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GENERATING SERIES IN THE COHOMOLOGY OF HILBERT
SCHEMES OF POINTS ON SURFACES

SAMUEL BOISSIÈRE and MARC A. NIEPER-WISSKIRCHEN

Abstract

In the study of the rational cohomology of Hilbert schemes
of points on a smooth surface, it is particularly interesting to
understand the characteristic classes of the tautological bun-
dles and the tangent bundle. In this note we pursue this study.
We first collect all results appearing separately in the litera-
ture and prove some new formulas using Ohmoto’s results on
orbifold Chern classes on Hilbert schemes. We also explain the
algorithmic counterpart of the topic: the cohomology space is
governed by a vertex algebra that can be used to compute
characteristic classes. We present an implementation of the
vertex operators in the rewriting logic system Maude, and
address observations and conjectures obtained after symbolic
computations.

Part I. Preliminaries

1. Introduction

Let S be a smooth quasi-projective complex surface and n � 0 an integer. The
Hilbert scheme of n points on S, denoted by S[n], is the moduli space of generalized
n-tuples on S, that is, zero-dimensional subschemes of length n on S. S[n] is smooth
of complex dimension 2n. When working in the rational cohomology of Hilbert
schemes, it is usual to consider the total Hilbert scheme:

Hilb(S) :=
∐
n�0

S[n]

whose total cohomology space is:

HS :=
∏
n�0

4n⊕
i=0

Hi(S[n]).

The space HS is completed bigraded by conformal weight n and cohomological
degree i.

Consider the tangent bundle Tn
S on S[n] of rank 2n. Any characteristic class φ

(such as the Chern class, the Segre class, the Todd class or the Chern character)
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generating series for hilbert schemes of points

can be applied to this bundle and gives, after summing over all values of n, an
element:

Φ(S) :=
∑
n�0

φ (Tn
S ) ∈ HS .

There exists a universal way of presenting these characteristic classes, involving the
canonical class KS and the Euler class eS of S, depending on universal constants
independent of S, indexed by partitions of integers.

Similarly, any vector bundle F of rank r on S defines in a tautological way a vec-
tor bundle F [n] of rank n · r on S[n], called a tautological bundle. Any characteristic
class φ can be applied to these bundles and gives an element:

Φ(F ) :=
∑
n�0

φ
(
F [n]

)
∈ HS .

As before, there exists a universal way of presenting these characteristic classes,
involving the corresponding characteristic class φ(F ), the canonical class KS and
the Euler class eS of S, depending on universal coefficients independent of F and
S, indexed by partitions of integers.

In this paper, we are interested in the effective computation of these universal
coefficients in both situations. Since the constants are independent of the surface,
one may evaluate each formula on well-chosen surfaces and use appropriate tools to
compute new coefficients step by step. This is one of the main tricks used to obtain
the values of some series of coefficients, together with manipulations of vertex alge-
bra operators. When these methods fail, one can make use of a suitable computer
program to get information on the missing values.

In Section 2 we recall some basics on the vertex algebra structure of the total
cohomology space HS : natural vertex operators and commutation relations between
them lead to effective algorithms to compute classes in HS . Part II is devoted to the
case of the tautological bundles and Part III to the tangent bundle. We explain the
general shape of the formulas, then present the current state of knowledge concern-
ing the universal constants and prove some new results, and finally we produce new
values obtained by an implementation of the vertex algebra structure with Maude

[4]: the vertex operators are directly defined with their commutation rules, making
the program clear to understand from the mathematical point of view (Part IV).
To our knowledge, Maude has not previously been used for huge algebraic compu-
tations and simplifications. The nature of Maude as a rewriting system will make
it easy to prove the correctness of the implemented algorithms.

2. Notation

We recall here some notation and classical constructions. For further details,
refer to [1, 3, 6, 7].
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2.1. Combinatorics

Let P be the set of all partitions of integers. A partition λ = (λ1, λ2, . . .) is
likewise denoted by λ = (1m1 , 2m2 , . . .), and we define:

�(λ) :=
∑
i�1

mi (the length); ||λ|| :=
∑
i�1

i2mi;

|λ| :=
∑
i�1

imi (the weight); λ! :=
∏
i�1

mi!.

We often write n instead of (n) = (n1).

2.2. Vertex operators

A linear operator f ∈ End(HS) is homogeneous of conformal weight u and coho-
mological degree v if for any n one has f

(
Hi(S[n])

) ⊂ Hi+v(S[n+u]). The commu-
tator of two homogeneous operators f, g is defined by:

[f, g] := f ◦ g − (−1)|f|·|g|g ◦ f

where | · | denotes the cohomological degree.
The total cohomology space HS is computed with the help of Nakajima’s creation

operators (see [9]):

qk : H∗(S) −→ End(HS), k � 1.

For α ∈ Hi(S), the operator qk(α) has conformal weight k and cohomological degree
2(k−1)+ i. We make use of the following abbreviation: for k � 1, the push-forward
induced by the diagonal inclusion ∆k : S → Sk gives a map ∆k

! : H∗(S) → H∗(S)⊗k.
For ∆k

! α =
∑

i αi,1 ⊗ · · · ⊗ αi,k and λ = (λ1, . . . , λk) a partition of length k we
set (see [1, 3]):

qλ(α) := (qλ1 ◦ · · · ◦ qλk
)∆k

! (α) :=
∑

i

qλ1(αi,1) ◦ · · · ◦ qλk
(αi,k).

The unit in H0(S[0]) ∼= Q is denoted |0〉, and is called the vacuum of HS . Eval-
uations on the vacuum, denoted by qλ(α)|0〉, provide very natural classes in HS .
The unit in HS for the cup product is given by:

|1〉 :=
∑
n�0

1S(n] = eq1(1S)|0〉.

2.3. Tautological classes

Let Ξn
S be the universal family on S[n] with the following projections.

Ξn
S

� � �� S[n] × S

p

��

q �� S

S[n]

Let F be a locally free sheaf on S. For any n � 0, the associated tautological bundle
on S[n] is defined by:

F [n] := p∗
(OΞn

S
⊗ q∗F

)
.
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It has rank n · rk(F ). This construction extends naturally to a well-defined group
homomorphism:

−[n] : K(S) → K(S[n])

where K(·) denotes the rational Grothendieck group generated by locally free
sheaves. For u ∈ K(S), let c(u) and ch(u) be the linear operators acting for any
n � 0 onH∗(S[n]) by the cup-product multiplication by the total Chern class c(u[n])
and the total Chern character ch(u[n]) respectively.

In particular, taking F = OS , one defines a linear operator d ∈ End(HS) by:

d(x) := c1(O[n]
S ) · x, ∀x ∈ H∗(S[n]).

The derivative of a linear operator f ∈ End(HS) is defined by f′ := [d, f].
By analogy with the construction of tautological bundles, one defines a linear

operation −[n] : H∗(S) → H∗(S[n]) : for any cohomology class γ ∈ H∗(S) we set

γ[n] := p∗
(
ch(OΞn

S
) · q∗ td(S) · q∗γ)

where td(S) denotes the Todd class of the tangent bundle on S and we define an
operator

G(γ) ∈ End(HS)

acting on H∗(S[n]) by multiplication by γ[n].
Similarly, denoting by −∨ : K(S) → K(S) the natural ring involution taking the

dual of a vector bundle, for γ ∈ H∗(S) we set(
γ[n]
)∨

:= p∗
(
ch(O∨

Ξn
S
) · q∗ td(S) · q∗γ

)
and we define an operator

G∨(γ) ∈ End(HS)

acting on H∗(S[n]) by multiplication by (γ[n])∨.

2.4. Cohomology of S

In the rational cohomology ring of S, we denote the unit by 1S ∈ H0(S), the
canonical class (that is, the first Chern class of the cotangent bundle on S) by
KS ∈ H2(S) and the Euler class of S (that is, the second Chern class of the
tangent bundle on S) by eS ∈ H4(S).

Part II. Characteristic classes of tautological bundles

In this part, we study the characteristic classes of a tautological bundle on S[n]

obtained from a vector bundle F on S. We first recall the theoretic results.

3. Shape of the formulas

For tautological bundles, the best general result is obtained for the Chern char-
acter, as follows.
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Theorem 3.1 (Boissière [1], Boissière & Nieper-Wißkirchen [3]). There are unique
rational constants αλ, βλ, γλ, δλ such that for each surface S and each vector bundle
F on S, the generating series of the Chern characters of the tautological bundles of
F is given by:

Ch(F ) := ch(F )|1〉 =
(∑

λ∈P
αλqλ(ch(F )) + βλqλ(eS ch(F ))

+ γλqλ(KS ch(F )) + δλqλ(K2
S ch(F ))

)
|1〉.

For multiplicative characteristic classes, the general shape is similar. Let φ be
a multiplicative characteristic class. Let B the polynomial ring Q[r, c1, c2,K, e]
truncated from degree 5 onwards where deg(r) = 0, deg(c1) = 2, deg(c2) = 4,
deg(K) = 2, deg(e) = 4.

Theorem 3.2 (Boissière [1], Boissière & Nieper-Wißkirchen [3]). There are unique
elements uφ

λ ∈ B such that for each surface S and each vector bundle F on S, the
generating series of the φ-classes of tautological bundles is given by:

Φ(F ) :=
∑
n�0

φ(F (n]) = exp
(
qλ(uφ

λ(rk(F ), c1(F ), c2(F ),KS , eS)
)
|0〉.

As we shall see in Section 5.1, the formula for the total Chern class simplifies
considerably when specialized at r = 1. As an example of the complexity in higher
rank, we give in Section 5.2 the first terms of the linear series for r � 2.

4. The Chern character

In the determination of the constants in Theorem 3.1, a lot of information has
already been obtained, and the result is complete for surfaces with trivial canonical
class.

4.1. The (1S)- and (eS)-series

All coefficients αλ and βλ are known, as shown in the following formula.

Formula 4.1 (Li, Qin & Wang [8, Corollary 4.8]). We have:

αλ =
(−1)|λ|−1

λ! · |λ|! and βλ =
(−1)|λ|

λ!|λ|! · |λ| + ||λ|| − 2
24

.

4.2. The (KS)- and (K2
S)-series

For the series concerning the canonical class, Li, Qin & Wang [8, Corollary 4.8]
write the still unknown constants γλ and δλ as

γλ =
(−1)|λ|

λ! · |λ|! · g1(λ ∪ 1|λ|) and δλ =
(−1)|λ|

λ!|λ|! · g2(λ ∪ 1|λ|),

where the functions g1, g2 depend only on the partition and λ∪1|λ| means that one
adds |λ| to the multiplicity of 1 in λ.
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In order to get information about these functions we implement the commutation
relation of Lehn [6, Theorem 4.2]:

[ch(F ), q1(1S)] = exp(ad d)(q1(ch(F )).

This gives the following recursive formula (see [1, §3.3]):

ch
(
F [n]

)
=

1
n

q1(1S) ch
(
F [n−1]

)
+

2n∑
ν=0

q
(ν)
1 (ch(F ))

ν!
q1(1S)n−1

(n− 1)!
|0〉.

Computations with Maude [4] (see Part IV) give the following values (for each
value, we extract the factor 1/(λ! · |λ|!)).

λ (1) (1, 1) (2) (1, 1, 1) (2, 1) (3)

γ 0 − 1
4 · 1

3 − 1
2 · 1 1

36 · 3
5

1
6 · 3

4
1
6 · 1

δ 0 − 1
4 · 1

12 − 1
2 · 1

6
1
36 · 7

30
1
6 · 7

20
1
6 · 7

12

λ (1, 1, 1, 1) (2, 1, 1) (2, 2) (3, 1) (4)

γ − 1
576 · 29

35 − 1
48 · 29

30 − 1
48 · 11

10 − 1
24 · 6

5 − 1
24 · 3

2

δ − 1
576 · 59

140 − 1
48 · 59

105 − 1
48 · 43

60 − 1
24 · 5

6 − 1
24 · 5

4

Remark 4.2. This computation shows in particular that the functions g1 and g2
are not integer-valued and one may suppose that they are always negative.

5. The Chern class

5.1. The rank 1 case

In the case of a vector bundle F of rank 1, there is a complete answer to the
question of the determination of the universal constants for the Chern class.

Formula 5.1 (Lehn [6, Theorem 4.6]). Let L be a line bundle on S. The generating
series of the Chern classes of tautological bundles takes the form:

C(L) := c(L)|1〉 = exp


∑

k�1

(−1)k−1

k
qk(c(L))


 |0〉.

In particular, for λ = (k), uc
λ = ((−1)k−1/k) c(L) + (r − 1)(· · · ) and uc

λ =
(r − 1)(· · · ) otherwise.

In this formula, one sees that the only operators qλ occurring have partitions
with one part, and that the invariants KS and eS do not appear. It is not expected
that this will remain true — neither for other characteristic classes, nor in higher
rank. There are no similar formulas known for other multiplicative characteristic
classes.

5.2. Bundles of higher rank

For a bundle F of rank r � 1, information on the beginning of the universal
formula of the Chern class is contained in the following result, obtained by special-
ization to the affine plane.
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Formula 5.2 (Boissière & Nieper-Wißkirchen [3, Theorem 4]). Let F be the trivial
bundle of rank r on C2. Then:

C(F ) = exp


∑

k�1

(−1)k−1

k2

(
r · k
k − 1

)
qk(1C2)


 |0〉.

In particular, this gives the complete answer for the degree zero part of the u(k).
In order to get more information, we implement the commutation relation of

Lehn [6, Theorem 4.2]:

c(F ) ◦ q1(1S) ◦ c(F )−1 =
∑

ν,k�0

(
rk(F ) − k

ν

)
q
(ν)
1 (ck(F )),

which gives the following recursion formula:

c(F [n]) =
1
n


 ∑

0�k�rk(F )
0�ν�rk(F )−k

(
rk(F ) − k

ν

)
q
(ν)
1 (ck(F ))


 c(F [n−1]).

Computations with Maude [4] give the series inside the exponential. For example,
in the rank 2 case the first uc

λ computed in the basis 1, c1,K, c2, c21, c1K,K
2, e are

as follows.

λ uc
λ

(1) 1 + c1 + c2

(1, 1) − 1
2 (1 + c1 + c2)

(2) − (1 + 1
2 (3c1 +K + 2c2 + c21 + c1K)

)
(1, 1, 1) 1

3 (1 + c1 + c2)

(2, 1) 2 + 3c1 +K + 2c2 + c21 + c1K

(3) 5
3 + 10

3 c1 + 2K + 2c2 + 2c21 + 3c1K + 2
3K

2 − 1
3e

(1, 1, 1, 1) − 1
4 (1 + c1 + c2)

(2, 1, 1) −(3 + 1
2 (9c1 + 3K + 6c2 + 3c21 + 3c1K))

(2, 2) − 1
4 (9 + 18c1 + 10K + 10c2 + 11c21 + 15c1K + 3K2 − e)

(3, 1) −(5 + 10c1 + 6K + 6c2 + 6c21 + 9c1K + 2K2 − e)

(4) − 1
4 (14 + 35c1 + 29K + 20c2 + 30c21 + 58c1K + 22K2 − 10e)

Remark 5.3. In order to recover Formula 5.2 for S = C2, set c1 = 0, c2 = 0,
K = 0 and e = 0, and keep only the partitions with one part (since the diagonal
push-forward is trivial in this case).

We can simplify the combinatorial difficulties by making the following assump-
tions: S is an abelian surface and F is a trivial bundle of rank r over S. Concretely,
in our computer program (Part IV) we set c1 = 0, c2 = 0, e = 0 and K = 0. Thus
the elements uc

λ inside the exponential restrict to their degree zero term (uc
λ)0 for

each partition. We get the following results.
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• Rank 2:

λ (1) (1, 1) (2) (1, 1, 1) (2, 1) (3)

(uc
λ)0 1 − 1

2 −1 1
3 2 5

3

λ (1, 1, 1, 1) (2, 1, 1) (2, 2) (3, 1) (4)

(uc
λ)0 − 1

4 −3 − 9
4 −5 − 7

2

λ (1, 1, 1, 1, 1) (2, 1, 1, 1) (2, 2, 1) (3, 1, 1) (3, 2) (4, 1) (5)

(uc
λ)0 1

5 4 9 61
6 12 14 42

5

λ (1, 1, 1, 1, 1, 1) (2, 1, 1, 1, 1) (2, 2, 1, 1) (2, 2, 2) (3, 1, 1, 1) (3, 2, 1)

(uc
λ)0 − 1

6 −5 − 2693
120 −9 − 1007

60 − 907
15

λ (3, 3) (4, 1, 1) (4, 2) (5, 1) (6)

(uc
λ)0 − 50

3 − 2129
60 −35 −42 −22

• Rank 3:

λ (1) (1, 1) (2) (1, 1, 1) (2, 1) (3)

(uc
λ)0 1 − 3

2 − 3
2 4 10 4

λ (1, 1, 1, 1) (2, 1, 1) (2, 2) (3, 1) (4)

(uc
λ)0 − 111

8 − 243
4 − 75

4 −42 − 55
4

λ (1, 1, 1, 1, 1) (2, 1, 1, 1) (2, 2, 1) (3, 1, 1) (3, 2) (4, 1) (5)

(uc
λ)0 553

10
3553
10

6051
20

693
2 168 198 273

5

• Rank 4:

λ (1) (1, 1) (2) (1, 1, 1) (2, 1) (3)

(uc
λ)0 1 −3 −2 18 28 22

3

λ (1, 1, 1, 1) (2, 1, 1) (2, 2) (3, 1) (4)

(uc
λ)0 −145 −379 − 147

2 −165 −35

• Rank 5:

λ (1) (1, 1) (2) (1, 1, 1) (2, 1) (3)

(uc
λ)0 1 −5 − 5

2
160
3 60 35

3
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Remark 5.4.

• One notes that the signs are alternate: each partition λ comes with a sign
(−1)|λ|−1.

• Looking at the partitions (k), one recovers the coefficient (−1)k−1

k2

(
r·k
k−1

)
ob-

tained in Formula (5.2).

• The coefficient for a partition (k, 1) for k � 2, seems to be (−1)k(r−1)
k+1

(
r·k
k

)
.

• In the rank 2 case, it seems that uc
(1k) = (−1)k−1

k (1 + c1 + c2) for k � 1.

• For partitions of length two, the results are compatible with those of [10].

6. Other multiplicative characteristic classes

The result of Proposition 5.2 generalizes to all multiplicative characteristic classes.
By the splitting principle, any multiplicative characteristic class is uniquely deter-
mined by its value on line bundles, that is, by a power series φ(x) ∈ 1 + xQ[[x]].
Define from φ a new power series ψ(t) =

∑
k�1 ψkt

k ∈ tQ[[t]] by the relation:

∂ψ

∂t

(
x

φ(−x)
)

= φ(−x).

Then we have our next formula.

Formula 6.1 (Boissière & Nieper-Wißkirchen [3, Theorem 4]). Let F be the trivial
bundle of rank r on C2. Then:

Φ(F ) = exp


∑

k�1

ψk

k
qk(1C2)


 |0〉.

Part III. Characteristic classes of the tangent bundle

In this part, we study the characteristic classes of the tangent bundle on S[n].
We first recall the theoretical results. The study of the tangent bundle is related
to the study of the tautological bundles: the latter are needed, for example, in the
recursive computation of the Chern character (see Section 10.2).

7. Shape of the formulas

The first result concerns multiplicative characteristic classes.

Theorem 7.1 (Boissière [1], Boissière & Nieper-Wißkirchen [3]). Let φ be a mul-
tiplicative characteristic class. There are unique rational constants aλ, bλ, cλ and
dλ such that the generating series of the φ-classes of the tangent bundle on S[n] is
given by:

Φ(S) := exp

(∑
λ∈P

aλqλ(1S) + bλqλ(eS) + cλqλ(KS) + dλqλ(K2
S)

)
|0〉.
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The case of the Chern character is particular but the structure is similar.

Theorem 7.2 (Boissière [1]). There are unique rational constants αλ, βλ, γλ, δλ
such that the Chern character of the tangent bundle on Hilb(S) is given by:

Ch(S) :=

(∑
λ∈P

αλqλ(1S) + βλqλ(eS) + γλqλ(KS) + δλqλ(K2
S)

)
|1〉.

8. The Chern class

As a first step in the determination of the constants for multiplicative charac-
teristic classes, we consider the special case of the Chern class. We wish to derive
the constants in the universal formula:

C(S) = exp

(∑
λ∈P

aλqλ(1S) + bλqλ(eS) + cλqλ(KS) + dλqλ(K2
S)

)
|0〉. (1)

8.1. Towards the (1S)-series

Proposition 8.1. For k � 0 we have:

a2k+2 = 0, a2k+1 =
(−1)kCk

2k + 1
,

where Ck := (1/(k + 1))
(
2k
k

)
is the kth Catalan number.

Proof. This result is proved in Boissière [1, Theorem 1.1]. We briefly recall the main
argument. Assume that the surface is the affine plane: S = C2. Then the formula
for the Chern class is easier: the canonical class and the Euler class are zero, and
all operators qλ for a partition λ of length �(λ) > 1 are also zero. So the sum in
the exponential involves only the 1S-series, and in this series only the partitions of
length one. This gives all coefficients aλ for λ = (k), k � 1, since the Chern class
takes the form:

C(C2) = exp


∑

k�1

akqk(1S)


 |0〉.

The computation is done as follows, by the use of the equivariant cohomology of
the Hilbert scheme (C2)[n] for the natural action of the torus C∗.

Formula 8.2 (Boissière [1]). The Chern class is:

C(C2) = exp


∑

k�0

(−1)kCk

2k + 1
q2k+1(1S)


 |0〉,

where Ck := (1/(k + 1))
(
2k
k

)
is the kth Catalan number.

This gives the constants as announced.
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8.2. The (1k)-series

We give here all constants a(1k), b(1k), c(1k) and d(1k) (k � 1) in Formula (1)
of the Chern class. Firstly, an application of a result of Göttsche [5] gives the
series b, d.

Proposition 8.3. For k � 1 we have:
1. b(1k) = 1

k

∑
i|k i =: 1

kσ1(k);
2. d(1k) = 0.

Proof. 1. We specialize the general formula to the case when S is a K3 surface.
Since KS = 0, all terms involving the classes KS or K2

S disappear. The total Chern
class takes the form:

C(S) = exp

(∑
λ∈P

aλqλ(1S) + bλqλ(eS)

)
|0〉.

Since the cohomological degree of an operator qλ(α) is:

deg qλ(α) = 2(|λ| + �(λ)) + |α| − 4,

the only way to get in conformal weight n a class of maximal degree 4n is to use
the operators q(1k)(eS). This means that:

∑
n�0

e(S[n]) = exp


∑

k�1

b(1k)q(1k)(eS)


 |0〉.

Denote by χS the Euler characteristic of S: χS =
∫

S
eS or equivalently eS = χSx

where x denotes the cohomology class of a point. Since

∆k
! eS =

1
χk−1

S

eS ⊗ · · · ⊗ eS ,

we get q(1k)(eS) = χSq1(x)k with
∫

S[k] q1(x)k|0〉 = 1. This implies that:

∑
n�0

∫
S[n]

e(S[n])tn = exp


χS

∑
k�1

b(1k)t
k


 .

Now: ∑
n�0

∫
S[n]

e(S[n])tn =
∑
n�0

dimH∗(S[n])tn

and using Göttsche’s formula [5] we get:∑
n�0

∫
S[n]

e(S[n])tn =
∏
m�1

(
1

1 − tm

)χS

= exp


−χS

∑
m�1

ln(1 − tm)


 .

This gives the relation
∑

m�1 ln(1− tm) =
∑

k�1 b(1k)t
k, and hence the result holds

.
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2. We make no assumption on the surface S, so the formula contains all terms:

C(S) = exp

(∑
λ∈P

aλqλ(1S) + bλqλ(eS) + cλqλ(KS) + dλqλ(K2
S)

)
|0〉.

Since the operators qλ(K2
S) have the same cohomological degree as the operators

qλ(eS), the same argument as in the first assertion gives in this case:

∑
n�0

e(S[n]) = exp


∑

k�1

b(1k)q(1k)(eS) + d(1k)q(1k)(K
2
S)


 |0〉

but since we have already obtained that

∑
n�0

e(S[n]) = exp


∑

k�1

b(1k)q(1k)(eS)


 |0〉

the operators q(1k)(K2
S) cannot contribute to the Euler classes. This forces the

vanishing d(1k) = 0 for all k � 1.

To get the two series a and c, we make use of a result of Ohmoto [11] (in fact,
this method recovers the series b and d obtained in the preceding proposition, since
the new argument uses a generalization of Göttsche’s formula).

Proposition 8.4. For k � 1 we have:

a(1k) = −c(1k) =
1
k

∑
i|k

i =
1
k
σ1(k).

Proof. We follow Ohmoto [11, Remark 2.4]. Set S(n) := Sn/Sn, the quotient of Sn

by the permutation action of the symmetric group Sn. The Hilbert–Chow morphism

π : S[n] → S(n)

is a crepant resolution of singularities. The composite morphism

S
∆n

−−−→ Sn → S(n)

induces a map ∆(n) : H∗(S) → H∗(S(n)) (this is the Poincaré dual of Ohmoto’s
Dn). For dimensional reasons, the cohomological push-forward f! : H∗(S[n]) →
H∗(S(n)) vanishes on classes containing at least one operator qi with i � 2, and by
definition f!q(1n)(α)|0〉 = ∆(n)α for α ∈ H∗(S).

The total cohomology space
⊕

n�0H
∗(S(n)) is equipped with a natural product


 : H∗(S(k)) × H∗(S(l)) → H∗(S(k+l))

(see [11, §3.1]) such that:

f!
(
q(1k1 )(α1) · · · q(1kr )(αr)|0〉

)
= ∆(k1)(α1) 
 · · · 
 ∆(kr)(αr).

This gives us the image of the generating series of Formula (1):

f! C(S)
= exp


∑

k�1

a(1k)∆
(k)(1S) + b(1k)∆

(k)(eS) + c(1k)∆
(k)(KS) + d(1k)∆

(k)(K2
S)




where the exponential has to be taken for the 
-ring structure.
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Now we apply Ohmoto’s formula [11, Formula (3)]:

f! C(S) =
∏
i�1

(1 − ∆(i))− c(S)

=
∏
i�1

exp(− ln(1 − ∆(i))(c(S))

= exp


∑

i�1

∑
j�1

1
j
∆(i·j)(1S −KS + eS)




= exp


∑

k�1

σ1(k)
(
∆(k)(1S) + ∆(k)(eS) − ∆(k)(KS)

) .

This gives a(1k) = b(1k) = σ1(k), c(1k) = −σ1(k) and d(1k) = 0.

9. Other multiplicative classes

Generalizing the Chern class to a multiplicative class φ gives other series of
universal coefficients:

Φ(S) = exp

(∑
λ∈P

aλqλ(1S) + bλqλ(eS) + cλqλ(KS) + dλqλ(K2
S)

)
|0〉.

9.1. Towards the (1S)-series

We proceed as in the Chern class case. For S = C2, the φ-class takes the form:

Φ(C2) = exp


∑

k�1

akqk(1S)


 |0〉.

This computation has been done in Boissière & Nieper-Wißkirchen [3]. By the
splitting principle, any characteristic class is uniquely determined by its value on
a line bundle, that is, by a power series φ(x) ∈ 1 + xA[[x]]. Define from φ a new
power series ψ(t) =

∑
k�1 ψkt

k ∈ tA[[t]] by the relation:

∂ψ

∂t

(
x

φ(x)φ(−x)
)

= φ(x)φ(−x).

Then we have the following formula.

Formula 9.1 (Boissière & Nieper-Wißkirchen [3, Theorem 4]).

Φ(C2) = exp


∑

k�1

ψk

k
qk(1S)


 |0〉.

Remark 9.2. The series ψ is odd, so all coefficients ψ2k are zero.

This general formula contains some nice special cases.

• For φ(x) = 1 + x, one gets the Chern class (Formula 8.2).
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• For φ(x) = 1/(1 + x), one gets the Segré class as in Formula 9.3.

Formula 9.3 (Boissière & Nieper-Wißkirchen [3, Example 6]).

S(C2) = exp


∑

k�0

1
(2k + 1)2

(
3k
k

)
q2k+1(1S)


 |0〉.

• For φ(x) =
√
x/(1 − exp(−x)) one gets the square root of the Todd class as

in Formula 9.4.

Formula 9.4 (Boissière & Nieper-Wißkirchen [3, Example 7]).

(
√

Td)(C2) = exp


∑

k�0

1
4k · (2k + 1) · (2k + 1)!

q2k+1(1S)


 |0〉.

10. The Chern character

We now consider the formula for the Chern character:

Ch(S) =

(∑
λ∈P

αλqλ(1S) + βλqλ(eS) + γλqλ(KS) + δλqλ(K2
S)

)
|1〉. (2)

10.1. Towards the (1S)-series

Proposition 10.1. For k � 0 we have:

α2k+2 = 0, α2k+1 =
2

(2k + 1)!
.

Proof. This is proved in Boissière [1, Theorem 1.1]. The argument is similar to the
case of the Chern class (see Proposition 8.1), and the result is contained in the
following formula.

Formula 10.2 (Boissière [1, Theorem 1.1]).

Ch(C2) =


∑

k�0

2
(2k + 1)!

q2k+1(1S)


 |1〉.

This gives the constants as announced.

10.2. Towards the complete series

Denote by chT ∈ End(HS) the operator acting by multiplication by ch(Tn
S ) on

each component of conformal weight n. In order to get information on the series,
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we proceed to an implementation of the recursive formula of Boissière [1, Lemma
3.12]1,2:

[chT, q1(1S)] =
∑

ν

1
ν!

q
(ν)
1 (1S)

−
∑

ν

1
ν!

(q(ν)
1 ◦ G∨)∆2

! (td(S)−1)

+
∑

ν

(−1)ν

ν!
q
(ν)
1 (exp(−KS))

−
∑

ν

(−1)ν

ν!
(q(ν)

1 ◦ G)∆2
! (exp(−KS) td(S)−1)

− q1(eS)

with

td(S)−1 = 1 +
KS

2
+

2K2
S − eS

12
.

For the implementation, the computation with the operators G is explained in
Section 4.2, and the case of the operators G∨ is similar, since it is easy to deduce
from the results on G the following commutation relation:

[G∨(α), q1(1S)] = exp(− ad d)(q1(α)).

This yields the following recursive formula:

ch(TS
n ) =

1
n

q1(1S) ch(TS
n−1) −

1
n!

q1(eS)q1(1S)n−1|0〉

+
1
n!

2n∑
ν=0

1
ν!

(
q
(ν)
1 (1S)q1(1S)n−1

−(q(ν)
1 ◦ G∨)∆2

!

(
1S +

KS

2
+

2K2
S − eS

12

)
q1(1S)n−1

+(−1)νq
(ν)
1

(
1S −KS +

K2
S

2

)
q1(1)n−1

−(−1)ν(q(ν)
1 ◦ G)∆2

!

(
1S − KS

2
+

2K2
S − eS

12

)
q1(1S)n−1

)
|0〉.

1In the proof of [1, Proposition 3.10], the assumption that
∫

S
bibj td(S) = δi,j should be made

only for cohomology with complex coefficients; otherwise one should write
∫

S
bibj td(S) = κiδi,j

for some κi ∈ Q. This does not affect the proof (just add the κis) since

∆2
! (td(S))−1) = ch(OΞ1 ) = ch(O∆).

Note that there is an inaccuracy in the text since td(S) should be td(S)−1 at the end of the proof.
2There is a typo in a computation on [1, p. 776]: ch(OS − TS + ω∨

S ) = eS .
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One gets the following series inside the brackets of Formula (2).

λ (1) (1, 1) (2) (1, 1, 1) (2, 1) (3)

α 2 − 3
2 0 5

9 0 1
3

β −1 5
8 0 − 7

27 0 − 5
36

γ −1 − 5
12 −1 − 1

36
13
12 − 1

6

δ 1
2

1
4

1
2

53
270 − 5

24
4
9

Remark 10.3. The zeros are no surprise. In fact, for each partition λ such that
|λ|+ �(λ) is odd, αλ = βλ = 0 since if S is a non-compact symplectic surface, these
terms would contribute to the even part of the Chern character, which is zero. The
results are compatible with those of [10].

Part IV. An implementation with Maude

For documentation about Maude, see [4] or

http://maude.cs.uiuc.edu/.

The program code can be found in Appendix A.

11. Final remarks

Although we implemented lots of classes, things remain to be done, in particular:
• write and implement recursions for the Segre classes of tautological bundles;
• write and implement a recursion for the Chern class of the tangent bundle;
• find satisfactory models for the general terms of the series obtained by sym-

bolic computations. These models are still missing.
We decided not to implement further operators here. The methods are more or

less straightforward generalization of Lehn’s ideas in [6], but the formulas would be
very long: the complexity occurs in the decomposition of the characteristic class of
the tensor product of a vector bundle with a line bundle.

Appendix A. The script

This appendix contains the script referred to in the paper, and can be found at

http://www.lms.ac.uk/jcm/10/lms2006-045/appendix-a.

References

1. Samuel Boissière, ‘Chern classes of the tangent bundle on the Hilbert
scheme of points on the affine plane’, J. Algebraic Geom. 14 (2005) 761–787.
255, 256, 258, 259, 262, 263, 267, 268

2. Samuel Boissière, ‘On the McKay correspondences for the Hilbert scheme
of points on the affine plane’, Math. Ann. 334 (2006) 419–438.

269https://doi.org/10.1112/S146115700000139X Published online by Cambridge University Press

http://maude.cs.uiuc.edu/
http://www.lms.ac.uk/jcm/10/lms2006-045/appendix-a
https://doi.org/10.1112/S146115700000139X


generating series for hilbert schemes of points

3. Samuel Boissière and Marc A. Nieper-Wißkirchen, ‘Universal formu-
las for characteristic classes on the Hilbert schemes of points on surfaces’, J.
Algebra, to appear. 255, 256, 258, 260, 262, 266, 267

4. Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln,
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UMR CNRS 6621
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