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Abstract. The root discriminant of a number field of degree 7 is the nth root of the absolute value
of'its discriminant. Let Ry, be the minimal root discriminant for totally complex number fields of
degree 2m, and put oy = liminf,, Ry,. One knows that oy > 4ne’ ~ 22.3, and, assuming the
Generalized Riemann Hypothesis, o > 8ne’ ~ 44.7. It is of great interest to know if the latter
bound is sharp. In 1978, Martinet constructed an infinite unramified tower of totally complex
number fields with small constant root discriminant, demonstrating that oy < 92.4. For over
twenty years, this estimate has not been improved. We introduce two new ideas for bounding
asymptotically minimal root discriminants, namely, (1) we allow tame ramification in the tower,
and (2) we allow the fields at the bottom of the tower to have large Galois closure. These new
ideas allow us to obtain the better estimate oy < 83.9.
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1. Introduction

Suppose K is a number field of degree n = r| + 2r, and signature (1, 1), i.e. K has r,
real, and r, pairs of complex conjugate, embeddings. The root discriminant rdg of K
is defined by rdx = |dx|"/" where dk is the discriminant of K. This invariant may be
thought of as measuring the density of the integer lattice Ok embedded in
K® R =~ R" x C” in the standard way (under the trace norm).

In 1891, Minkowski [Mi] used his ‘geometry of numbers’ to give an explicit lower
bound for the discriminant of K which is exponential in the degree of K. Minkowski’s
estimate was substantially improved over the years using refinements of his
technique. In 1974, Stark [St] introduced an analytic method (based on a study
of the zeros of the Dedekind zeta function) for proving discriminant lower bounds.
Stark’s approach was refined by Odlyzko [O1], [O2] to improve substantially the
estimates obtained from geometry of numbers. Meanwhile, Serre [Sel] introduced
a variation based on the Guinand—Weil explicit formulas which was further inves-
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tigated by Odlyzko [O3] and Poitou [P], leading to the best known lower bounds
today (see the survey paper of Odlyzko [O4] for more details). Naturally, the best
bounds are obtained under the assumption of the Generalized Riemann Hypothesis
(GRH).

The asymptotic version of these bounds is as follows: If the degree n of K tends to
infinity, then

}’dK > A2r2/nBr1/neo(l); (1)

here, unconditionally, we can take A = 4me’ ~ 22.3, B = 4ne'™" ~ 60.8, and on
GRH, 4 = 8ne’ ~ 44.7, B = 8ne’+™/? ~ 215.3, where y = 0.577--- is Euler’s con-
stant (see [O4]).

Lower bounds for discriminants have been found to be very useful in a wide variety
of applications, the main one being estimation of class numbers (e.g. [Mas] and [Y?2];
many more references can be found in [O4, References D]). For some other
applications, see Fontaine [F], Serre [Se2], and Tate [T]. Moreover, the exact
(non-asymptotic) versions of the bounds were observed to be quite sharp in low
degrees, where the fields of least discriminant and given signature have been tab-
ulated (see [Ma3]).

Thus, given the theoretical as well as practical importance of estimates of type (1),
a very interesting question is: what are the best possible values for 4 and B? A more
precise version of the problem, due to Martinet [Mal], is as follows. Let
I =0QnJ[0,1]. For a number field of signature (r, r,) and degree n = r; + 2r,, let
©(K) =ry/n € I be the proportion of its embeddings which are real. Let us call
7(K) the infinity type of K. Number fields of degree n > 1 and infinity type ¢ € 1
exist if and only if nf and n(l1 — ¢)/2 are non-negative integers (see, for example,
[ABC])). For such n and ¢, let R,,; be the minimal root discriminant for number fields
of degree n and infinity type ¢. Define a function « on / by

o(t) = oy = liminf R, ,,
n— o0

where n is restricted to the whole numbers satisfying nt € Z > o, n(1 — )/2 € Z > .

The problem, in greatest generality, is to determine the function «. The lower
bound (1), which reads a(f) > A'~'B’, is essentially all that is known about a. Some
natural (and probably very difficult) questions are: Does o extend to a continuous
function on the real unit interval? Indeed, dare one imagine that o(f) = oc(l)_’ocf1
for all ¢! Does the bound (1) hold with 4 = oy, B = o) at least? We expect that
o is monotonically increasing, but even this seems (at least to us) to be a non-trivial
question.

A more modest aim is to estimate oy and «;. A lower bound is of course obtained
from (1). On GRH, we have, for example, that oy > 44.7 and ;7 > 215.3. Thus, what
we would like to have is an upper bound for these invariants. Proving an upper
bound «; < b is tantamount to the demonstration of existence of number fields
of arbitrarily large degree and infinity type ¢ with root discriminant bounded by
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b. The standard device for doing so is the Hilbert class field tower: Thanks to the
work of Golod and Shafarevich [GS], certain number fields can be shown to admit
infinite unramified extensions — note that the root discriminant is unchanged in
an unramified extension.

In 1978, Martinet [Mal] constructed infinite Hilbert class field towers with lowest
known root discriminant, showing, in particular, that op < 92.4and o; < 1058.6. For
over twenty years, Martinet’s examples have not been beaten, despite the compi-
lation of tables of number fields and the advent of number theory packages such
as Pari and Kant. Our main aim here is to expand the scope of Martinet’s method
for finding upper bounds for o,. We illustrate this by improving the upper estimate
for o: our main result is that oy < 83.9.

We now review Martinet’s method, then describe our ideas which allow the
improvement of the upper bound for oy. We are hopeful that it will be possible
to lower the estimate for o; as well, but we limit ourselves to the totally complex
case here.

In the Golod-Shafarevich theory, one fixes a prime ¢ and studies the maximal
¢-extension of a number field K unramified everywhere. Their criterion says that
if the £-rank of the ideal class group of K is bounded below by an explicit function
of the £-rank of the unit group of K, then this maximal unramified £-extension is
infinite. (For background on the arithmetic of £-extensions, see Koch [K] and
Maire [M]). Number fields with large ¢-class rank can be constructed using
Gauss’ genus theory, suitably generalized; for this, it suffices to have a Galois
extension K/k of degree ¢ in which many places are ramified — note that this
forces up the discriminant of K. In practice, one usually applies all of this with
£=2.

Roughly speaking, then, the problem is to construct a quadratic extension K /k in
which many places ramify, but whose root discriminant is not too large. Martinet’s
idea is to take an extension k/(QQ of suitably large degree and a quadratic extension
F/Q such that the ramifying places in F/Q are highly decomposed in k/Q. By com-
posing the two fields, one obtains a quadratic extension K = Fk/k with many
ramifying places. Using this scheme, the calculation of ramification in K /k descends
to F/QQ and is therefore much easier to control. Note that, in practice, one had better
take k to be Galois (even Abelian) over (Q, since we want at least one small prime to
split completely in k, and that K is then also Galois (abelian) over Q.

We now describe our ideas. Our first observation is that requiring the set of
ramifying primes in K/k to be Galois-stable (over QQ) is too restrictive. We found
asymmetrical constructions to yield better results. In fact, in our best example
(Example C1 of Section 3.2), even the infinite places ramifying in K /k do not form
a complete set of conjugates over Q. Our second observation is that although
unramified towers are nice from the point of view that the root discriminant is con-
stant all the way up the tower, all that is needed is that the root discriminants remain
bounded, a property possessed by tamely ramified towers. The extra contribution to
the root discriminant from allowing ramification is offset handsomely by its effect
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on the number of generators and relations of the Galois group in question. Namely,
the number of generators is either augmented or unchanged, and (the upper bound
on) the number of relations decreases by 1; this is often just enough for the relevant
Galois group to pass the Golod-Shafarevich test for infinitude.

Thus far, we have found that both of these ideas are required for improving
Martinet’s records. But already the use of non-Galois extensions is enough to pro-
duce dozens of totally complex infinite unramified towers with root discriminant
below 100, whereas we know of only six examples with this property constructed
strictly with Martinet’s technique.

We do not discuss the well-known analogies between the estimation of the least
genus of a curve over a finite field with a given number points and the estimation
of root discriminants of number fields, but refer the reader to the papers of Serre
[Se3], Ihara [I] and Tsfasman—Vladut [TV] (in the latter two, the two cases are treated
side by side). We refer also to the recent work of Angles and Maire [AM] where tame
towers are used to obtain better estimates for curves over I3 and Fs.

Let us call a sequence IC = {K;} of pairwise distinct number fields, none of which is
@, a family. By taking into account the splitting behavior of primes in an infinite
Hilbert class field tower L/K, Thara [I] gives a refinement of (1) applied to a family
{K;} where K = Ky C K1 C K, C --- C L is any nested family contained in L/K.
Ihara raised the possibility that the addition of this extra term would, in special
cases, render the inequality (1) into an equality, and for this reason introduced a
certain ‘deficiency’ dx which measures how far the inequality is from being an
equality for a family X arising from an infinite class field tower L/K. Tsfasman
and Vladut [TV] have recently extended Thara’s work considerably by treating com-
pletely general families. The lowest deficiency given in [TV] results from Martinet’s
example (Section 3.1, Example 5) with 6 < 0.160---. The deficiencies for the nine
towers we construct in Section 3.2 have smaller upper bounds, the best being
0 < 0.141 - - - (see the last part of Section 3.2).

It was first pointed out by Litsyn and Tsfasman [LT] that any family of number
fields with bounded root discriminant gives rise to lattices (the standard integer
lattice under the trace norm) of arbitrarily large dimension and bounded packing
density; for more details on this topic, see the book by Conway and Sloane [CS,
Chapter 8, Section 7]. On GRH, the best asymptotic density obtained from such
a construction satisfies (using the notation from [CS]) (1/m;)logy(A;) <
—1.695 - .- for i — oco. Once again, the best known packing density obtained in this
way has been that obtained from Martinet’s example (Section 3.1, Example 5), with
asymptotic packing density (1/n;)log,(A;) = —2.217--- [LT]. Our best example
gives a slightly better asymptotic packing density (1/n;)log,(A;) = —2.148 - --

We would like to remark that, once found, verifying the validity of the examples we
describe in this paper can be done by hand. However, the computer package Pari [B],
as well as the tables of number fields available online from the Pari ftp site
ftp://megrez.math.u-bordeaux.fr/pub/numberficlds, were invaluable to us as we
searched for strategies to construct these examples.
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2. Golod—Shafarevich for Tame Towers

In this section, we describe our construction of infinite towers with bounded root
discriminant. We make use of four principal results: the theorem of Golod-
Shafarevich (slightly improved by Vinberg and Gaschutz) on presentations of finite
groups of prime power order, the theorem of Shafarevich giving an estimate for
the number of relations of the Galois group of the maximal unramified-outside-7T"
¢-extension of a number field, a standard genus-theory estimate for the ¢-rank
of the class group of an extension of degree ¢, and finally a calculation of root dis-
criminants in tamely-ramified ¢-extensions. For the convenience of the reader,
we first gather together these results; our main construction is a simple application
of them.

Notation. In this section, we fix an arbitrary prime £. In the next section, we will work
exclusively with ¢ =2. For a finitely generated pro-¢ group G, we let
d(G) = dimy, HY(G, y), r(G) = dimy, H*(G, [F;) be its generator and relation rank,
respectively. Let K be a number field and T a finite set of primes of K. In an
¢-extension of K, primes P such that £ does not divide NP(INP — 1), cannot ramify.
Without loss of generality, therefore, we will assume that for evey P € T, £ divides
either NP or NP — 1. We say that 7 is ‘away from £’ if no primes in 7 is a divisor
of £. For such a T, let my =[[p.; P be the corresponding modulus. We let
CI(K), Clr(K) be the ideal class group and ray class group modulo mzy of K,
respectively, and write pg, px r for their respective £-ranks. We write Ex for the
unit group of K. Let K7 be the maximal ¢-extension of K unramified outside 7,
and put Gg v = Gal(Kr/K) for its Galois group. Note that, by the Burnside Basis
Theorem, and class field theory, d(Gk r) = pgx.r. When T is empty, Kr/K is the
Hilbert class field tower of K. We say that an ideal of K is odd if its absolute norm
is odd. We let

O — { 1 if Tisempty and K contains a primitive £th root of unity
kT 0 otherwise.

THEOREM 1 (Golod-Shafarevich). If G is a non-trivial finite €-group, then
HG) > d(G)* /4.
Proof. See, for example, Roquette [R]. O

THEOREM 2 (Shafarevich). Suppose K is a number field with signature (v, r3). Fora
finite set T of prime ideals of K away from £, we have

0<r(Gkr)—d(Gkr)<r+r—1+0kr.
Proof. This is immediate by combining Theorems 1 and 5 in [Sh], or Satz 11.5
and Satz 11.8 in [K]. See also [M]. Note that the bound on the right can be inter-

preted as the ¢-rank of the subgroup of Ex consisting of units congruent to 1
modulo mr. O
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THEOREM 3 (Golod-Shafarevich Criterion). Suppose K is a number field with
signature (r,ry), and T is a finite set of prime ideals of K away from £. If

Pk,T =>242Jr1+r+ QK,T,

then Gk r is infinite.
Proof. Recall that pg 7 = d(Gg r). Suppose that Gk 7 is finite. By Theorem 1 and
Theorem 2, we have

d(Gk,r)’ /4 —d(Gkr) <ri+r2—1+0k7

which implies that

d(Gg1) <24+ 2ri+r+0kr

and this contradicts the hypothesis. One can actually show that Gk r is not £-adic
analytic, i.e. it is not a Lie group over QQ, (see [H]). O

Remark. For £ =2, if we take K to be totally complex of degree 8, the Golod-
Shafarevich bound is [2+42+/5] =7 for T empty and only [2 +2+/4] =6 for a
non-empty set 7' consisting of odd primes.

THEOREM 4. (Genus Theory). Suppose K /k is a Galois extension of degree {.
Suppose t places of k ramify in K. Then py >t — 1 — dimy, Ey/Ef.
Proof. See any one of the following: [Mal], [J], [CR], or [S]. O

The next result gives a bound for the root discriminant of number fields contained
in a tamely ramified tower.

LEMMA 5. Suppose T is a finite set of prime ideals of a number field K away from (.
Suppose F C Kr is a finite (-extension of K unramified outside T. Put
m=[F:K]and p=[]per NF/@(’P)I/[K:Q]. Then, rdr < pu'=V" . rdyg, with equality
if and only if every P € T is totally ramified in F. We have the uniform estimate
rdp < u-rdg.

Proof. The extension F/K is tamely ramified by assumption. Thus, for each prime
ideal P of K, the P-valuation of the norm in F/K of the different Dr/x ism(1 — 1/ep),
where ep is the ramification index of P in F/K (e.g. [W, Thm. 3-7-23]). Note that, for
each P, ep is: a divisor of m, equal to m if and only if P is totally ramified in F/K, and
1 if P ¢ T. Now the discriminant formula |dr| = |dg Ng,0(Dr/k)| (e.g. [W, Prop.
4-8-12]), completes the proof. ]

Given the above calculation, it seems natural to define the following generalization
of the root discriminant.
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DEFINITION 6. For a number field K and a finite set 7" of prime ideals of K away
from /, define the T-root discriminant of K to be

= s T NP0

PeT

Thus, if 7 is away from ¢ and F C Ky, then rdr < rdg 7.
We close this section with a simple consequence of the above Lemma.

PROPOSITION 7. (i) Let K be a number field. Then for all primes £ there exists an
infinite (-extension L/K unramified at infinite places of K such that the root
discriminant of all number fields contained in L remains bounded.

(1) For each t € Q N[0, 1], a(z) < oo.

Proof. By the Cebotarev Density Theorem, there exist infinitely many prime ideals
of K with absolute norm congruent to 1 modulo £. If T consists of such prime ideals
only, then there is a constant ¢ depending on K but not on 7 such that pg 7 > |T| — ¢
(for example, see [Sh] or, consider composing K with absolutely cyclic degree ¢
extensions ramified at many finite places, and use class field theory). Thus, for
all such T of large enough cardinality, px r surpasses the Golod-Shafarevich bound,
giving an infinite 7-tamely ramified ¢-tower Kr/K. By Lemma 5, the root dis-
criminant of subfields of Ky is bounded by rdk r. Note that the infinite places
of K are not ramified in K7, hence all subfields of K7 containing K have the same
infinity type as K. Given a rational ¢ in the unit interval and a number field K
of infinity type t. We apply part (i) to this K with an appropriate T to obtain
a(f) < rdg. 1 < 00. O

Remark. The standard way to show that a(f) < oo is to take K of infinity type ¢ and
compose it with an absolutely cyclic degree ¢ extension in which many primes of Q
(excluding infinity) ramify. The resulting number field has the same infinity type
as K and an infinite Hilbert class field tower, thanks to genus theory and the
Golod-Shafarevich criterion.

3. Examples of Infinite Towers with Small Root Discriminant

Throughout this section, we let £ = 2. We construct some infinite unramified and
tamely ramified 2-towers with root discriminant below 100.

3.1. UNRAMIFIED TOWERS
We first give some examples of Martinet type.
EXAMPLE 1. Let kj be the first step in the cyclotomic Zs-extension of (), a totally

real field of degree 5 and discriminant 5%. A defining polynomial for it is
x° 4 5x* — 15x% — Sx + 7. Consider k = ko(~/2), in which 7 splits completely, and
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take K = k(+~/—7). In K/k, ten finite and ten infinite places ramify. By Theorem 4,
px =9, which implies by Theorem 3 that K has infinite unramified 2-tower. By
Lemma 5, the root discriminant of K is 23/258/371/2 = 98.275. ...

EXAMPLE 2. This time, we start with the degree 9 totally real field
k = Q(cos(2m/19)) in which 37 splits completely, and consider the CM extension
K = k(v/—19-37). In K/k, there are ten finite and nine infinite ramifying places,
hence pg = 9. By the Golod—Shafarevich criterion, K admits an infinite unramified
2-extension; note that every field in the tower is unramified outside {19, 37, co}.
By Lemma 5, the root discriminant of K is 19'7/18371/2 = 98.132...,

EXAMPLES 3 and 4. ([Ma2], unpublished). The biquadratic fields
Q(—-263,+/-35), QW —-607, v —15)

admit infinite unramified extensions. A genus theory estimate more refined than
Theorem 4 is applied in k1(v/—35)/k, and ky(~/—15)/ks where ki, k are the Hilbert
class fields of Q(+/—263), Q(+/—607), respectively. Since the details are interesting
but lengthy, we give them in an appendix. The root discriminants are respectively,
95.942 ..., 95420 -.

EXAMPLE 5 ([Mal]). We let k = Q(cos(2r/11), v/2), a totally real field of degree 10
in which 23 splits completely. In the CM extension K = k(~/—23)/k, there are ten
finite and ten infinite ramifying primes. Just as in Example 1, genus theory and
Golod-Shafarevich together show that K has an infinite unramified 2-tower. The
root discriminant is 114/323/2231/2 = 92 368 . - . all the way up the tower. No number
field of smaller root discriminant has been shown to admit an infinite unramified
extension.

3.2. TAMELY RAMIFIED TOWERS

We now use tamely ramified towers to improve Martinet’s estimate oy < 92.368 - - -
to oy < 83.885.-.. We first describe the general scheme. Taking the Remark
following Theorem 3 to heart, we begin with a degree 4 field k and consider a totally
complex quadratic extension K of it. In the first type of example (labeled Ae), four
infinite and seven finite places of k are ramified in K, so pg > 6. We then take
T to consist of a single odd prime of K and find the 7T-ramified 2-tower of K to
be infinite. In the second type (labeled Be), four infinite and six finite places of
k are ramified in K; by Theorem 4, px > 5. We then take a set T of primes of
K such that pg 7 > 6, ensuring that K has an infinite 7-ramified 2-tower. Finally,
for the third type (labeled Ce), the quartic field we take at the outset has signature
(2, 1); both real infinite places as well as seven finite places of k& ramify in K, giving
px = 5. We then take a set T of primes of K such that pg 7 > 6, and again find
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that K has an infinite 7-ramified 2-tower. In all the examples presented here, 2 is
unramified in K/Q.

To verify our examples, one needs to check that the different of K /k is indeed what
we claim it is and that this ideal has the stated number of prime factors. A computer
program such as Pari is ideal for this task. Additionally, in each case, we give a
defining polynomial for the field K of degree 8; thus, using Pari, one may calculate,
in a matter of seconds, the root discriminant and the structure of the appropriate
ray class group.

At the same time, we would like to present the examples in such a way that a reader
armed with an ordinary hand-held calculator can easily check the validity of the
construction. Since calculations in number fields of degree greater than two quickly
become laborious — we are essentially doing quadratic Kummer theory in quartic
number fields — we provide (at the cost of lengthening the presentation) much
supplementary data and a method for verifying each step in the reasoning. We also
provide some data (such as Galois group, class number, generators for the unit
group) whose validity need not be verified but which would aid the reader who wishes
to check our claims independently. For each example, the two calculations which
need to be verified are the 2-rank of the ray class group and the root discriminant
of K.

The path we provide for verification of these examples is as follows. We wish to do
arithmetic in a number field & of degree 4. We give a monic integral defining poly-
nomial / for k and approximate roots £V, j = 1, 2, 3, 4, accurate to 25 decimal places
(which more than suffices!). The reader may begin by plugging in the given values to
see that they are indeed good approximations to the roots of /. Since we are working
with algebraic integers, if an integral algebraic expression in ¢ (an abstract root of f)
is 0 (to sufficient accuracy) when one plugs in each of the four roots, then one has a
proof that the expression is exactly 0. For example, suppose we say the discriminant
of f = x* — x* —4x? 4+ 2x + 1 is 3981. If, by plugging in the four roots provided into
I <_/(§(i) — &), one finds the value 3981.000 - - -, then the discriminant must indeed
be 3981 (by continuity, since one knows that the discriminant is an integer). As
another example, if we claim that, for a root ¢ of f, the minimal polynomial of
WE) =8 — —56411s x* —3x3 — 11x% — 21x + 37, then this can be verified by
checking that the latter polynomial vanishes, to the given accuracy, on the four
numbers 4(¢Y), j = 1,2, 3,4, because we know that the minimal polynomial of
h(¢) has integer coefficients. This is one way to show that (k(¢£)) is a prime ideal
of absolute norm 37. Another way (which involves no approximations, and is
pleasant for a reader who enjoys taking determinants) would be to calculate the
absolute value of the resultant of 4 and f. Of course, a reader with access to Pari
can verify our claims by using its resources for working in algebraic number
fields.

We discuss in detail the best examples of each type that we have been able to find,
and present six further examples in Table 1 at the end of this section. Each of these
nine examples gives a root discriminant lower than that of Martinet’s tower
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(Example 5, Section 3.1). The notation of the table follows exactly the notation in the
detailed examples.

EXAMPLE Al. Let k = Q(¢) where ¢ is a root of f = x* — x> —4x> 4+ 2x + 1. The
discriminant of f is 3981 = 3. 1327; thus, this is also the discriminant of k, and
Ok = 7ZJ[&]. The roots of f are

e = —1.750800422060915869580040466 - - -
&2 = —0.3184588965747207408457593350 - - -
&® = 0.7852614484935653584928516638 - - -
EW = 2.283997870142071251932948137 - - -

Thus, k& is a totally real field. Since d is a quadratic discriminant, it follows (see [Ko])
that the Galois group of f is Sy (the Galois closure of k is an unramified A4-extension
of (Q(+/3981)) . The narrow class number of k is 1. The unit group of k is generated by
{&e-1,8+4¢&-1,-1}.

Generators for some Og-ideals of small norm are listed in the table below; here,
T = a8+ ar +a &+ ap generates a prime ideal 7,0 of norm r. We also give
hy,, the minimal polynomial of 7, so that the reader can verify, by the method dis-
cussed above, that each of the algebraic integers listed has the claimed norm.
(Instead of writing out the polynomial in full, we give a list of its coefficients in
order of descending powers of x. For example the coefficient list 1,2, 3,4, 5 rep-
resents the polynomial x* + 2x° +3x? +4x + 5).

s as, a, ay, ay Iz,

3 0,1,1,0 1,-10,20, -9, -3
s 1,—-1,-3,1 1,1,-5,-3,5

g 0,1,0,-2 1,-1,-8,0,9

T3 1,—1,—4,0 1,6,8, —7,—13

3 2,-2,-7,2 1,3, —14, —48, —23
37 -3,2,9,—-6 1,18,67, —114, 37
41 1,0,-5,1 1,—-6,1, 36, —41

Note that 30k has two prime factors of residue degree 1 and 2, as can be seen, for
instance, from the factorization of / over Fs: f(x) = (x2 + 1)(x + 1)> mod 3. To see
that w3 and w9 generate different prime ideals, note, for example, that
(=8 4+ +46-2)=(E+1) and no(&® —¢—1)=¢E +1. Alternatively, one
can check that the minimal polynomial of n3/my is not integral, hence 73 and mg
are not associates.

The element 1 = —29E — 2382 4256 —65€ O is totally negative. Its minimal
polynomial is g(y) = y* + 645y® 4902012 4 4375521y + 61233705. The O-ideal
it generates factors into seven prime ideals of O; in fact, one can check that
1 = M3MsToM13 M3 737741 We let K = k( /1), a totally complex field of degree 8. A
defining polynomial for K is g(y*). We note that 5 is congruent to a square modulo
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40k; explicitly, n = > — 4y with f = & and y = 9&> + 10&% — 9¢ + 15. Thus, K /k is
ramified at the infinite places and at the seven primes dividing # and nowhere else.
By Lemma 5, the root discriminant of K is rdx =3981/43.5.9.13.
23.37.41)"/8 = 74708 - - -. By Theorem 4, the 2-rank of the ideal class group of
K is at least 6. (This is confirmed by a Pari calculation, which finds that
CI(K) = (22,2, 2,2,2,2).) Since n30y, ramifies in K, Ok has an ideal B; of absolute
norm 3; we let 7 = {P3}. (Incidentally, Cly(K) = CI(K), according to a Pari
calculation). By Theorem 3, K admits an infinite 7-tamely ramified 2-tower. By
Lemma 5, the root discriminant of the fields in this tower are bounded by
rdK,T = VdK?)l/g = 85.706 - - -.

EXAMPLE BI. Let k = Q(¢) where ¢ is a root of f = x* — 2x* — 4x? + 3x + 3. The
discriminant of f (hence also that of k) is 7053 = 3 .2351; we have O = Z[¢&].
The roots of f are

&M = —1.363608637402024433529058250 - - -
&P = —0.6694260402240778135494996676 - - -
&9 =1.133410350615933988464617182 - - -
EW = 2.899624327010168258613940735 - - - .

Again, k is totally real. The Galois group of f is Sy (the Galois closure of k is an
unramified 44-extension of (Q(+/7053)). The narrow class number of k is 1. The unit
group of k is generated by {&+1,& — 1, & —28-2, 1.

Generators for some Oy-ideals of small norm are listed in Table I, with the same
notation as in Example A41.

Note that 3Ok has two prime factors of residue degree 1 and 2, as can be seen, for
instance, from the factorization f(x) = x*(x* + x — 1) mod 3. We can verify that 73
and 79 generate different prime ideals of norm 3 and 9, respectively, by noting that
(8 =28 =36+ 1)=¢ and mo(l+ 1)=& +¢—1. Similarly, f(x)=(x+7)
(x+2)(x2+2x+3)mod 13 and w33 -7 —6E+4)=¢+7, ¢+ 1) =
&+ 2 collectively imply that m3, 7}, generate different prime ideals of norm 13.
Alternatively, one can check that n§ /my and mi3/m), are not algebraic integers.

Table T

o a3, az, ai, do g,

3 -1,0,1,0 1,21, -11,-15, -3
7 -1,2,3,1 1,—11,38,—-44,7
Ty -1,3,2, -4 1,-1,-11,21,-9
713 1,-1,-2,1 1,-11,—-4,22,13
3 1,-3,-1,5 1,-5,1,15,-13
17 1,-2,-2,2 1,-3,-7,11,17
731 1,-2,-4,2 1,1,-15,—-11,31
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The element n = 258 —8E2 4308 — 17 € O s totally negative. Its minimal
polynomial is g(y) = y* 4+ 679y° + 45406y 4+ 964704y 4 5610969. The Oy-ideal it
generates factors into six prime ideals of O; in fact, one can check that
N = mymem3my 3 mi7m3r. We let K = k(/7), a totally complex field of degree 8. A defin-
ing polynomial for K is g(»?). Since n=p>—4y with f=&+¢+1 and
y =138 4+ 10&% — 16¢ — 3, K /k is ramified at the infinite places and at the six primes
dividing # but nowhere else. By Lemma 5, the root discriminant of K is
rdx = 705349 .7.132.17-31)"/® = 63.93.... By Theorem 4, the 2-rank of the
ideal class group of K is at least 5. In K, the ideal n3O0g has absolute norm 9.
We let T be the set of primes of K dividing n30k. (It is not needed, but one
can check that |T|=2). We note that m3= (& +& +&+1)> —4(128+
1262 — 14¢ — 11), so that k(/m3)/k is ramified at (73) and at no other finite place.
Since (n3) is unramified in K /k, it follows that K(,/73) is a ramified quadratic exten-
sion of K ramified at T and nowhere else. Thus, by class field theory, the 2-rank
of the ray class group of K modulo 730k, is at least 6. (This is confirmed by a Pari
calculation, which finds that CI(K)=(28,2,2,2,2) and Clp(K)=(28,2,2,2,
2,2).) By Theorem 3, K admits an infinite 7-tamely ramified 2-tower. By Lemma
5, the root discriminants of the fields in this tower are bounded by rdg r =
rdg9'/% =84.140- . ..

EXAMPLE Cl1. Let k = Q(¢) where ¢ is a root of f = x* — x* + x>+ x — 1. The
discriminant of f (hence also that of k) is —331 and Oy = Z[£]. Since the discriminant
is negative, the signature of k must be (2, 1). Indeed, the roots of f are

&V = —0.8483748957319532171056204677 - - -
E® = 0.6609925318901199786139741268 - - -

E® =0.5936911819209166192458231704 +
+1.196158336070944997927456045i - - -

E® =0.5936911819209166192458231704 —
—1.196158336070944997927456045i - - - .

The Galois group of f is Sy; the Galois closure of k is an unramified 44-extension of
Q(«/—331) — it gives rise to a 2-dimensional octahedral Galois representation of
small prime conductor. The narrow class number of k is 1. The unit group of &
is generated by {¢, E_24¢& -1y

Generators for some Oy-ideals of small norm are listed in Table I1. The notation is
as in the previous examples.

To confirm that these numbers all give rise to different prime ideals, it is enough to
observe the following facts: f(x)= (x —2)(x —3)(x* +4x+2)mod 13,¢ -3 =
ma(—E 1), E-2=a@ ¢+, and  f(0) = (x— 5+ 6 —2x + 10)
mod 23, & 4+ 6 = mp3(& — E2 + 3¢ +2), £ — 5= mhy(—3E + 4 — 5+ 1),

The element n = —127&% — 139¢% — 181¢ — 146 € Oy is totally negative. Its mini-
mal polynomial is g(y) = y* — 9y +24182y? + 60281988y + 895172213. The O-
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Table IT

L ay, az, ay, ao hn,

s 0,-1,0, -1 1,3,4,6,5

T3 1,0,-1,2 1,-2,0,-7,13
T3 —-1,—-1,0, -1 1,-2,-5,10,13
Ty 1,1,0,2 1,-2,-5,2,17
9 1,0,2,0 1,3,3,-5 -19
23 1,-2,2,1 1,-3,—-4,24,-23
Ty 1,1,2,1 1,0,5, —36, -23
3 2,0,3,3 1,-5,4,-34, -31

ideal it generates factors into seven prime ideals of Oy; in fact, one can check that
N = M35 M7 T19T23H3 3. We let K = k(,/7), a totally complex field of degree 8.
A defining polynomial for K is g(y?). We find n = B> —4y with f=¢>+1 and
y =328 4 35¢% 4 45¢ 4+ 37. Thus, K/k is ramified at the two real infinite places
and at the seven primes dividing n and nowhere else. By Lemma 5, the root dis-
criminant of K is rdgx = 331/4(13%-17-19-232.31)!/8 = 56.097 - - .. By Theorem
4, the 2-rank of the ideal class group of K is at least 5. In K, the ideal nsOg
has absolute norm 25. We let T be the set of primes of K dividing nsOk. (It is
not needed, but one can check that |7| = 2). Now, the ray class group of k£ mod
(ms) is trivial, but K admits a quadratic extension ramified at nsOg and
nowhere else. To wverify the latter claim, it is enough to observe that
nsms = & —3 = (& + 1) — 4, so that k(/msni3)/k is ramified at (ns5) and at (m13)
but at no other finite place. Since K/k is ramified at (m;3) and unramified at
(ms), it follows that K(,/msm3) is a ramified quadratic extension of K contained
in its ray class field modulo nsOk. By class field theory, then, the 2-rank of the
ray class group of K modulo nsOg, which equals pg 7, is at least 6. (This is confirmed
by a Pari calculation, which finds that CI(K)=(12,2,2,2,2) and Clp(K)=
(12,2,2,2,2,2)). By Theorem 3, K admits an infinite 7-tamely ramified 2-tower.
By Lemma 5, the root discriminant of the fields in this tower are bounded
by rdg.r =rdg25"% =83.885.... This gives oy < 5Y/4131/4171/8191/8231/4311/8
331'/4 = 83.885.--, as promised in the introduction.

To fulfill another promise made there, we now describe how our examples lead to
families with small Thara-Tsfasman—Vladut deficiency 6. We recall its definition
[TV]. If F is any number field, let (ri(F), r»(F)) be its signature, and let N,(F) be
the number of places of F' of absolute norm g. For a family K = {K;} of number
fields, consider the quantities

2r1(Kj) . 2r(K;)) 2N(K;)
y = lIm ) cC = hm N = .
Pe =M oetdgl 20T Mogidgl” PP M og iyl
Note that
. 21(K)) 1 —1(K))
y — l J c = 1 / .
qu l}nlOgrdl(j ’ ¢L lj IOngK/.

https://doi.org/10.1023/A:1017537415688 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017537415688

48 FARSHID HAJIR AND CHRISTIAN MAIRE

The family /C is said to be asymptotically exact if these limits exist. For a nested
family K ={Kj}, KoC Ky C Ky C---, ©(K;) is non-increasing and rdg, is
non-decreasing, so ¢p and ¢, exist. A similar argument shows that ¢(q) exists
in this case, so a nested family is always asymptotically exact ([TV], Lemma 2.3).
Define the deficiency dx of an asymptotically exact family K to be

1 1
Se=1— Zq:%— ¢R(1ogJ%+%+§) — po(log8n + 7).

Here, y = 0.577 - - - is Euler’s constant, and the sum is over all rational prime powers
q.
On GRH, we have, for any family I, x > 0 ([TV, GRH Theorem 3.1]). For a
nested family, this represents a refinement of the inequality (1), thanks to the term
involving the norms of almost completely split primes in the tower. We would like
to know how small dx can be. In [TV], it is shown that if £ = {K;} is any nested
family of fields contained in the Hilbert class field tower of Martinet’s best example
(our Example 5 in Section 3.1 above), then dx < 0.160--.. This has remained
the smallest known deficiency for some time. (Yamamura’s examples in [Y1] are
not valid; see the author’s forthcoming Correction as well as [TV, Section 6.2]).
By Lemma 5, we find for any nested family K of subfields of the infinite tower
Kr/K of our example C1 that

7 +1log(8m)

or <1
* log(rdx.1)

=0.141---.

It is conceivable that some nested family C of subfields of K7/K satisfies either
¢(g) > 0 for some small g or lim;rdy, < rdg r, conditions which would give
improved deficiencies, but these would appear to be difficult to establish. While
the first condition is a possibility also for Hilbert class field towers, the second
one is a potentially fruitful new feature of the use of tame towers for bounding
o, and for finding small deficiencies. The Question of the next section is related
to this.

Finally, we leave to the reader the verification of the asymptotic packing density
for this tower, which was given in the introduction.

We present examples Al, B1, C1 and six others, sorted according to increasing
rdg 7 in Table III. The notation is exactly as in the above examples.

4. A Question

We close by posing a natural question:

Question. Does every infinite tamely ramified ¢-extension contain a number field (of
finite degree) admitting an infinite unramified ¢-extension?
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Table IIT

name f dj. rdyg

g n T rdg, T

Cl 1,—1,1,1,-1 —331 56.097 - - -
1,-9,24182, 60281988, 895172213 —127,-139, —181, —146 {Ps, BL) 83.885- .-
Bl 1,-2,-4,3,3 3.2351 63.932---
1, 679, 45406, 964704, 5610969 —-25,-8,30, —17 {P3, BL) 84.140 - - -
C2 1,-1,-1,3,1 —7-293 64.682 - - -
1,392, 55986, 3415104, 728377653 —16, 36, —8, —143 {3, BL) 85.126- -
Al 1,-1,-4,2,1 3.1327 74.708 - - -
1, 645,90201, 4375521, 61233705 —29, 23,25, —65 {B;} 85.706 - - -
B2 1,-2,-4,5,5 52.101 58.274 - -
1,953, 133401, 5013085, 20861005 143, —71, —578, —344 {Ps, BL) 87.141 - --
B3 1,-2,-4,3,3 3.2351 66.481 - - -
1,307, 30262, 1041840, 7671573 21,-70,—13, 19 {B5, B} 87.495- -
C3 1,-1,-1,3,-3 —3.953 66.976 - - -
1,220, 10342, 818844, 49539105 —24,-16, 88, —95 {3, BL) 88.145- -
B4 1,-1,-5,1,1 132.53 67.133--.
1,221, 17277, 542997, 5142501 4,1,—-12,—68 {P3, B3} 88.352- .-
A2 1,-1,-7,3,9 52.181 75.001 - - -
1, 810, 91575, 3651750, 48901725 39, —123, —24, 138 {Bs} 91.715---

It is easy to construct examples of number fields having: (a) finite Hilbert
class field tower; (b) an infinite tamely ramified ray class field tower; (¢) an
extension of small degree in the ray class field tower which passes the
Golod-Shafarevich test (for infinitude of its Hilbert class field tower). In [HM],
we investigate this question and other conjectural links between tamely ramified
and unramified class field towers, along lines suggested by the Fontaine-Mazur
conjecture [FM].

The importance of the question for the estimation of «, is clear. Thus, in all the
infinite ramified towers constructed here, there is the potential of finding a number
field admitting an infinite unramified extension; this would lower the upper
estimate for oy by a possibly substantial amount. For instance, consider Example
C1 once more. The field K has root discriminant approximately 56. It already admits
an unramified extension of degree 2° (its 2-Hilbert class field). A 2-extension where
the ramifying primes s, ‘B’S both have ramification indexe =1, 2, 4, 8, 16, ... would
have root discriminant approximately 56, 69, 76, 80, 82, .. ., respectively.

One interpretation of the significance of the above question is as follows. The
difficulty in finding good upper estimates for o, is that it is difficult to access number
fields of large degree. A positive answer to Question 1 would be saying, in effect, that
a good place to look for number fields of small root discriminant admitting infinite
Hilbert class field towers is inside (the first few stages of) infinite ray class field
towers.
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Appendix

Here we give a proof for the claims made in Examples 3 and 4 of Section 3.1. All of
the arguments presented in this appendix are based on [Ma2] and are due to
Martinet. We thank him for allowing us to include them here.

We will need a refinement of the genus theory estimate of Theorem 4.

PROPOSITION 8. Suppose K /k is a Galois extension of degree £, and let t be the
number of places of k ramified in K. Then, pg > t — 1 — dimp, (Ex/Ex N Nk Uk),
where Uk is the group of idele units of K.

Proof. A proof can be found, for example, in Schoof [S]. O

Note that the calculation of E;/E; N Nk Uk reduces to local considerations. The
following Proposition, which is a variation on a construction of Schoof [S], will illus-
trate this point.

PROPOSITION 9. Let F| be an imaginary quadratic field with class number h = 13
Suppose F, is another quadratic field such that two primes pi, p» which ramify in
F, are inert in Fy. Then, the biquadratic field F = F\F, has infinite Hilbert class field
tower.

Proof. Let £ = 2. Let k be the Hilbert class field of F; and put K = kF5. It is clear
that K is contained in the Hilbert class field of F, so it suffices to show that K
has an infinite 2-class field tower. Since p;, p; are inert (hence principal) in F}, each
of them splits into 4 primes in k, which then all ramify in K/k. Thus, for the number
t of ramified primes in K/k, we have ¢ > 2h. For h > 14, the crude estimate of
Theorem 4 suffices, in conjunction with Theorem 3, to show that K has an infinite
2-class field tower. We therefore assume that 4 = 13, which implies, by classical
genus theory, that |dp,| is and odd prime. By replacing F> with a third quadratic
subfield of F, if necessary, we may assume that dp, and dp, are relatively prime.
If some prime other than py, p; is ramified in F»/Q, then ¢ > 24 + 1 = 27 and again
Theorem 4 together with Theorem 3 suffices. So now we have arrived at the
interesting case where the only prime divisors of dp, are p; and p».

We claim that —1 € Ng Uk. To do this, it is sufficient to show that —1 is a norm
in F/F;. There one only has to look at the two prime ideals (p;) and (p,) of Fi,
and by the product formula it is sufficient to look at only one of them. In particular,
we may assume without loss of generality that p; is odd. It is enough to show that —1
is a square in the completion of F| at (p;). Since p; is odd, Hensel’s Lemma reduces
this to checking that —1 is a square in the residue field Op, /(p1), but this is clear
since this residue field is I o> thus the claim is proved. Since dj = d}p? is odd, —1
is not a square in k. Consequently, d(Ex/Er N Nk Uk) < 12. We now apply
Proposition 8, with £ =2, to find

« =26 — 1 —d(Ep/Ex N Ng i Ug) > 13 > 2+ 227,

so we are done by Theorem 3. O
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EXAMPLES. If we take F; = Q(v/—263), F, = Q(+/=35) or F, = Q(+/—607),
F> = Q(v/—15), the hypotheses of Proposition 9 are satisfied (with 7 = 13), verifying
the claims made in Examples 3 and 4 of Section 3.1. Note, as an interesting con-
sequence, that the real quadratic fields L; = Q(+/9205), and L, = Q(+/9105) admit
infinite unramified-outside-infinity extensions, but, on GRH, their maximal every-
where unramified extension is of finite degree. Unconditionally, their Hilbert class
field towers stop at Lj(«/g), since it is easy to show that these ficlds have class
number 1.
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Note added in proof: In a forthcoming work, we prove oy < 82.2 and oy < 954.3.
Also, in an article to appear in the Proceedings of the 2000 European Congress,
we exhibit an unramified infinite tower with root discriminant less than 84.4.
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