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GREEN'S POTENTIALS WITH 
PRESCRIBED BOUNDARY VALUES 

JANG-MEI G. WU 

1. I n t r o d u c t i o n . Let U, C denote the open unit disk and unit circumference, 
respectively and G(z, w) be the Green's function on U. We say v is the Green's 
potential of a mass distr ibution v on U if 

v(z) = I G(z,w)dv(w) and 
J u 

I (1 - \z\)dv(z) < + o o . 
J U 

Littlewood [3, p . 391] showed tha t the radial limit of a Green's potential is 
zero a t almost all points of C. Zygmund [5, pp. 644-645] pointed out t ha t the 
nontangential limit of a Green's potential need not exist a t any point on C. 
Several other authors , Tolsted [6], Arsove and Huber [1] have given conditions 
on the mass distribution v sufficient for the almost everywhere existence of the 
nontangential limit of the Green's potential v. (Tolsted's var iant of Zygmund 's 
example [5, p. 646, (4.7)] violates the minimum principle for superharmonic 
functions.) 

Our object is to s tudy the existence of Green's potential v with a preassigned 
radial limit on a certain subset of C and nontangential limit almost everywhere 
on C; we give a simple application to Blaschke products. The following three 
theorems are proved. (Theorem 1 is an analogue of a theorem of Rudin [4, 
p . 808].) 

T H E O R E M 1. Suppose E is a closed set of measure zero on C, f is a nonnegative 
continuous junction on E and e > 0. Then there exists a continuous Green's 
potential v such that 

(1) limvire*) = / ( « * ) 
r->l 

uniformly for ei<f> Ç E, u has boundary value zero on C\E, and 

(2) v(0) < e. 

T H E O R E M 2. Suppose E is a set of measure zero on C. Then there exists a 
Green's potential v with non-tangential limit almost everywhere on C\E, such that 
for e« Ç E, 

lim supfl(/-ei0) = + o o . 
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Moreover, the mass distribution v of v can be given by a density function X(z) 
which is 0((1 — H ) - 2 ) as \z\ —> 1. Here the exponent 2 can not be replaced by 
any smaller number. 

THEOREM 3. Let E be a set of measure zero on C. Then there exists a Blaschke 
product B such that 

liminf \B(re*)\ = 0 
r-»l 

whenever e** £ E. 

2. Lemmas. 

LEMMA 1. A bounded positive superharmonic function v on U is a Green's po­
tential if and only if the radial limit of v is zero almost everywhere on C. 

Proof. The necessary part is a result of Littlewood [3, p. 391]. To prove the 
sufficient part, we apply the Riesz decomposition theorem for superharmonic 
functions [2, p. 116] to v; v is the sum of a Green's potential and a positive 
harmonic function h. Since h is bounded harmonic with radial limit zero almost 
everywhere on C, h = 0. Hence v is a Green's potential. 

LEMMA 2. Suppose 0 < a < 1, |Arg z\ < 1 — a and \z\ > (1 + a) 12. Then 

|G(a ,*) l> 
1 1 — |g| 

100 1 - a 

Proof. Write z as reie, where |0| < 1 — a and (1 + a)/2 < r < 1. Thus we 
have 

(2.1) 

z — a 
az 

> 
[(1 + a) 12 - af 

(1 - ary + 2ar{\ - cos 6) 

(1 ~ a ) 7 4 
2 , n2 > 1 3 > 2 5 = [1 -a(l+a)/2]2 + e2 

Using (2.1) and the mean value theorem, we proceed to find an lower bound 
for G (a, z). 

G(a,z) = - log 
1 — az 
z — a 

2 

_ 1 1 / 1 1 - az 
2 c \ \ z — a 

2 \ 
— 11 where 1 < c < 

1_-
z -

- az 
- a 

^ 1 ( l - a 2 ) ( l - V ) 
*" 50 ( r - a ) 2 + 2ra(l - cos 6) 

1 ( i _ a ) ( i _ r ) 

^ 5 0 (1 - af + 62 

100 1 
— r 
— a ' 
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We also need the following lemma, which was used by W. Rudin [4, p. 810] 
to prove a theorem similar to Theorem 1 for analytic functions. 

LEMMA 3. Suppose E is a closed totally disconnected set on C {for example, E is 
a closed set of measure zero). If f is a nonnegative continuous function on E, 
bounded above by M, then there exists a sequence {fn) of simple continuous func­
tions on E such that 

/(*) = Ê /.(*) and 0 ^ /„(«) è Tn M for 1 è n < oo. 

We quote a theorem by Arsove and Huber [1, p. 125], which will be used to 
prove Theorem 2. 

THEOREM (Arsove and Huber). Let v be a Green s potential and suppose the 
mass distribution for v is given by a density function X. If \(z) = 0((1 — |s|)~2) 
as \z\ —» 1, then v has nontangential limit zero at almost all points on C. The 
exponent 2 is the largest possible. 

3. Proof of Theorem 1. For each a in (0, 1) and each set S on C, let Ta(S) = 
( c z : a ^ c < 1,2 G S). For the moment we fix a and omit the subscript. 

First we shall construct a continuous Green's potential with property (1) 
in Theorem 1. 

In case / is a simple continuous function with values at on closed sets Eu 

1 g i ^ i , we introduce wt as follows. Each wt is a continuous function on U, 
harmonic on U\T(E{) with value at on T(Et) and with boundary value 0 on 
C\Et. Because U\T(Ef) is a Dirichlet region, each wt is well-defined. We note 
that each wt is superharmonic on U and J2t=i wi satisfies (1) of Theorem 1. 

For an arbitrary continuous function/ on E, let M be an upper bound for/ 
and let {fn} be a sequence of continuous functions with the properties in 
Lemma 3. To each fn, following the argument in the last paragraph, we may 
find a continuous superharmonic function wn satisfying (1) of Theorem 1 with 
respect to the function fn. Let u be the continuous superharmonic function on 
U, harmonic on U\T(E) with value M on T(E) and boundary value 0 on C\E. 
By the continuity of wm the function vn defined by min {2~nu, wn\ is still con­
tinuous superharmonic on U and satisfies (1) of Theorem 1 relative to fn. 
Since 0 ^ vn ^ 2~nu ^ 2~nM, XX=i vn converges uniformly on [/; we denote 
the sum by v. Thus v is bounded continuous superharmonic and has the desired 
boundary limiting property (1). From Lemma 1, v is indeed a Green's potential. 

We note that v and u are dependent on a. For this reason we denote v, u by 
va, ua respectively and observe that va ^ ua. Hence we may conclude Theorem 1 
by showing that ua(Q) < e if a is chosen to be sufficiently small. 

Because E may be covered by an open set 5 of arbitrarily small measure and 
Ui/2 converges to 0 uniformly on C\S, there exists a number b close to 1, 
1/2 < b < 1, such that the average of Wi/2 on \z\ = b is less than e. Choose a, 
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b < a < 1. From the maximum principle we see tha t U1/2 > ua on U. Since 
ua is harmonic on \z\ < a, 

MO) = ~ - J ua(bei9)de. 

Consequently, 

ua(0) < - - I u1/2(bei6)dd < 6. 

This completes the proof of Theorem 1. 

4. Proof of T h e o r e m 2. Let / be the Lebesgue measure on C. Let { Vm\ be 
a sequence of coverings of E by disjoint open arcs such tha t 

i) Vm+i is a refinement of Vm; 
ii) the total length of the open arcs in Vm+i is less than half t ha t of Vm; and 

iii) if 5 is an arc in Vm then (2 • n\)~l ^ l(s) ^ (n\)~l for some « ^ 3 and 
those arcs in Vm+i which are contained in 5 are of length a t most [(n + 1) ! ] - 1 -

T o each open arc 5 in Vmi 1 ^ m < co , we use n to denote the chosen integer 
satisfying (2 • n\)~l ^ 1{S) ^ (nl)"1 and use B to denote the annular sector 
{reie : eie £ »S and 1 — (n\)~1 < r < 1 — (m • TZ!) - 1} . We may regard n and B 
as functions of S and observe t h a t n > m. We shall sometimes identify 5 with 
the corresponding segment on [0, 2ir). 

From i) and iii) above, we see tha t to two different 5 's the corresponding 
annular sectors B are disjoint. T h u s we may introduce the densi ty function X by 

W.N _ i(i - l*ir2 if*e u u s 
\ 0 outside. 

The mass distr ibution \{z)dz satisfies (1.1). In fact, 

I (1 - |*|) \{z)dz 
J u 

= Ê E f a - \z\)d-\z\r2dz 
m=i sevm u B 

oo /•l-(m-wl)-1 /* 

= E E I (1 - 0"V^r 

= E E / ( S ^ - ' Q -*)<& 
ro=l SeF m J (m n\)~l 

^ Ë log m E *(S) 

which is finite from ii) above. Therefore the Green 's potential v given by 
\{z)dz is well-defined. 
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We now show lim s u p ^ i v(rei(t>) = +00 for each ei<f> in E. For each m, 
1 ^ m < 00, let Sm be the arc in Vm t ha t contains e^. Assume (2 • wm!)_ 1 ^ 
l(Sm) ^ (wm!) - 1 , 1 ^ m < 00. Let rm = 1 — 2(n m ! ) _ 1 and 5 W be the annular 
sector corresponding to Sm, 1 ^ m < 00. If s is in £ m , we observe tha t 
|Arg (ze~i(tt)\ < /(5m) < 1 — rm. With the aid of Lemma 2, we have 

v(rme») ^ f G(r„e* s ) ( l - |s|)-2(fc 

/

• l -Cm-wm!)- 1 /* 1 — r 

f (1 - r)~\dddr 

i-(«m!)-i I - rm\ - r 

- \ -3 1 > 10 log m. 

Consequently, lim supr_>i v{rei4>) = + 0 0 . 
The nontangential limit of z; is zero almost everywhere on C by the cited 

theorem of Arsove and Huber. 
If a(z) is a density function defined by (1 — |2|)€ _ 2 , e > 0, clearly 

fu (1 — \z\)a(z)dz < GO ; let u be the Green's potential of a{z)dz. From 
Litt lewood's theorem [3, p. 391], u(z) has radial limit zero a t almost all points 
on C. Since u(z) is constant on each circle, u can be continued up to C and 
with value 0 on C. Thus the exponent 2 is the best possible. 

The proof of Theorem 2 is complete. 

5. Proof of T h e o r e m 3. First we want to construct a point mass distribution 
v such t ha t the Green's potential v given by v has the property 

lim sup z; (re*0) = +00 

if e** £ E. We retain the definition for { Vm) from Section 4. To each 5 in Vm, 
1 ^ m < 00, we assign a point mass 5 s of weight m a t the midpoint Ps of 
the arc (1 — 2/n\)S, where (2 • n\)~l S l(S) ^ (n!) _ 1 . The mass distribution 
v is defined as Xm=i S S Ç F ™ 5 S. We have 

/ . 
(1 - \z\)dv 

00 c\ 

= ]C S ~v m 

m = l S<EFm W ! 

^ J 4m 2 *(S) < +00, 

from ii) of the definition of { Vm). 
Let v be the Green's potential of u, and let ei(t> £ £ . For each m, 1 ^ m < 00 , 

let 5 m be the arc in F w t ha t contains ei(j>. Assume (2 • nm\)~l ^ /(Sm) ^ (« r a!)_ 1 , 
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1 ^ m < co. Let rm be 1 — 2(nm\)~l, and Pm be the midpoint of the arc 
rmSm, 1 S nt < co. We observe that \Pm — rmei4>\ g (nml)~l. Therefore, 

= m log 

^ w log 

-1 -LmTm 

P — r pi<s> 

x m ' my 

1 - rm 

^rrfi 
= m log 2. 

Hence we proved lim supr^i v(rei<p) = +oo. 
Now if B is the Blaschke product with zeros of multiplicity m at P s, S £ I r

m, 
1 ^ m < oo , then log 1/|£| = v. This J5 is our example for Theorem 3. 
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