now the componeiit

of Z aboveys that meetd';. ThenI" has multiplicity 3, and meets one com-
ponent of multiplicity 2, and, say,; components of multiplicity &. SinceZ is
regular aboves, the self-intersection df is equal to(3rg + 2rg)/3rg. Since the
self-intersection is an integer, we have obtained a contradiction, and we find that
r(I's) = r(Az) = ro.

As noted above already, Lemma 5.3.(a) implies, sinde&) = rg, that the
interior points ofl"3 are regular inV (Y., K (X)). Two arguments similar to the one
given above in the case af show that the intersection points b§ with I', and
I'; are regular. It follows thaw (Y., K (X)) is regular and equal t&, (notation as
at the beginning of the theorem). This concludes the proof of Theorem 7.3.
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