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Note on real and imaginary parts
of harmonic quasiregular mappings

Suman Das and Antti Rasila

Abstract. If f = u + iv is analytic in the unit disk D, it is known that the integral means Mp(r, u) and
Mp(r, v) have the same order of growth. This is false if f is a (complex-valued) harmonic function.
However, we prove that the same principle holds if we assume, in addition, that f is K-quasiregular in
D. The case 0 < p < 1 is particularly interesting, and is an extension of the recent Riesz-type theorems
for harmonic quasiregular mappings by several authors. Further, we proceed to show that the real
and imaginary parts of a harmonic quasiregular mapping have the same degree of smoothness on the
boundary.

1 Introduction and background

1.1 Notations and preliminaries

Let D denote the open unit disk in the complex plane and T be the unit circle. For a
function f analytic in D, the integral means are defined as

Mp(r, f ) ∶= ( 1
2π ∫

2π

0
∣ f (re iθ)∣p dθ)

1/p
if 0 < p < ∞,

and

M∞(r, f ) ∶= sup
∣z∣=r
∣ f (z)∣.

It is said that f is in the Hardy space H p(0 < p ≤ ∞) if

∥ f ∥p ∶= sup
0≤r<1

Mp(r, f ) < ∞.

A function f ∈ H p has the radial limit

f (e iθ) ∶= lim
r→1−

f (re iθ)
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in almost every direction, and f (e iθ) ∈ Lp(T). Detailed surveys on Hardy spaces and
integral means can be found in, for example, the book of Duren [6]. Throughout this
article, we follow notations from [6].

A complex-valued function f = u + iv is harmonic in D if u and v are real-valued
harmonic functions in D. Every such function has a unique representation f = h + g,
where h and g are analytic in D with g(0) = 0. Analogous to the H p spaces, the
harmonic Hardy spaces hp are the class of harmonic functions f for which Mp(r, f )
is bounded.

1.2 Growth of conjugate functions

Given a real-valued harmonic function u in D, let v be its harmonic conjugate with
v(0) = 0. It is a natural question that if u has a certain property, whether so does v.
In the context of boundary behavior, this is answered by a celebrated theorem of M.
Riesz.

Theorem A [6, Theorem 4.1] If u ∈ hp for some p, 1 < p < ∞, then its harmonic
conjugate v is also of class hp. Furthermore, there is a constant Ap , depending only on p,
such that

Mp(r, v) ≤ Ap Mp(r, u),
for all u ∈ hp .

Curiously, the theorem fails for p = 1 and p = ∞, examples can be found in
[6, p. 56]. Although the harmonic conjugate of an h1-function need not be in h1,
Kolmogorov proved that it does belong to hp for all p < 1. Later, Zygmund established
that the condition ∣u∣ log+ ∣u∣ ∈ L1(T) is the “minimal” growth restriction on u which
implies v ∈ h1. We refer to the paper of Pichorides [14] for the optimal constants in
the Riesz, Kolmogorov, and Zygmund theorems.

In [7], Hardy and Littlewood showed that in the case 0 < p < 1, Riesz’s theorem is
false in a much more comprehensive sense. Kolmogorov’s result might suggest that if
u ∈ hp , then v, while not necessarily in hp , should belong to hq for 0 < q < p. But this
is false, and in fact, v need not belong to hq for any q > 0.

Nevertheless, they proved that the symmetry is restored in these latter cases if
instead of the boundedness of the means, one considers their order of growth.

Theorem B [7, Theorem 4] Let 0 < p ≤ ∞ and β > 0. Suppose f = u + iv is analytic
in D, and

Mp(r, u) = O ( 1
(1 − r)β ) .

Then,

Mp(r, v) = O ( 1
(1 − r)β ) .

The proof of this theorem is based on an extremely complicated (as remarked by
the authors themselves) result, which can be stated as follows.
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Theorem C [7, Theorems 2 and 3] If f = u + iv is analytic in D, and

Mp(r, u) = O ( 1
(1 − r)β ) , 0 < p ≤ ∞, β ≥ 0,

then

Mp(r, f ′) = O ( 1
(1 − r)β+1 ) .

Further, the converse is true for all β > 0.

Let us note that the functions ∣u∣p and ∣v∣p are subharmonic when p ≥ 1, but not
when p < 1, and therefore, Mp(r, u) and Mp(r, v) are not necessarily monotonic for
p < 1. This is the principal difficulty in dealing with the case 0 < p < 1 for harmonic
functions.

1.3 Riesz theorem for harmonic quasiregular mappings

For K ≥ 1, a sense-preserving harmonic function f = h + g is said to be K-quasiregular
if its complex dilatation ω = g′/h′ satisfies the inequality

∣ω(z)∣ ≤ k < 1 (z ∈ D),
where

k ∶= K − 1
K + 1

.(1.1)

The function f is K-quasiconformal if it is K-quasiregular as well as homeomorphic
in D. One can find the H p-theory for quasiconformal mappings in, for example, the
paper of Astala and Koskela [1]. It is worth mentioning that harmonic quasiconformal
mappings have generated considerable interest in recent times, perhaps from a novel
point of view. In [16], Wang et al. constructed independent extremal functions for
harmonic quasiconformal mappings, which were then further explored by Li and
Ponnusamy in [12]. Recently, in [3], Baernstein-type extremal results were obtained
on the analytic and co-analytic parts of functions in the harmonic quasiconformal
Hardy space.

Suppose f = u + iv is a harmonic function in D, and u ∈ hp for some p > 1. Then,
the imaginary part v does not necessarily belong to hp , i.e., the Riesz theorem is not
true for harmonic functions. One naturally asks under which additional condition(s)
a harmonic analog of the Riesz theorem would hold. Recently, Liu and Zhu [13]
showed that such a condition is the quasiregularity of f.

Theorem D [13] Let f = u + iv be a harmonic K-quasiregular mapping in D such that
u ≥ 0 and v(0) = 0. If u ∈ hp for some p ∈ (1, 2], then also v is in hp . Furthermore, there
is a constant C(K , p), depending only on K and p, such that

Mp(r, v) ≤ C(K , p)Mp(r, u).
Moreover, if K = 1, i.e., f is analytic, then C(1, p) coincides with the optimal constant in
the Riesz theorem.
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The condition u ≥ 0 was subsequently removed by Chen et al. [2], who remarkably
extended the result for all p ∈ (1,∞). Later in [10], Kalaj produced a couple of
Kolmogorov type theorems for harmonic quasiregular mappings. Very recently, a
quasiregular analog of Zygmund’s theorem has been obtained by Kalaj [11], and also
independently by Das, Huang, and Rasila [4].

The purpose of this article is to show that the real and imaginary parts of a
harmonic quasiregular mapping have the same order of growth for all p > 0. This
extends Theorem D to the cases 0 < p < 1 and p = ∞. The main results and their proofs
are presented in the next section.

2 Main results and proofs

In what follows, we always assume that K and k are related by (1.1).

Theorem 1 Suppose 0 < p ≤ ∞ and β > 0, and let f = u + iv be a harmonic
K-quasiregular mapping in D. If

Mp(r, u) = O ( 1
(1 − r)β ) ,

then

Mp(r, v) = O ( 1
(1 − r)β ) .

Proof For 1 < p < ∞, we could apply the result of Chen et al. from [2], but here we
shall give a simple proof which makes no appeal to this deeper result.

Let us write f = h + g, and let F = h + g. Then,

Re F = Re f = u.

If Mp(r, u) has the given order of growth, it follows from Theorem C that

Mp(r, F′) = O ( 1
(1 − r)β+1 ) .

Now, we observe

F′ = h′ + g′ = (1 + ω)h′ ,

so that

∣F′∣ ≥ (1 − ∣ω∣)∣h′∣ ≥ (1 − k)∣h′∣,

as ∣ω∣ ≤ k. This readily implies

Mp(r, h′) ≤ 1
1 − k

Mp(r, F′) = O ( 1
(1 − r)β+1 ) .
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Since ∣g′∣ ≤ k∣h′∣, we also have

Mp(r, g′) = O ( 1
(1 − r)β+1 ) .

Therefore, the converse part of Theorem C shows that

Mp(r, h) = O ( 1
(1 − r)β ) = Mp(r, g).

For 1 ≤ p ≤ ∞, Minkowski’s inequality gives

Mp(r, f ) ≤ Mp(r, h) +Mp(r, g),

while for 0 < p < 1, we have

M p
p(r, f ) ≤ M p

p(r, h) +M p
p(r, g).

In either case, we find that

Mp(r, f ) = O ( 1
(1 − r)β ) ,

which, in turn, implies

Mp(r, v) = O ( 1
(1 − r)β ) .

This completes the proof. ∎

The next theorem deals with the case β = 0. If f = u + iv is harmonic
K-quasiregular and u ∈ hp for some p < 1, then of course, v need not be in any hq , as
discussed before. Nevertheless, it is still possible to give an estimate on Mp(r, v), as
we show in Theorem 2. The proof is somewhat similar to that of Theorem 1, and relies
on the following lemma from [5].

Lemma A [5] Let 0 < p < 1. Suppose f = h + g is a locally univalent, sense-preserving
harmonic function in D with f (0) = 0. Then,

∥ f ∥p
p ≤ C ∫

1

0
(1 − r)p−1 M p

p(r, h′) dr,

where C > 0 is a constant independent of f.

Theorem 2 Suppose f = u + iv is a harmonic K-quasiregular mapping in D, and
u ∈ hp for some p ∈ (0, 1). Then,

Mp(r, v) = O ((log 1
1 − r
)

1/p
) .

https://doi.org/10.4153/S0008439525101240 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525101240


6 S. Das and A. Rasila

Proof As before, we write f = h + g and F = h + g. Since Mp(r, u) is bounded, an
appeal to Theorem C, for β = 0, shows that

Mp(r, F′) = O ( 1
1 − r
) .

The quasiregularity of f, like in the previous proof, then implies

Mp(r, h′) = O ( 1
1 − r
) .

Without any loss of generality, we assume that f (0) = 0. For 0 < r < 1, let fr(z) =
f (rz). Applying Lemma A for the function fr , we find

M p
p(r, f ) ≤ C ∫

1

0
(1 − t)p−1 M p

p(rt, h′) dt ≤ C ∫
1

0

(1 − t)p−1

(1 − rt)p dt

= C [∫
r

0

(1 − t)p−1

(1 − rt)p dt + ∫
1

r

(1 − t)p−1

(1 − rt)p dt]

≤ C [∫
r

0

1
1 − t

dt + 1
(1 − r)p ∫

1

r
(1 − t)p−1 dt]

= O (log 1
1 − r
) .

Therefore, it follows that

Mp(r, v) ≤ Mp(r, f ) = O ((log 1
1 − r
)

1/p
) .

The proof is thus complete. ∎

Generally speaking, Theorem 1 suggests that the real and imaginary parts of a
harmonic quasiregular mapping have the same “order of infinity.” We now wish
to show that they also have the same degree of smoothness on the boundary (see
Theorem 3).

Let Λα(α > 0) be the class of functions φ ∶ R→ C satisfying a Hölder condition of
order α, i.e.,

∣φ(x) − φ(y)∣ ≤ A∣x − y∣α ,

for some constant A > 0. If α > 1, Λα is the class of constant functions, hence, we
restrict attention to the case 0 < α ≤ 1. Clearly, Λβ ⊂ Λα for α < β.

The following principle of Hardy and Littlewood says that an analytic function f is
Hölder continuous on the boundary if f ′ has a “slow” rate of growth, and conversely.

Theorem E [8, Theorem 40] Let f be an analytic function in D. Then, f is continuous
in the closed disk D and f (e iθ) ∈ Λα(0 < α ≤ 1), if and only if

∣ f ′(re iθ)∣ = O ( 1
(1 − r)1−α ) .

We are now prepared to discuss the final result of this article.
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Theorem 3 Let f = u + iv be a harmonic K-quasiregular mapping inD, and suppose u
is continuous inD. If u(e iθ) ∈ Λα , 0 < α < 1, then v is continuous inD and v(e iθ) ∈ Λα .

Proof First, we note that if v is continuous onT, then v(re iθ) is the Poisson integral
of v(e iθ). Hence, the continuity of v(e iθ) would imply the continuity of v in D.
Therefore, it is enough to show that v(e iθ) ∈ Λα .

Now, suppose u(e iθ) ∈ Λα and f = h + g. As before, we write F = h + g so that

Re F = Re f = u.

Since u is continuous in D, we can represent F by the Poisson integral formula

F(z) = 1
2π ∫

2π

0

e i t + z
e i t − z

u(e i t) dt + iIm F(0).

This implies

F′(z) = 1
2π ∫

2π

0

∂
∂z
( e i t + z

e i t − z
) u(e i t) dt

= 1
π ∫

2π

0

e i t

(e i t − z)2 u(e i t) dt.

Therefore, for z = re iθ , we have

F′(re iθ) = 1
π ∫

2π

0

e i t

(e i t − re iθ)2 u(e i t) dt.(2.1)

Also, from the Cauchy integral formula, it is easy to see

0 = 1
2πi ∫T

dζ
(ζ − z)2 =

1
2π ∫

2π

0

e i t

(e i t − re iθ)2 dt,

so that

0 = 1
π ∫

2π

0

e i t

(e i t − re iθ)2 u(e iθ) dt.(2.2)

Subtracting (2.2) from (2.1), and taking absolute value, we find

∣F′(re iθ)∣ ≤ 1
π ∫

2π

0

∣u(e i(θ+t)) − u(e iθ)∣
1 − 2r cos t + r2 dt.(2.3)

Since u(e iθ) ∈ Λα , we have

∣u(e i(θ+t)) − u(e iθ)∣ ≤ A∣t∣α ,

for some constant A > 0. Therefore, it follows from (2.3) that

∣F′(re iθ)∣ ≤ A
π ∫

2π

0

∣t∣α
1 − 2r cos t + r2 dt = 2A

π ∫
π

0

tα

1 − 2r cos t + r2 dt.

For 0 ≤ t ≤ π, we can estimate the denominator as

1 − 2r cos t + r2 = (1 − r)2 + 4r sin2 t
2
≥ (1 − r)2 + 4r

π2 t2 ,
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which implies

∣F′(re iθ)∣ ≤ 2A
π ∫

π

0

tα

(1 − r)2 + (4r/π2)t2 dt.

Now, we substitute u = t/(1 − r) to obtain

∣F′(re iθ)∣ ≤ 2A
π

1
(1 − r)1−α ∫

π/(1−r)

0

uα

1 + (4r/π2)u2 dt

≤ 2A
π

1
(1 − r)1−α ∫

∞

0

uα

1 + (4r/π2)u2 dt

= O ( 1
(1 − r)1−α ) ,

because the last integral converges for α < 1. As in the proof of Theorem 1, we have

∣h′∣ ≤ 1
1 − k

∣F′∣, ∣g′∣ ≤ k
1 − k

∣F′∣,

and therefore,

∣h′(re iθ)∣ = O ( 1
(1 − r)1−α ) = ∣g

′(re iθ)∣.

Then, an appeal to Theorem E implies

h(e iθ) ∈ Λα and g(e iθ) ∈ Λα .

It follows that f (e iθ) ∈ Λα , and consequently, v(e iθ) ∈ Λα , as desired. This completes
the proof. ∎

The theorem is not true for α = 1, even if f is analytic (i.e., 1-quasiregular). The
following example is well-known.

Example 1 Let u be the harmonic function in D with boundary values

u(e iθ) = ∣θ∣ for θ ∈ [−π, π].

Clearly, u(eiθ ) is Lipschitz. One can show, by the method of Hilbert transforms, that
the boundary values of the conjugate function v behave like

v(e iθ) ∼ θ log ∣θ∣ near θ = 0.

It follows that

v′(e iθ) ∼ log ∣θ∣,

which is unbounded as θ → 0. Thus, v(eiθ ) is not Lipschitz.

Remark 1 The Hölder continuity of quasiregular mappings has been widely studied
in the literature. Suppose G ⊂ Rn , n ≥ 2, is a domain and B

n is the unit ball in
R

n . It is known (see [15, Theorem 1.11], cf. [9, Theorem 16.13]) that every bounded
K-quasiregular mapping f ∶ G → R

n is δ-Hölder continuous for some exponent
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δ ∈ (0, 1]which depends on the inner dilatation of f (and therefore, on the constant K).
Further, the exponent δ is best possible, as can be seen from the function f ∶ Bn → B

n ,
f (x) = ∣x∣δ−1x (here δ = K 1/(1−n)).

It is important to clarify that Theorem 3 presented herein diverges from this setting.
We have shown that if u(e iθ) is α-Hölder continuous, then so is v(e iθ), for any
arbitrary α ∈ (0, 1), i.e., the constant K plays no role here. In other words, the primary
interest of our result is in showing that the real and imaginary parts of a (planar)
harmonic quasiregular mapping essentially behave like “harmonic conjugates.”
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