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GROWTH OF POLYNOMIALS WHOSE ZEROS ARE

WITHIN OR OUTSIDE A CIRCLE

AspuL Aziz

Let P(z) be a polynomial of degree #»n which does not vanish

in the disk |z| <K . For K =1, it is known that

n
Max |P(z)| 2 (1529 Max |[P(z)| , and
|z|=r<1 |z]=1
Max  |P(z)] s (Bf;l) lMax |p(z)] .

lz|=R>1 z|=1
In this paper we consider the two cases K 21 and X <1,

and present certain generalizations of these results.

If P(z) is a polynomial of degree n , then [7, p.346] or (6,
vol.I, p.137 Problem III 269]
(1) Max |P(z)] < A' Max |Ptz)] .
|z|=R>1 |z|=1
Here equality holds if and only if P(z) = az’ .
It was shown by Ankeny and Rivlin [4] that if P(z) # 0 in
Izl < 1, then (1) can be replaced by
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(2) Max |P(z)]| s R—n—’;—l Max |P(z)] .

|z|=R>1 z|=1
Inequality (2) is sharp and equality holds for P(z) = a + an 5
la| = [8] .

By the maximum modulus principle

Max IznP(l/z)l > Max |2"P(1/2)| = max |P(z)] ,
!z! = £>1 z|=1 z|=1
r
and so
(3) Max |P(z)]| > " Max |Pr2)] ,
2 =r<] z|=1

where equality holds if and only if P(z) = az’ .

If P(3) #0 in |z| <1, then [§] the stronger inequality

142"
(4) Max [Pez)]| 2 (T) Max |P(z)}]
lz] =r>1 |z|=1

holds. Here equality is attained if P(z) = a(z - 8)" , 8] = 1.

In this paper we obtain certain generalizations of inequalities
(2) and (4). We prove.

THEOREM 1. If P(z) <s a polynomial of degree n such that
P(z) #0 in |z| <K where K 2 1, then

n
(5) Max  |P(z)] 2 B waxr |Pez)] .
1+K
|z|=r<1 |z]|=1
Here equality holds if P(z) = (3 + ™.

Applying Theorem 1 to the polynomial znP(l/z) , we obtain

THEOREM 1'., If P(z) <is a polynomial of degree n which has all

ite zeros in the disk |z| <k where k < 1, then

n
(6) maz  |P(a)| 2 (2K maz |P(2)]
|z]=R>1 |z|=1

The result is sharp and in (6) equality holds for P(z) = (2 + k” .

THEOREM 2. If P(2) <ig a polynomial of degree n such that
P(z) #0 in |z| <k where k s 1, then
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n
(7) Mar |P(2)] 2 ) Mz |P(2)| if 0srsi®.
|2|=r |z]=1
The estimate is sharp with equality in (7) for P(z) = (z + K" .

n
This result when applied to 3z P(1/2) gives:

THEOREM 2'. If P(z) <is a polynomial of degree n which has all
its zeros in the disk |zl < K where K 21 , then

n
(8) Max |P(2)] 2 () lMciw: |P(z)| if R=2K
zi=1

2
Zl-"—"R 1+K

The result is sharp with equality in (8) for P(z) = (z + K)"* .
The precise estimate for Max |P(z)| in Theorem 2 for k2 <rc<l
2|=r

and the corresponding estimate for Max |P(z)| in Theorem 2' for
z|=R

1 <Rc< KZ does not seem to be easily obtainable. It was shown by Aziz
and Mohammad [2] that if P(z) is a polynomial of degree » which does

not vanish in the disk |z] < K where K 2 1 , then

Rek |

Max |P(z)| < (3=5) |MTX |P(z)| for 1 <R < K

z|=R K al=1

and in addition, if P(z) has non-negative coefficients or if P(Ksz)

and P(Rz) become maximum at the same point on lzI =1, R> 1, then

(9) Max |P(z)] < LT Max |P(z)| for R > K
|z|=r 1+ lz]=1

2

We take this opportunity to point out that the statement of the
inequality (5) of Theorem 2 of [2] should read as the statement of the
inequality (9) above, as the proof given for the first part of Theorem 2
in [2] covers only the above mentioned class of polynomials and so the
general case is still open.

However, we have a considerable evidence in favour of the following

CONJECTURE. If P(z) <s a polynomial of degree n which does not
vanish in the digk |z| < k , then
n_, .n
Max IP(z)Iz‘r'——+-k—71- Max |P(z)| for kK% <m <1, k<1
|z|=r 1+ K |a|=2

and
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n
Max |P(z)| 5—1—{1+—k; Max |P(z)| for R>k2,k>1.

|z]|=R 1+ Kk |z|=1
Here we prove the following generalisations of (2).
THEOREM 3. If P(z) <is a polynomial of degree n which does not

vanish in the disk |z| < K where K 2 1 , then
2

(10) Max |P(z2)| SM Max |P(z)| for R 2 K° ,
|z|=r 1+ K |z|=1

provided |P’(KZz)| and |P'(z)| become maximuwn at the same point on
|z =1 .
The result is best possible with equality in (10) for P(z) = 2+ K.

The next result is an interesting generalisation of the inequality
(2).
THEQOREM 4. If P(z) <is a polynomial of degree n which does not

vanish in the disk |z| < K where K = 1, then

(11) Max |P(z)| = (E;—J) Max |P(z)]| - (—1{;_—1) Min |P(z)] .
|z|=R>1 |z|=1 |z]=1

The result is best possible and equality in (11) holds for the polynomial
P(z) = a2’ + K", |a|=|8]=1, K >21.
As an application of Theorem 4, we establish

THEOREM 5. If P(z) 1s a polynomial of degree n which does not
vanish in the disk |z| <k, k <1, then for 0 <r Sk we have

(12) (1477) Max |P(z)] - (1-7Y) Min |P(2)]| 2 2r" lMa:c lpez)| .

|z|=r z|=r z|=1
The result is best possible and equality in (12) holds for the polynomial
P(z) = a2” + gk"* where |o|=|8]=1 and k < 1.
For the proofs of these theorems, we need the following lemmas.
LEMMA 1. If P(z) is a polynomial of degree n , then on |z|=1,

[P'(z)| + |Q'(z)| s n Max |P(2)] ,
z|=1

where Q(z) = 2* P(1/3) .
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This is a special case of a result due to Govil and Rahman [5,

Lemma 10] (see also [3]).

LEMMA 2 [1,2). If P(z) is a polynomial of degree n , then for
all R21 and 0 <6 <21

|p(re®®)] + |@(re*®)| < (A + 1) Max |P(2)] ,
zl=1

where Q(z) = 2" P(1/z) .
Proofs of the theorems.

Proof of Theorem 1. Since all the zeros of P(z) 1lie in |zl2 K ,
K

\

1, we write
16

n .
T (z-Rje J)  where RJ. 2K, g=1,2, ..., n.

P(z) =C |
Jj=1

Therefore, for (0 < 6 < 2r and r < 1, we have clearly
16.

7:ej 10 J
- Re (e’ - R.e Y)
J )/ dJd

P(reie)/P(eie) =TT i

(re

n
|

a

[
J::

£(0-6.) (6-6 ./ [
{(re J —Rj)/(e J _ R, |

1
2

(2 2 2
= |} {(r’ +Rj-2ercos(e-6j))/(1+ j_Zchos (e-ej))}

[\%

(r + Rj)/(l + Rj)

(r+ K)/(1+K) = (r+K"01+x)".

v

This implies

. n .
|pre*®)| 2 E2E) |pee*®)| for 1,050 <2m.
Hence
r + K n
Max  |P(z)| 2 (35 max |P(z)]
|z|=r<z |2)=

and the proof of Theorem 1 is complete.
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Proof of Theorem 2. Since the polynomial P(z) has all its zeros
in |z| 2 k where k < 1 , we write as before

n 10,
P(z) = ¢ Tl (z-Rje 7) where Ry 2k, j=1,2, «ouy me

J=1
2

Then clearly for r < k° and 0 < 6 < 2n , we have

s . n . 10, . 10,
P(re*®) /p(e*®) l= T |(re*® - re 7)/(*® — Re 9)
j=1 J J
n n n
2 || (r+R)/(1+R.) 2 (r+k)"/(1 + k)" .
j=1 J J

This gives

. n ,
]P(rete)| 2 (; : Z) |P(eLe)| for r < k% and 08 <2nr.
Hence
(r + k)" 2
Max |P(z)]| 2 ————- Max |P(z)] for 0 sr <k”,
|z |=r (1 + k)" |z]|=1

which proves inequality (7).

Proof. of Theorem 3. 1It is clearly sufficient to consider the case
K> 1. since P(z) has all its zeros in |z| 2 K > 1 , it follows that

the polynomial H(z) = P(Kz) has all its zeros in |[z| 2 1 . If now

Q(z) = 3" P(1/2) , then the polynomial

G(z) = 3" H(1/3) =2" P(K/2) = K'Q(z/K)

has all its zeros in |z] < I . Moreover |H(z)| = |G(z)| for |z|=1.
Hence G(z)/H(z) is analytic on and inside the unit circle and on the
boundary |G(z)/H(z)| = 1 . By the maximum modulus principle it follows
that |G(z)| < |H(z)| for |z} < 1. Replacing z by I1/z and nothing

that 2" G(1/3) = H(z) , we conclude that |H(z)| < |G(z)| for |z| 2 1.
Hence in particular |H(Kz)| < |G(Kz)| for |z] 2 1. Equivalently

A

(13) |P(&%2)| < K*|Q(2)| for |z| 2 1.
Since all the zeros of Q(z) 1lie in |z]| < %—< 1 , therefore, if

a is a complex number such that |a|> 1 , then Rouché's theorem, the
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polynomial P(Kzz) - ok'Q(z) has all its zeros in |z} < 1. By the

Gauss-Lucas theorem, the polynomial KZP'(KZz) - aKnQ'(z) does not

vanish in lzl 2 1. This implies that
E\prPz)| < KMQ'(z)| for |z 21,
which gives with the help of Lemma 1

K2|pr(k22)| + KPP (2)| < nk” IMTX |P(z)| for |a| =1.

z|=1
This, by hypothesis, implies that
(14) K max |P'(K%z)| + K max |P'(z)| s nK" Max |P(2)] .
z|=1 z|=1 z|=

Now P’(z) is a polynomial of degree (n-1) and K > 1 , therefore,
by (1), it follows that

max |P'(K%2)| = max , |P'(2)| < B max [Pr(2)] .
|z]=1 |2 |=k? |z|=1

Using this in (14) we obtain
(1+ Kn)KZ Max |P'(K22)| SnKZn Max |P(z)] .

z|=1 z|=1

Applying (1) again to the polynomial P'(Kzz) , we obtain for all r 2 1
and 0 < 6 < 27

. n_n-1
(15) K|pr (KPre®®)| < 1 Max |P(z)] .
1+K  |z|=1
Now for each 8, 0 s 6 < 2r and R > 1 , we have

P(Kzﬁeie) - P(Kzeie) = IR ngieP'(Kzreie) dr .
1

This gives with the help of (15)

, . R .
P%Re*®) - P2 | < 1 KP|P' (KPret®)| av
1
n
< s { A1 g } Max |P(z)|
1+K V1 z|=1
n
(16) = KE_ng_:_lL Max |P(z)|
1+ |z|=1
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Since by (13)
P2t | < K*aet®)| = Pt

it follows from (16) that for each 6, 0 <8 < 2r and R > 1

IA

n
Kf—lﬁf—:—ll-+ ' | mMax |P(2)]
1+ K |2]=2

i Y

= ——————  Max |P(2)] .

1+ K |2]=1

|P(k%Re®) |

This gives

Max , |P(z)] = in—i—-]{l— Max |P(z)] ,
|z|=R2k P lz|=1

which is the desired result.

Proof of Theorem 4. Let m = Min |P(z)| = Min |Q(z)| where
z|=1 zi=1
Q(z) = 2" P(1/%) , then m < |Q(z)| for |z|=1 . since P(z) has all
its zeros in |z| 2 K 2 1 , therefore, all the zeros of @Q(z) 1lie in
lz] £ I . Hence by Rouché's theorem, it follows that for every complex
number o with Ial < 1 , the polynomial F(z) = @(z) - wn of degree
n has all its zeros in |z| £ I (note that, this is true even if

m= 0 ) . So that the polynomial

Glz) = 2" F(1/2) = 2" Q(1/3) - amz" = P(3) - a ma"

has all its zeros in |z| 21 and |G(z)| = |F(z)| for |z| = 1. thus
the function F(z)/G(z) 1is analytic in |z| < 1 and IF(z)/G(z)|= 1

for |z|=1 . It now follows as in the proof of Theorem 3 that

|G(z)| s |F(z)| for |z| 21.

Equivalently
- n
|P(z) - amz"| < |Q(z) - am| for |z| 21.
Taking in particular z = Eeze where R 21 and 0 £ 6 < 21 , we get
. _ ind R
(17 IP(rele) - amBe™| < |o(re*®) - om|
for every a with Ial < 1 . Choosing argument of « in (17) such that
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|p(re%®) = & mA%™™®| < |p(ReO)| + |a|mA" ,

we obtain

12(re*%)| + |a|md® < |@(rRE®)| + |alm
or
(18) 1p(e*®)| + lalm(A - 1) < |a(re®)|

for all R21, 0 <6 < 2n and for every o with |a] < I . Letting
]al + 1 in (18) we get

1P(re*®) | + m(A® - 1) < |o(re®®) |

for all R 21 and 0 <6 < 27 . This gives with the help of Lemma 2
that

(19) 2|PRe™®) | + m(A* = 1) < (R* + 1) max |P(2)]
z|=1

for all R =21 and 0 < 86 < 27 . From (19) we finally obtain

Max |P(z)| < diiifld Max |P(z)] - dii;;ld Min |P(3)] ,

|z|=pR>1 |z]|=1 |z|=1
which is (11) and Theorem 4 is completely proved.

Proof of Theorem 5. sSince all the zeros of P(z) 1lie in |z| 2 K,

K £ 1, therefore, for 0 < r < K , the polynomial P(rz) has all its

zeros in |[z| = % > 1 . BApplying Theorem 4 to the polynomial P(rz) , we
obtain
Max |P(rz)| < (Engil) Max |P(rz)| - (Hné-l) Min |P(rz)]| .
|z|=R=1 |z]|=1 |z]|=1
Equivalently
Max |P(Rrz)| < (Rn-+1) Max |P(z)] - (Rné-l) Min |P(z)]| .
|z|=1 |z|=r |z|=r

Taking R = 1/r , then for 0 < r £ K , we obtain

n n
AEZ ) max |Pe2)| - A=E) min |P(z)] 2 wMax |P(2)] ,
n n
2r z|=r 2r z|=r z|=1

which is equivalent to (12) and Theorem 5 is proved.
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