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SUMMARY

With the aim of knowing the probable magnitude of non-random
association between inversion chromosomes and electromorphs, both
deterministic and stochastic studies are conducted on the evolutionary
change of non-random association, which is defined as the difference in
the frequency of a given allele between inversion and non-inversion
chromosomes. In these studies inversion chromosomes are assumed to be
subject to selection but electromorphs are selectively neutral, and recom-
bination is allowed to occur between inversion and non-inversion chromo-
somes with a low frequency. The deterministic study has shown that in a
variety of selective schemes for inversion chromosomes the non-random
association decays at a rate equal to the recombination value in every
generation. Thus, if the recombination value is of the order of 10~5 ~ 10~4,
it would take a long time for the non-random association to disappear.
Furthermore, the stochastic study has indicated that random genetic drift
generates non-random association of inversions and electromorphs in
finite populations and the standard error of non-random association often
becomes larger than the mean. In addition to these problems the time
required for the electromorph frequencies in the inversion and non-
inversion chromosomes to become equal in a finite population and the
probability that the population of inversion chromosomes remains mono-
morphic for the allele which existed in the initial inversion introduced
are studied. Considering all these quantities, it is concluded that data on
the non-random association between electromorphs and inversions are
not very informative for the study of the maintenance of protein poly-
morphism. I t is also indicated that in the study of association between
electromorphs and inversion chromosomes non-random association or
Yule's coefficient of association has a better property than the usual
linkage disequilibrium measure or correlation coefficient. Implications
of this study on some experimental observations are discussed.

1. INTRODUCTION

A number of authors (e.g. Prakash & Lewontin, 1968; Kojima, Gillespie & Tobari,
1970; Mukai, Mettler & Chigusa, 1971; Mukai, Watanabe & Yamaguchi, 1974;
Langley, Tobari & Kojima, 1974) observed non-random association between
electromorphs (alleles detected by electrophoresis) and inversion chromosomes in
Drosophila. The most conspicuous is Prakash and Lewontin's observation that
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gene arrangement in the ST phylad in chromosome III, which are shared by
Drosophila pseudoobscura and D. persimilis, always carries allele 1.04 at the Pt-10
locus, whereas the gene arrangements in the SC phylad in D. pseudoobscura mostly
carries allele 1.06. Many authors (particularly Prakash and Lewontin) regarded
this as evidence for the co-adaptation of enzyme loci in the inversion chromosome.
-Nei (1975), however, argued that this type of observation can be explained either
by the initial linkage disequilibria when the inversion was formed or by random
genetic drift. Nei & Li (1975) conducted a mathematical study of this problem,
•examining the probability that an inversion chromosome remains monomorphic
for the same allele in two populations or species under the neutral mutation
hypothesis. From this study, they concluded that Prakash and Lewontin's obser-
vation can be accommodated with the neutral mutation hypothesis.

In this study, however, Nei and Li assumed that there is no recombination be-
tween the ST and other gene arrangements. This assumption was based on
Dobzhansky & Epling's (1948) results about the recombination frequency between
inversion and non-inversion chromosomes (ST, CH, TL, etc.) in D. pseudoobscura.
These authors showed that in the presence of inversion the recombination value is
reduced drastically even outside the inverted segment. Inside the inverted segment
they observed no recombinants among 21439 individuals tested. Because of this
observation Dobzhansky and Epling speculated that crossing over in the inverted
segment would act as lethals in zygotes. Nevertheless, this does not rule out the
possibility of very rare recombination. Indeed, Levine (1956) observed recombina-
tion in a number of inversion heterozygotes in this organism. Furthermore, in
•other species of Drosophila there are a number of reports about the occurrence of
recombination inside the inverted segment. Therefore, the effect of recombination
should be examined carefully.

Recently Ishii & Charlesworth (1977) studied the rate of decay of non-random
association between neutral electromorphs and gene arrangements in the presence
of recombination by using a deterministic model. Their model, however, seems to
be quite restricted, since the inversion polymorphism has been assumed to be
maintained by a pair of epistatic genes located inside the inverted segment. Further-
more, in the study of the dynamics of neutral alleles the effect of random genetic
drift cannot be neglected, since this is the major force of changing the frequency of
neutral alleles.

The purpose of this study is first to develop a general deterministic model of the
•dynamics of non-random association between neutral alleles and gene arrangements
in the presence of recombination and then study the effect of random genetic drift.
Our main concern will be the magnitude of the non-random association in a given
generation after a new inversion is formed. We shall also study the time required
for the allele frequencies in the inversion and non-inversion chromosomes to become
equal in a finite population and the probability of an inversion chromosome being
monomorphic for a given allele, taking into account the effect of recombination. The
implication of these studies on the experimental observations will then be discussed.
In this paper the effect of mutation will be neglected.
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2. DETERMINISTIC TREATMENT

We consider an inversion chromosome, of which the frequency is P in a large
random-mating population, and the frequency of non-inversion chromosomes is
Q = 1 — P. We also consider a pair of neutral alleles (A1 and A2) at a given locus in
these chromosomes. The locus may be located either inside or outside the inverted
segment. There are four possible types of chromosomes, i.e. inversion chromosomes
with allele A± (designated as IAj) and A2(IA2) and non-inversion chromosomes
with A^NAj) and A%(NA2), of which the frequencies are denoted by Xv X2, X3

and Xi; respectively. We denote the gene frequency of Ax in the group of inversion
chromosomes by x = XJP and that in the group of non-inversion chromosomes
by y = X3/Q. The frequencies of A2 in the inversion and non-inversion groups are
obviously 1—x and 1 — y, respectively.

The degree of non-random association between alleles and gene arrangements
may be measured by a quantity similar to the linkage disequilibrium for two loci
with two alleles, i.e.

Z> = X1Z4-Z2X3

= PQ(x-y). (1)

For our purpose, however, a more convenient measure is

d = x-y. (2)

It is clear that if d is 0, D is also 0. We call d non-random association. Another
measure of non-random association is Yule's coefficient of association. In our case it
becomes

As = (X1X4-X2X3)/(Z1X4 + Z2X3)
= (x-y)/(x + y-2xy). (3)

As takes a value between — 1 to 1 and is again independent of P and Q. The usual
correlation coefficient, r = (X^ -X2X3)/[(X1 + X2) (Xx + X3) (X3 + X4) (X, + X4)]*,
also takes a value between — 1 to 1, but it depends on P and Q as well as on x and y.
In the theoretical study, however, As and r are not easy to work with particularly
when x and y are random variables. For this purpose d is much better, and we will be
mainly concerned with d in this paper.

Any type of inversion chromosome seems to occur very rarely by mutation, and
thus all of the same type of gene arrangement in a population are apparently
descendants of a single mutational inversion. Therefore, if this ancestral inversion
happens to have allele Ax (or A2) at the locus under consideration, all descendant
inversions will have Ax (or A2) unless mutation and recombination occurs. It is
clear that when a new inversion has occurred, x is either 1 or 0, and consequently
d is either 1 — y or — y. (Note that As is correspondingly 1 or — 1, but r is not necess-
arily so.) In course of time, however, d will gradually decline because of new
mutation at the A locus and recombination. To understand this process, we must
know the dynamics of inversion chromosome as well as the neutral alleles.

Under random mating there arise ten different genotypes, and the genotype
frequencies are given by the expansion of (Xx + X2 + X3 + Xt)

2 (see Table 1). We
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assume that natural selection occurs with respect to inversion chromosomes but
alleles A1 and A2 are selectively neutral. There are many ways to formulate selection
for inversion chromosomes. As mentioned earlier, Ishii & Charlesworth (1977)
assumed that two epistatic genes inside the inverted segment maintain the inver-
sion polymorphism. As shown by Haldane (1957), such epistatic genes generate a
balanced polymorphism if there is cumulative overdominance. However, it is more
likely that selection for inversion is controlled by many genes both inside and outside
the inverted segment. Furthermore, inversion chromosomes are not always main-
tained as balanced polymorphisms. The frequencies of many inversion chromo-
somes in natural populations are apparently changing slowly (Dobzhansky, 1970),
and comparison of gene arrangements in different species indicates that replace-
ment of gene arrangements must occur quite frequently in the evolutionary pro-
cess. Therefore, we need a model which is valid both for the cases of balanced
polymorphism and changing frequency. Thus, in this paper we assume that the
fitnesses of inversion genotypes are controlled by the entire set of genes in the
chromosome whether there is epistasis or not. We denote the fitnesses of inversion
homozygotes (//), heterozygotes (IN), and non-inversion homozygotes (NN) by
WIZ, WIN, and WNN, respectively (Table 1). In general, these fitnesses would vary
from generation to generation, since the gene contents in inversion and non-inversion
chromosomes will not remain the same because of mutation, selection acting on
individual genes, and recombination (Nei, Kojima & Schaffer, 1967).

After selection, recombination is assumed to occur. Recombination is important
in the sense that the allele in inversion chromosome is exchanged with the allele in
non-inversion chromosome. Let r be the rate of such exchange per generation. It is
noted that the exchange of alleles between two types of gene arrangements occurs
only in heterozygotes IA1/NA2 and IA2/NAV Recombination in these geno-
types gives rise to the four types of chromosomes with the probabilities given in
Table 1.

Therefore, the chromosome frequencies in the next generation are given by

WX', = X1[{X1 + X2) Wn + (X, + X,) WIN] - rDWIN

(4 a)

, (46)

, (4 c)

'i = XiWN-rDWIN, (4d)

where Wz = (Xx + X.) Wn + (X, + XJ WIN, WN = (X1+X8) WIN + (X, + X4) WNN, W =
(X1 + X2) Wj + (Xz + X4) WN, and the prime (') indicates the quantities in the next
generation. I t is also noted that

P' = PWj/W, Q' = QWN/W.

Therefore, after a straightforward algebra, we have

D = Xi Xt — X2 X$
= (x-y)P'Q'-r(z-y)PQWIN/W. (5)
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Thus, the non-random association in the next generation is

d' = D'/(P'Q')

(6)

Table 1. Genotype frequencies and the gametes produced
Gametes produced

Genotype

IAJIAl

Frequency Fitness IA

X\
2XX.

IA2/IA2
IAJNAt
IAJNA2
IA2/NA1
IA2/NA2

NAJNAl
NAJNA2
NAJNA2

W,,

I

1
1/2

IA2 NA,

2PQ

1/2
r)/2
r/2

1/2
1

r/2

2X3X4\Q*
XI

W '
"BB}

1/2
r/2

r)/2
1/2

1
1/2

)/
r/2
1/2

1/2
1

Therefore, the change in d is affected by selection on the inversion chromosome
as well as the recombination rate. In practice, however, Z = WINW/(Wr WN) seems
to be equal or close to 1 in most cases. For example, in the case of multiplicative-
genie selection, we may write Wu = 1, WIN = 1 — 5, and WNN = (1 — s)a. In this case,
Wz = 1-sQ, WN = (l-s)(l-sQ), and W= (1-sQ)2, so that Z = 1. It should be
noted that s may vary from generation to generation. As long as the multiplicative-
genie selection applies, Z = 1 holds irrespective of the value of s. Nei et al. (1967)
have shown that WIZ, WIN and WNN take the form of time-dependent multiplicative-
genie selection under certain circumstances. In this case Z = 1 for all generations,
though WIIt WIN, and fl^ change every generation.

When selection is not multiplicative-genic, Z is not strictly 1. However, it is
close to 1 in most cases. For example, in the case of overdominant selection we can
write WIZ = 1 -s, WIN = 1, and WNN = 1 -t. Therefore, Wx = 1 -sP, WN = 1 -tQ,
W = l-sP2-tQ2, and Z = (l-sP2-tQ2)/[(l-sP)(l-tQ)]. Suppose s = 0-1,
t = 0-2, P = 0 1 , and Q = 0-9. Then, Z = 1-19. At equilibrium with overdominant
selection we have P = t/(s + t), Q = s/(s + t), and Z = (s + t)/(s + t — st). Therefore,
in the case of s = 0-1 and t = 0-2, Z = 1-07. Wright & Dobzhansky (1946) obtained
the estimates of s = 0-3 and t = 0-7 in a laboratory population of D. pseudoobscura,
though these estimates are almost certainly inflated by the associative overdomi-
nance generated at the time of sampling chromosomes for the initial population
(Nei, 1975). In this case we have Z = 1-27 at equilibrium.

The above examples show that Z is close to 1 in most cases. Therefore, for practical
purposes (6) may be written as d' = d(l — r) approximately. The d value at the fth
generation (dt) is then given by

dt = d0(l-r)*
a doei-rt (7)
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since r is generally very small. This is equivalent to Ishii and Charlesworth's
formula (10), though the meaning is somewhat different. Our formula is applicable
to a wide variety of selection whether the inversion polymorphism is transient or
stable or whether WIZ, WIN, and WNN are constant or not.

In this connexion it should be noted that although the behaviour of d is simple,
that of x or y is not. The recurrence equations for x and y can be obtained from
(4a)-(4d) and become

x'= x{/(x{ + x'2)

= x-rQ{x-y)WIN/WI, (8a)

y' = y + rP(x-y)WIN/WN. (86)

Therefore, the amounts of changes in x and y per generation depend not only on the
selection for gene arrangement but also on the frequencies of gene arrangements. It
is not easy to derive general formulae for the values of a; and y in the tth. generation
(xt and yt) when the gene arrangements are subject to selection. However, when
there is no selection or when P and Q stay constant and WIN/WZ and WIN/WN are
close to 1, we have the following recurrence equations.

xt+i = oct-rQ{pct-yt), (9a)

Solution of the above equations gives

xt = xo-Q(xo-yo)[l-(l-rn .(10a)

yt = yo+P(x0-yo)[i-(i-rn (106)

At t = oo, xn = y«> = P%0 + QVo> a s expected.

3. STOCHASTIC TREATMENT

In finite populations gene frequency changes are probabilistic and dt takes
various values with a certain probability distribution. It is, therefore, important
to know the mean and variance of dt. Furthermore, when dt takes various values,
positive and negative, a more appropriate measure of non-random association than
the mean would be the expectation of d\. There are two more important properties
of non-random association in finite populations. One is the number of generations
required for x to become equal to y for the first time. In the deterministic theory
this time is infinitely large, but in a finite population x may become equal to y in a
finite number of generations. It is then interesting to know the average of this
number of generations, i.e. the average first arrival time. Another quantity of
interest is the probability that the inversion chromosome remains monomorphic
for the initial allele Ax at generation t. This probability is essentially the same as the
probability of monomorphism of inversion chromosome Nei & Li (1975) studied
under the assumption of mutation pressure. In this section we shall study these
three problems.

https://doi.org/10.1017/S001667230001394X Published online by Cambridge University Press

https://doi.org/10.1017/S001667230001394X


Non-random association 71

(i) Mean and variance of non-random association

The stochastic treatment of non-random association is far more complicated
than the deterministic treatment, and to make the mathematical computation
manageable we assume constancy of P and Q and approximate the mean changes
in x and y by (9a) and (96). This assumption seems to be satisfactory when the
inversion frequency is kept constant by selection but WZN/WZ and WIN/WN are close
to 1. In practice, however, even when the frequency of inversion chromosome is
changing, it does not seem to affect the final result drastically, as will be seen from
the computer simulation given later. At any rate, under this assumption we evaluate
the first and second moments of dt. To do this we use the Kolmogorov backward
equation in probability theory. From (9a) and (96) the mean changes of a; and y
per generation are given by MSx = -rQ(x — y) and MSy = rP(x — y), respectively.
On the other hand, the variances of the changes of a; and y are VSx = x(l — x)/Nz and
Viy = y(l—y)/NN, where Nz and NN are the 'effective numbers' of inversion and
non-inversion chromosomes, respectively. If the effective size of the population is
N, Nz = 2PN and NN = 2QN. The above variances are obtained under the assump-
tion that P and Q are not subject to sampling error.

Let <j>(x, y, p, q, t) be the probability density that the frequencies of Ax in the
inversion and non-inversion groups become x and y in generation t respectively,
given that the initial frequencies are p = x0 and q = y0, respectively. It can then be
shown that 0 satisfies the following Kolmogorov backward equation when Nz and
NN are sufficiently large.

The nth. moment of d at time t is given by

E(dt) = I1 !\x-y)n<p(x, y,p, q, t)dxdy. (12)
J oJ o

Using (11) and (12) and the relations Nz = 2NP and NN = 2NQ, we can show that

8

(13)

where T = t/2N and R = 2Nr.
It can easily be shown that the first moment of d is given by

dT = E(dT) = (p-q)e~RT (14a)

= (p-q)e~rt. (146)

To obtain the second moment, we try the following solution.

E(d%) =
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Putting this into equation (13), we obtain the following equations.

— AP~1-2ARQ + CRP = AX, (15a)

- BQ~1~2BRP + CRQ = BX, (156)

= CX, (15c)

= DX, (15d)

) - l + DRQ-ERP = EX. (15e)

I t can be shown, that the eigenvalues are

Xx = —R — ?//3 + 2^/a cos <r/3,

A2 = —R—7f/3 — 2iJxco8——,
o

71 In e

O

where
a =

0" = COS"

Thus, the solution is given by

5

- 2i/32r)/27,

(16)
i = l

However, since A6 = 0 and E(d2) approaches zero as T becomes infinity, all co-
efficients of e**T must be zero. That is, A5 = B5 = C5 = D5 = E5 = 0. Also, from
(15c, d, e), we can show that At = 5 4 = <74 = 0 and 2)4 = -£^4. Equation (16) now
reduces to

E(dl)= h(Aip
2 + Biq

2 + Cipq + Dip + Eiq)e^ + (D4p + Eiq)e-RI'. (17)

Putting the initial condition E(dl) = (p - q ) 2 = p2 — 2pq + q2 into (17), we derive the
following relations:

A1 + A2+A3= 1, (18a)

(186)

^ - 2 , (18c)

0. (18e)

Using these relations and equations (15a-e), we can show that Z)4 = Et = 0 and

3 — c263)/A, (19a)
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Ct

Di

Ei

= (263-261 + c3-c14
= (261-262 + c1-c2 +

= Mi>

= ^i(Af + i?Ai)-1[P"1

= ^i(A? + ^Ai)~
1[i2©J

(Ai + RP) + biRPQ~1l
°-1 + &i + RQ)biQ-1l

(196)
(19c)
(19d)
(19e)
(19/)

where
i = 1, 2 or 3 and A = 61(c2 — c3) + 62(c3~ci) + M c i ~ C2)>

+ 2RQ + P-1)/^ + 2RP + Q-i),

We can now evaluate E(d%) by using these coefficients and equation (17). In
particular, when P = Q = \, we have the following simple formula.

E(d2
T) = S [^(p* + j«) + G i M + Di(p + q)] &*, (20)

i l

where A1 = - i 2 - l + (i?2+l)*) A2 = -R-l-(R* + l)i, Ax= - A ^ A j - A ^ , ^42 =
A2/(A2 - Ax), Ci = - 2AX(2 + 72 + Ax) i^^Aa - AJ"1, C2 = 2A2(2 + iJ + A2) R-1^ - AJ-1,
Dj = - 2(A2 - Ai)-1 and D2 = 2/(Aa - Ax).

Formula (146) is identical with the equivalent formula (7) for the deterministic
model, and shows that the change in mean of d is independent of N, P, and Q. The
second moment of d is, however, a complicated function of these parameters. Table
2 shows the values oiE(d) and E{d2) for various values of N, P, Q, and t. In all cases
p = 1, q = 0-1, and d0 = 0-9 are assumed. It is clear that E(d) declines very slowly
when the recombination value is small. For example, in Case 1, where P = Q = 0-5,
E{d) for R = 01 is 0-546 even at the lOJVth generation. E(d2) declines at a slower
rate than that for E{d) and is often larger than E(d) at later generations. For example,
in Case 1 E(d) and E(dz) for R = 1 and t = 10iV are 0-006 and 0-025, respectively.
Thus, the square root of E(d2) is 0-158. Therefore, in later generations even if the
mean of d is small, a considerable amount of non-random association is expected to
exist. In general, sd = [E(d2)$ gives a better idea of the magnitude of non-random
association than E(d) in finite populations. Needless to say, the larger value of sd

than E(d) is caused by random genetic drift (Hill & Robertson, 1968).
In Table 2 the standard deviation of d, i.e. <r = [E(d2) — Ez(d)]i is also presented.

As expected, this value increases with increasing generation. In later generations
cr can be larger than the mean of d. This indicates that d can be negative even if
the initial value is a large positive value. I t is also noted that sd is of the same
order of magnitude as that of E(d) in early generations, but as E(d) decreases, it
tends to be close to cr.

When the frequency of inversion chromosome is small compared with that of
non-inversion (Case 2), the change in E(d2) with time is somewhat complicated but
the magnitude of E(d2) is more or less the same as that for Case 1. A detailed com-
parison of Case 1 and Case 2 shows that when 2Nr = 0-1, E(d2) for Case 1 is greater
than that for Case 2 in the early generations as well as in the very late generations,
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whereas for t = 2N ~ 20N generations it is smaller. This complicated pattern of
the change of E(d2) can be explained if we examine the eigenvalues for these cases.
As will be seen from Table 3, there are three eigenvalues for Case 2 but there are two
for Case 1, and it is noted that |A3| is much larger than \Xj\ and |A2|. Therefore, in
the early generations E(d2) is expected to decline faster in Case 2 than in Case 1. In

Table 2. Means [E(d)], second moments [E(d2)] and standard
deviations (<J) of non-random association

(p = 1, q = 0-1, d0 = 0-9 and E(<P0) = 0-81 are assumed.)

Generation

2Nr

0 1

10

0 1

10

E(d)
E(d*)
cr

E(d)

cr

E(d.)
E(d*)
cr

E(d)
E(d")
cr

E(d)
E(d?)
cr

E(d)
E{d?)
a

0-02N

0-899
0-810
0-042

0-891
0-795
0043

0-814
0-665
0048

0-899
0-810
0035

0-891
0-795
0-038

0-814
0-667
0066

0-2N

Case

0-891
0-811
0130

0-814
0-685
0146

0-331
0139
0172

Case 2:

0-891
0-806
0112

0-814
0-698
0186

0-331
0-186
0-277

N

1:P = Q
0-856
0-801
0-261

0-546
0-412
0-337

0-006
0032
0179

P = 0 1 ,

0-856
0-800
0-260

0-546
0-485
0-432

0006
0043
0-208

2N

= 0-5

0-814
0-774
0-333

0-331
0-272
0-403

4 x 10-5

0-020
0141

Q = 0-9

0-814
0-783
0-346

0-331
0-327
0-466

4 x 10-5

0026
0161

ION

0-546
0-533
0-485

0006
0025
0158

2 x 10-22

4x 10~4

0-021

0-546
0-549
0-501

0006
0019
0-137

2 x 10-22

5x 10-4

0024

20N

0-331
0-331
0-471

4 x 10-6

0-001
0037
3x10-"
4xlO-«
0002

0-331
0-336
0-476

4xlO-6

6X10-4

0024
3xlO-"4

4 x 10-6

0002

lOOJV

00061
0-0074
00859

2 x 10-22

9 x l O - 1 4

3 x l O " 7

—
—
—

0-0061
00066
00813

2 x l O - 2 2

5 x l O - 1 6

2x 10-'

2Nr

0-1

1

10

Table 3. Eigenvalues for various values of P and 2Nr

P Ai A2

0-5
01

0-5
0 1

0-5
01

- 0 0 9 5
- 0 0 9 8

-0-586
-0-693

-0-950
-0-961

-2-10
- 1 1 3

-3-41
-1-60

-21-05
- 1 1 1 7

- 1 0 1 8

-11-82

-28-98

the intermediate generations, however, the rate of decrease in E(d2) is largely
determined by A2 of which the absolute value is greater in Case 1 than in Case 2.
Thus, E(d2) becomes smaller in Case 1 than in Case 2. On the other hand, in the very
late generations the rate of decrease in E(d2) is dictated by Av Since |A1| is smaller
in Case 1 than in Case 2, E{d2) is expected to be larger in the former than in the latter.
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A similar trend has been observed in the cases of 2Nr = 1 and 2Nr =10 though in
Table 2 the pattern of the change in E(d2) in the early generations is not clear
because of the rapid decrease oiE{d?) for these cases.

(ii) Computer simulation

In the above formulation we have implicitly assumed that the frequency of
inversion chromosome reaches the equilibrium value immediately after the occur-
rence by mutation. In practice, of course, the frequency gradually increases. To
see the effect of this gradual increase, we have conducted a computer simulation.
In this simulation we assumed that the inversion chromosome is subject to over-
dominant selection and the fitnesses of / / , IN, and NN are 1 — s, 1, and 1 — s, re-
spectively, s being 0-01. The number of inversion chromosomes (Nz) in the population
was initially one and increased to 2N/2 = N. I t took about 1500 generations for Nz

to become close to N when N = 104 and about 2000 generations when N = 105. In
each generation Nz was rounded to an integral number which was the closest to the
Nj value obtained after deterministic selection. The initial frequency of the A1

allele was x = 1 in the inversion chromosomes and y = 0-1 in the non-inversion
chromosomes. Selection, recombination, and sampling of gametes were assumed to
occur in this order. Selection and recombination were treated deterministically in
the scheme mentioned earlier. In practice, of course, the frequency of new inversions
is subject to stochastic changes and the majority of them will be eliminated (Nei &
Roychoudhury, 1973), but since we are interested in only those inversions which
have become polymorphic in the population, we can neglect this factor. Our scheme
of random sampling was briefly as follows: The number of Ax genes in the non-
inversion chromosomes was assumed to follow the binomial distribution with
parameters y and NN. This binomial distribution was approximated by the Poisson
distribution if NNy^, 15 and by the normal distribution if NNy > 15. Similarly,
the number of Ax genes in the inversion chromosomes was assumed to follow the
binomial distribution with parameters x and NT. When NT < 50, the binomial
sampling was directly conducted to determine the value of a; for the next generation.
When 50 < Nz < 200, the binomial distribution was approximated either by the
normal distribution or by the Poisson distribution. The normal approximation was
used when 5 < Nzx < Nz — 5; otherwise the Poisson approximation was used with
parameter Nzx or Nz(l — x). When Nz > 200, the normal approximation was used
if 10 < NjX < Nz— 10; otherwise the Poisson approximation was used. We studied
two different cases, i.e. N = 104, r = 10-5 (Case 1) and 2V = 105, r = 10~4 (Case 2).
In both cases 1000 replications were conducted, and the means of d and d2 were
computed for several different generations.

The results obtained are presented in Table 4 together with the theoretical values
obtained by (14&) and (20). These theoretical values were obtained under the
assumption of P = Q = 0-5. It is clear that both the mean and second moment of
non-random association (d) are close to the theoretical values. There is some tendency
for the second moment to be a little larger than the theoretical value. This is appar-
ently caused by the small value of P in the early generations where the effect of
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random genetic drift is large. Nevertheless, for the practical purpose our formulae
(146) and (20) give sufficiently accurate results. The reason for this seems to be
that in the early generations, where the frequency of inversion chromosomes
increases rapidly, the change in x is almost deterministic and by the time the
variance of x becomes significantly large the frequency of inversion chromosomes
has increased to a value close to the equilibrium frequency.

Fig. 1 shows the distributions of d obtained by simulation for t = 2000, 5000 and

Table 4. Means [E(d)] and second moments [E(d2)] of non-random association
(The results from computer simulation are based on 1000 replications.

The initial values of re and y are 1 and 0-1, respectively.)

Generation

E(d)

E(d*)

E(d)

E(d*)

1000 2000

Case 1: N = 10*^ = 10"5

Formula (146) 0-891 0-882
Simulation: 0-895 0-890

Formula (20) 0-803 0-796
Simulation: 0-809 0-807

Case 2: N = 105, r = 10~»

Formula (146) 0-814 0-737
Simulation: 0-813 0734

Formula (20) 0-664 0-546
Simulation: 0-700 0-574

5000

0-856
0-864

0-775
0-791

0-546
0-544

0-306
0-321

1000(

0-814
0-833

0-740
0-774

0-331
0-327

0124
0-129

f=2000
f=5000
t= 10000

Fig. 1. Distributions of d for t = 2000, 5000, and 10000 for the case of N = 105 and
r = 10~*. These distributions were obtained by computer simulation. The curves
representing the distributions are visually fitted to the simulation results. The
number of replications used is 1000 for each generation.
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10 000 for the case of N = 105andr = 10~4. The curves representing the distributions
were visually fitted to the simulation results just to show the general pattern.
Since the number of replications is only 1000, they may not be very accurate. It is
seen that in the case of t = 2000 the d value is generally close to the mean (0-737)
but may become much smaller. There is a secondary peak around — 0-08 in the dis-
tribution. It is not clear why the secondary peak arises at this value of d. It is
possible that the actual location of the secondary peak is at d= 0 and by chance it
has moved to d = — 008. At t = 5000 and 10 000 the distribution of d becomes flatter
than that at t = 2000 and has a long tail toward the negative side. In both genera-
tions there is a secondary peak around d = 0.

(iii) Mean first arrival time
Let us now study the number of generations required for the frequency (x) of

Ax in the inversion chromosomes to become equal to the frequency (y) of Ax in the
non-inversions, i.e. the first arrival time. We note that since the initial frequency of
non-inversion chromosomes is much larger than that of inversion chromosomes,
y generally does not change as much as x does in the evolutionary process. Therefore,
we assume that y remains constant. Although this assumption is not strictly
correct, it simplifies the mathematical treatment considerably and yet gives a
rough idea about the first arrival time. At any rate, under this assumption the mean
first arrival time can be computed by Maruyama's (1977) formula (see also Nagylaki,
1974). In our case the mean change in x per generation is MSx = —rQ(x — y), whereas
the variance is VSx = x(l —x)/(2Nj). We have a reflecting boundary at x = 1 and a
absorbing boundary at x — y. If we put these conditions in formula (4-58) of
Maruyama (1977), we obtain the mean sojourn time at each gene frequency
class. The mean first arrival time is given by the integration of this mean sojourn
time from y to 1. It becomes

t{y) = 4NZ f1 (1 - g^d-W-i^v-i p (l _
J V J V

whereat = 4JVzrQ.
The mean first arrival times for two different values of y, i.e. 0-1 and 0-5, are

presented in Table 5. The mean first arrival time depends on the values of 4:NZ rQ and
y. When 4i^7 rQ is small, the time is very long. For example, Nz = 104, Q = 0-5, and
r — 5x 10~5, it is 60000 generations for y = 0-1. When y = 0-5, the time is a little
shorter than that for y = 0-1.

(iv) Probability ofmonomorphism
The probability that the inversion chromosome remains monomorphic for the

initial allele Ax at generation t can be obtained by the same method as that of Nei
& Li (1975). We again assume that the frequency {y) of Ax among non-inversion
chromosomes remains constant. This assumption would lead to an underestimation
of the probability of monomorphism, since in practice y increases with time. At
any rate, under this assumption we have Mix = —rQ(x — y) and Vlx = x{ 1 — x)/(2Nz).
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The process is essentially the same as that for the change of gene frequency under
linear pressure, and the distribution of x at time t is given by

, *, t) = j£Xt(x)exp[-i(rQ+*-^ <], (22)

Xt(z) = x3-1!^-x)A-B-x

xF(A+i-l, -i, A-B, l-p)

where A = 4:NzrQ,B = Ay and p is the initial frequency of x (Crow &Kimura, 1970).
If p = 1, then F(A + i— 1, — i, A-B, l-p) = 1. The probability that x is equal
to or greater than 1 — a is

P(x ^ l-a;t) = <j)(p,x,t)dx. (23)

Table 5. Mean first arrival time of x toy

(Time is measured in. the unit of 4Nj generations and the initial value of a: is 1.)

.frequency of Ax

among non-inversions 0-1 1 10
y = 0-1 15-76 1-50 0-267
y = 0-5 12-29 1-29 0196

Table 6. Probability that the frequency (x) of A1in the inversion group is
equal to or greater than I — a

(Nj, r, and Q are the number of inversion chromosomes, recombination value,
and the frequency of non-inversions, respectively.)

0-1 a = 001
a = 0-05
a = 010
a = 0-01
a = 005
a = 010
a = 001
a = 005
a = 010

0-04JV,

0-978
0-999
1000

0-676
0-995
0-999

10-«
0080
0-723

1-
1-
5-

0-42V,

0-841
0-948
0-985

0124
0-445
0-682

1 x 10-"
6x lO- 8

6 x 10-e

Generation

2JV,

0-724
0-834
0-888

0-029
0119
0-215

1-7 x 10-18

3-3 x lO"12

1-6 x 10-9

1
2
1

4iV,

0-670
0-774
0-827

0014
0060
0111

•0 x 10-18

•0 x 10-12

•OxlO"9

1
2
1

20JV,

0-463
0-536
0-574

0002
0008
0016

•0 x 10-18

•OxlO-12

•Ox 10-°

10

Table 6 shows the probabilities of monomorphism for three different values of
a, i.e. 001, 0-05, and 0-10. In this tables = 1 and y = 0-1 are assumed. It is clear
that the probability of monomorphism remains high for a long time if the recombina-
tion value is low. However, it declines very rapidly if the recombination value is
high. Since the values in Table 5 are obtained under the assumption that y is
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constant, they are expected to be underestimates, particularly when t is large, as
mentioned earlier.

4. DISCUSSION

We have seen that the degree of non-random association depends on the re-
combination value, the effective numbers of inversion and non-inversion chromo-
somes, and the time after the inversion chromosome was introduced. The last two
factors are generally unknown, but some information is available about the re-
combination value particularly in Drosophila melanogaster. Ishii & Charlesworth
(1977) recently reviewed the works on recombination values inside inverted seg-
ments in Drosophila and concluded that it is of the order of 10~4. According to
Chovnick (1973), however, the majority of recombinants from inversion hetero-
zygotes are the products of gene conversion rather than the classical double cross-
overs. Examining about 5 x 106 zygotes by using a selective system, Chovnick
estimated that in inversion heterozygotes of D. melanogaster the rate of gene con-
version in the rosy region is of the order of 10~5, whereas the frequency of double
crossovers is much less. For our purpose, of course, double crossing-over and gene
conversion have the same effect. We can therefore conclude that the recombination
value is of the order of 10~5 ~ 10~4. Of course, the recombination value would
depend on the location of the locus under consideration. If the locus is located
close to the breakpoint, the recombination value could be even smaller.

At any rate, with this magnitude of recombination value, the non-random
association introduced by a new inversion mutation or migration is expected to last
for a long time, particularly in small populations. For example, if r = 5 x 10~5,
N = 104, P = 0-1, p = 1, q = 0-1, and d0 = 0-9, sd is 0-580 even after 20000 genera-
tions. If there are 10 generations in a year in Drosophila, this corresponds to 200O
years.

In the present paper we have neglected the effect of mutations. This can be
justified as long as the mutation rate is lower than the recombination value and the
evolutionary time considered is not extremely large. However, when the evolution-
ary time is long, our formulation is no longer realistic, since in our formation the
population will eventually become monomorphic for an electromorph. When a pair
of gene arrangements are selectively maintained in the population and new mutation
occurs repeatedly at the protein locus, E(d2) is expected to reach an equilibrium
value as in the case of ordinary linkage disequilibrium (Ohta & Kimura, 1969).
This equilibrium value of E(d2) is expected to be considerable when ±NZ r is about-
1 or less. Therefore, as long as <LNtr remains small, protein loci and inversion,
chromosomes would generally be associated non-randomly.

In practice, it is not easy to determine the magnitudes of Nt and NN in natural
populations. However, the size of natural populations generally fluctuates con-
siderably from generation to generation. Since the long-term effective population,
size is the harmonic mean of the effective sizes for individual generations,
Nr and NN could be much smaller than the present actual sizes. This is particularly
so when a population starts from a small number of founders. Ishii & Charlesworth
(1977) pointed out the possibility that the United States and Japanese populations

6 GRH 35
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of Drosophila melanogaster are only about a few hundred years old, since these
populations apparently immigrated from West Africa through human migration
and travel. If we consider this type of population fluctuation, most of the association
between inversions and electromorphs so far observed seems to be explainable by
historical relics and genetic drift. Of course, this does not mean that the electro-
morphs on these chromosomes are selectively neutral. Rather it indicates that this
type of information is not very useful for the study of the maintenance of protein
polymorphism.

However, a special comment seems to be necessary on the strong association of
gene arrangements and electromorphs at the Pt-10 locus in Drosophila pseudo-
obscura and D. persimilis. As mentioned earlier, Nei & Li (1975) have shown that
the identical monomorphism of the ST phylad for the 1-04 allele in the two species
can be explained by historical accidents and genetic drift if the effect of recombina-
tion is neglected. The present study indicates that the recombination in inversion
heterozygotes decreases the probability of monomorphism considerably. In the
case of the Pt-10 locus, however, this does not pose any serious problem for the
hypothesis of historical accident. This is because D. persimilis is monomorphic for
the electromorph 1-04, whereas the polymorphism at the Pt — 10 locus in D. pseudo-
obscura may be of recent origin. It is known that gene arrangement ST exists in
both species but the gene arrangements of the SC phylad are present only in D.
pseudoobscura with a relatively low frequency (Dobzhansky, 1970; Prakash &
Lewontin, 1971). It is thus possible that the SC phylad was derived from the ST
gene arrangement through the so-called Hypothetical gene arrangement some
time after the two species diverged (Dobzhansky & Sturtevant, 1938). If this is the
case, the first gene arrangement in the SC phylad as well as the parental gene arrange-
ment Hypothetical seems to have had allele 1-06 at the Pt-10 locus. This can
happen if the population of ST gene arrangements was polymorphic for alleles 1-04
and 1-06 when the Hypothetical was formed but later allele 1-06 was eliminated by
genetic drift. Therefore, if the time of occurrence of the SO gene arrangement is
rather recent, Prakash & Lewontin's (1968) observation can easily be accommo-
dated with the neutral mutation hypothesis. We also note that there is no informa-
tion about the rate of gene exchange (recombination frequency) at this locus in
inversion heterozygotes.

At this point some readers might recall Epling's (1944) conjecture that the SC
gene arrangement has existed from the time of Miocene (13 million years ago).
From this conjecture and the present distribution of D. pseudoobscura, Prakash
& Lewontin (1968) speculated that the ST and SC phylads diverged about 3 ~ 5
million years ago. In our view, however, Epling's conjecture is illogical and cannot
be accepted. (We will be happy to send our detailed comments on Epling's paper if
any one is interested.) Indeed, Epling himself was not sure about his conjecture
and stated: 'It is possible, as originally implied by Dobzhansky & Sturtevant
(1938), that the present distribution of gene arrangements took place in relatively
recent time, perhaps Pleistocene or post-Pleistocene.' In this connexion it should
be mentioned that the genetic distance between D. pseudoobscura and D. persimilis
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for protein loci corresponds to a divergence time of about 250 000years (Nei, 1975),
though this estimate is also subject to a large standard error.

Recently, Olvera et al. (1979) indicated the possibility that the SC is older than
the ST, the latter being derived from the former through the Hypothetical. In
this case the non-random association of the electromorphs at the Pt-10 locus and
inversions can still be accommodated with the neutral mutation hypothesis if we
assume that the SC or Hypothetical was polymorphic for 1-04 and 1-06 and the
first ST gene arrangement happened to have 1-04. It is also possible that the Hypo-
thetical is oldest and both the ST and SC were derived from this gene arrangement.
In this case the neutral explanation is simpler, since we can assume that the Hypo-
thetical was polymorphic for 1-04 and 1-06 and the ST was derived from a gamete
carrying allele 1-04, whereas the SC was derived from a gamete carrying 1-06.

Table 7. Non-random associations (d) and coefficients of associations (As)for the pairs
of electromorphs and inversions in the same arms of chromosomes II and III in
Drosophila melanogaster
(x and y are the frequencies of a given allele in the inversion and non-inversion chromosomes.
B = Brownsville, U.S.A.; Katsunuma, Japan. Data are taken from Langley et al. (1974).)

Locus and
inversion

ctGpdr-In(2L)t

Adh^In(2L)t

Amy-In(2R)NS

Est-&-In(3L)P

Pgmr-In(ZL)P

Population
B
K
B
K
B
K
B
K
B
K

d

0136*
0-079
0-325**
0-746**
0112*
0-081
0-449**
0-256**
0-087
0-226

A,

1-000*
0-317
1-000**
1000**
0-791*
0-627
0-830**
0-583**
0-593
0-593

X

1000
0-896
1000
1-000
0-983
0-973
0-897
0-412
0-966
0-882

y

0-864
0-817
0-675
0-254
0-871
0-892
0-448
0156
0-879
0-656

* Significant from 0 at the 5 % level.
** Significant from 0 at the 1 % level.

In the past the degree of non-random association between inversions and electro-
morphs has been measured either by the usual linkage disequilibrium (D) or by the
correlation coefficient (r). However, these measures are not very appropriate from
the theoretical point of view. As is clear from (1), the linkage disequilibrium is a
product of PQ and d. Therefore, when P or Q is small, D is also small even if d is
large. We note that P is necessarily small when a new inversion is introduced and
thus D is very small. In this case r is also expected to be generally small. However, as
P increases due to selection or genetic drift, D or r may increase even if d declines
steadily in every generation. On the other hand, the coefficient of association (As)
gives either 1 or — 1 when a new inversion is introduced as mentioned earlier. We
believe that this is a good property for studying non-random association of electro-
morphs and inversions. Of course, the relationship between As and evolutionary
time is not as simple as that of d. However, a high value of As indicates that the
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inversion chromosome was recently introduced either by mutation or by migration
or the recombination frequency is very low.

Langley et al. (1974) published gametic frequencies for many different pairs of
inversions and electromorphs in two populations of Drosophila melanogaster. Table
7 gives the values of d and As for five pairs of enzyme loci and inversion in the same
arms of chromosomes II and III. The data for the inversions in the right arm of
chromosome III are not included, since there are two polymorphic inversions and
x and y cannot be obtained from their paper. Table 7 shows that the Aa value is
generally high but only six of the ten estimates are significantly different from 0.
(The statistical test was done by the usual 2 x 2%2 test.) In the case of Adh^In(2L)t
the As value is 1-0 in both Brownsville and Katsunuma, i.e. one allele {Ar) at the
Adh locus is always associated with inversion In(2L)t. According to Langley et al.
(1974), the linkage disequilibrium for Adh-In(2L)t is 0-047 in Brownsville and
0-111 in Katsunuma, whereas the correlation coefficient is 0-280 in Brownsville and
0-589 in Katsunuma. Therefore, it is difficult to recognize the complete association
of Ax and In(2L)t from these quantities. It is also noted that in each enzyme locus
and inversion pair there is a considerable difference in the value of d between the
Brownsville and Katsunuma populations but the difference in As is relatively small
except in XCfpd—In(2L)t. The difference in d could be due to either natural selection
or the bottleneck effect at the time of formation of these populations.

This study was supported by research grants from the U.S. National Institute of Health
and the U.S. National Science Foundation.
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