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GREEN’S POTENTIALS WITH
PRESCRIBED BOUNDARY VALUES

JANG-MEI G. WU

1. Introduction. Let U, C denote the open unit disk and unit circumference,
respectively and G (z, w) be the Green'’s function on U. We say v is the Green's
potential of a mass distribution v on U if

v(z) = fU G (3, w)dv(w) and
(1.1)
fU (1 = |2])dv(z) < 0.

Littlewood [3, p. 391] showed that the radial limit of a Green’s potential is
zero at almost all points of C. Zygmund [5, pp. 644-645] pointed out that the
nontangential limit of a Green’s potential need not exist at any point on C.
Several other authors, Tolsted [6], Arsove and Huber [1] have given conditions
on the mass distribution v sufficient for the almost everywhere existence of the
nontangential limit of the Green’s potential v. (Tolsted’s variant of Zygmund'’s
example [5, p. 646, (4.7)] violates the minimum principle for superharmonic
functions.)

Our object is to study the existence of Green’s potential v with a preassigned
radial limit on a certain subset of C and nontangential limit almost everywhere
on C; we give a simple application to Blaschke products. The following three
theorems are proved. (Theorem 1 is an analogue of a theorem of Rudin [4,
p. 808].)

THEOREM 1. Suppose E s a closed set of measure zero on C, f is a nonnegative
continuous function on E and ¢ > 0. Then there exists a continuous Green's
potential v such that

1)  limov(re®) = f(e*)
751
uniformly for e* € E, u has boundary value zero on C\E, and

2) v(0) <e

THEOREM 2. Suppose E is a set of measure zero on C. Then there exists a
Green's potential v with non-tangential limit almost everywhere on C\E, such that
for e*® € E,

lim sup v(re®) = 4-00.
751
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Moreover, the mass distribution v of v can be given by a density function \(z)
which is O((1 — |3|)~2) as |z| — 1. Here the exponent 2 can not be replaced by
any smaller number.

THEOREM 3. Let E be a set of measure zero on C. Then there exists a Blaschke
product B such that

lim inf |B(re®)| = 0
ro1
whenever e € E,

2. Lemmas.

LEMMA 1. A4 bounded positive superharmonic function v on U is a Green's po-
tential if and only if the radial limit of v is zero almost everywhere on C.

Proof. The necessary part is a result of Littlewood 3, p. 391]. To prove the
sufficient part, we apply the Riesz decomposition theorem for superharmonic
functions [2, p. 116] to »; v is the sum of a Green’s potential and a positive
harmonic function 4. Since & is bounded harmonic with radial limit zero almost
everywhere on C, b = 0. Hence v is a Green's potential.

LEMMA 2. Suppose 0 < a <1, |[Arg z| < 1 — a and |z| > (1 + a)/2. Then

11— g
|G(a, 2)| > 001 —a "
Proof. Write z as re®, where [8] <1 —aand (1 + a)/2 < r < 1. Thus we
have
z—a|®_ (A +a)/2 —af
1 —azl = (1 —ar)*+ 2ar(1 — cosb)
2.1)

(1 —a)’/4 11
SN e+ 2+ 137 25

Using (2.1) and the mean value theorem, we proceed to find an lower bound

for G(a, 2).
1 1 —az|’
G(a,z) = §log Y
2 2
=11(1— az —1) wherel<c<|———~1_az
2¢ z2—a z—a
Sl (-—a)a-r
50 (r — a)® 4 2ra(l — cos 8)
S 1lO-a)-r
50 (1 — a)’ + 6
11—,
1001 —a”
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We also need the following lemma, which was used by W. Rudin [4, p. 810]
to prove a theorem similar to Theorem 1 for analytic functions.

LeEmMA 3. Suppose E is a closed totally disconnected set on C (for example, E is
a closed set of measure zero). If f is a nonnegative continuous function on E,
bounded above by M, then there exists a sequence | f,} of simple continuous func-
tions on E such that

f@) = 2]’"(2) and 0= f,()=2"M for1 = n< 0.

We quote a theorem by Arsove and Huber [1, p. 125], which will be used to
prove Theorem 2.

TueEOREM (Arsove and Huber). Let v be a Green's potential and suppose the
mass distribution for v is given by a density function \. If X(z) = O((1 — |z]|)~2)
as |z| = 1, then v has nontangential limit zero at almost all points on C. The
exponent 2 is the largest possible.

3. Proof of Theorem 1. For each ¢ in (0, 1) and each set Son C, let T,(S) =
{cz:a £ ¢ <1,z € S} For the moment we fix ¢ and omit the subscript.

First we shall construct a continuous Green’s potential with property (1)
in Theorem 1.

In case f is a simple continuous function with values a; on closed sets E;,
1 £ ¢ £ k, we introduce w; as follows. Each w; is a continuous function on U,
harmonic on U\T (E;) with value a; on T'(E;) and with boundary value 0 on
C\E,. Because U\T (E,) is a Dirichlet region, each w; is well-defined. We note
that each w; is superharmonic on U and Y %_; w; satisfies (1) of Theorem 1.

For an arbitrary continuous function f on E, let M be an upper bound for f
and let {f,} be a sequence of continuous functions with the properties in
Lemma 3. To each f,, following the argument in the last paragraph, we may
find a continuous superharmonic function w, satisfying (1) of Theorem 1 with
respect to the function f,. Let # be the continuous superharmonic function on
U, harmonic on U\T (E) with value M on 7'(E) and boundary value 0 on C\E.
By the continuity of w,, the function v, defined by min {27"«, w,} is still con-
tinuous superharmonic on U and satisfies (1) of Theorem 1 relative to f,.
Since 0 £ v, £ 27" < 27"M, Y ;-1 v, converges uniformly on U; we denote
the sum by v. Thus v is bounded continuous superharmonic and has the desired
boundary limiting property (1). From Lemma 1, v is indeed a Green'’s potential.

We note that v and « are dependent on a. For this reason we denote v, u by
Vg, U, Tespectively and observe that v, < u,. Hence we may conclude Theorem 1
by showing that u#,(0) < e if a is chosen to be sufficiently small.

Because E may be covered by an open set S of arbitrarily small measure and
uy2 converges to 0 uniformly on C\S, there exists a number b close to 1,
1/2 < b < 1, such that the average of u1,2 on |z| = b is less than e. Choose a,
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b < a < 1. From the maximum principle we see that u;,2 > u, on U. Since
u, is harmonic on [z| < q,

1y (0) = él; f ua (be')ds.

Consequently,

1 ™
1, (0) < o f,, u1y2(be'®)do < .

This completes the proof of Theorem 1.

4. Proof of Theorem 2. Let [ be the Lebesgue measure on C. Let {V,} be
a sequence of coverings of £ by disjoint open arcs such that
1) Vg1 is a refinement of V,,;
i1) the total length of the open arcs in 1, is less than half that of 1/,,; and
iii) if Sis an arcin V,, then (2 -n!)~! £ I(s) £ (n!)~! for some n = 3 and
those arcs in V,,; which are contained in S are of length at most [(n + 1)!]~%
ToeachopenarcSin V,,1 = m < 0, we use n to denote the chosen integer
satisfying (2 - n!)=! £ I(S) £ (n!)~! and use B to denote the annular sector
{re? 1 e ¢ Sand 1 — (n)"' <7r <1 — (m-n!)~'}. We may regard n and B
as functions of .S and observe that n > m. We shall sometimes identify S with
the corresponding segment on [0, 27).
From i) and iii) above, we see that to two different S’s the corresponding
annular sectors B are disjoint. Thus we may introduce the density function X by

1 — o)™ ifze U
\(z) = ( |z]) ifz € mk:JlSEL‘J,mB
0 outside.

The mass distribution \(z)dz satisfies (1.1). In fact,

fv (1 — |2]) A(z)dz

©

£ = [ a-ena - e

m=1 S€Vm

© 1—(m-n)) =1
-5z J o= nasar
m=1 SEVm 1—(nl)—-1 S

© (ny) -1
=2 2 f( 1(S)x (1 — x)dx

m=1 SEVm mn)) =1
< > logm 2 U(S)
m=1 SEVm

which is finite from ii) above. Therefore the Green’s potential v given by
A (z)dz is well-defined.
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We now show lim sup,,; v(re’®) = 400 for each ¢* in E. For each m,
1 =m < w, let S, be the arc in V,, that contains e®. Assume (2 n,!)"! <
I6S,) £ m,)™, 1 <m<o0. Letr, =1 — 2(n,!)"" and B,, be the annular
sector corresponding to S,, 1 =m < oo. If z is in B,, we observe that
|Arg (ze=%)| < I(S,.) < 1 — r,. With the aid of Lemma 2, we have

v(rne”) 2 f G(rme®, 2)(1 — |a|)""dz

1—(m'nm!) ~1 1—7 )
> lO—Qfl oyt j; - (1 = )" "rdodr
—(nm )~ m m

1—(m: nm!)~1
=107 f L8n) 1,
1

—(nm!)—1 1 - r,,,l -7

> 107° log m.

Consequently, lim sup,_; v(re®®) = 4.

The nontangential limit of v is zero almost everywhere on C by the cited
theorem of Arsove and Huber.

If a(z) is a density function defined by (1 — |z])<2%, ¢ > 0, clearly
Ju (1 = |z])a(z)dz < ©; let u be the Green's potential of a(z)dz. From
Littlewood’s theorem [3, p. 391], u(z) has radial limit zero at almost all points
on C. Since u(z) is constant on each circle, # can be continued up to C and
with value 0 on C. Thus the exponent 2 is the best possible.

The proof of Theorem 2 is complete.

5. Proof of Theorem 3. First we want to construct a point mass distribution
v such that the Green’s potential v given by v has the property

lim sup v(re®) = +o0
51

if e € E. We retain the definition for { V,,} from Section 4. To each S in V,,
1 = m < 00, we assign a point mass §s of weight m at the midpoint Pg of
the arc (1 — 2/1!)S, where (2 - n!)~! = I(S) £ (n!)~'. The mass distribution
v is defined as 3 m—1 2 scv.n 0 5. We have

J ke

)

2
= .m
m=1 S€Vm N*

Rl

I\

dm Y. U(S) < +oo0,
m=1 SEVm

from ii) of the definition of {1V,,}.
Let v be the Green's potential of v, and let ¢ € E. Foreachm,1 = m < o,
let S,, be the arc in V,, that contains ¢*¢. Assume (2 - n,!)~! = I(S,)) = (nn!)7Y,
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1<m< . Let 7,, be 1 — 2(n,1)"", and P, be the midpoint of the arc
TmSm, 1 £ m < 0. We observe that |P,, — rpe®| = (n,!)~". Therefore,

V(rne™®) Z mG (P, rne™)

1 — Pyrne ™

= o8 T e
m m
—
> m log Jo—— = m log 2.
m m

Hence we proved lim sup,,; v(re’®) = 4.
Now if B is the Blaschke product with zeros of multiplicity m at Ps, S € V,,
1 £ m < o0, then log 1/|B| = v. This B is our example for Theorem 3.
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