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ON CYCLIC GROUP ACTIONS OF EVEN ORDER
ON THE THREE DIMENSIONAL TORUS

M.A. NATSHEH

In this paper, we prove that if h is a generator of a Z3, action on S! x S! x S!, and
Fix{h™) consists of two disjoint tori, one torus, four simple closed curves, or two simple
closed curves, then h is equivalent to the obvious actions.

0. INTRODUCTION

A homeomorphism h: M — M of a space M ontoitselfis called a periodic map on
M with period n if A" = identity and h* # identity for 1 < i < n. A periodic map h
on M is weakly equivalent to a periodic map k' on M’ if there exists a homeomorphism
t: M — M' such that t~1ht = (h’)i for some 1 <t <n.if i=1, then h and A’ are
equivalent.

In this paper we consider the classification problem of Z;, actionson §'x §!x 5.
Let h be a periodic map which generates the Z;, action. We solve the problem when
Fix(h™), the fixed point set of A", is a torus, two disjoint tor, four simple closed
curves, or two simple closed curves. We investigate the actions when Fix(h™) consists
of eight points. We extend the results of Hempel [3] concerning free cyclic actions
on S x §' x S§', and Showers [7] and Kwun and Tollefson [5] of the involutions
of §1 x §' x §'. We obtain the following classification theorems for periodic maps
h: 8! x S x §1 — 8! x §! x S of period 2n, n > 1.

THEOREM 3. If Fix(h™) = Ty U T3, the union of two tori, then n is odd and
there is a periodic map g: T — T of period n such that h is equivalent to hy , where
hy(z,y,z) = (g(x,y),z). For n = 3, there are two such actions, up to weak equivalence.
For each n 2 5, there exists a unique action up to weak equivalence.

THEOREM 4. If Fix(h™) = Ty, a torus, then n is odd and for each n, h is unique

up to weak equivalence.

THEOREM 5. If Fix(h™) = §; U S; U 53 U Sy, the disjoint union of four simple

closed curves, then (up to weak equivalence) for n = 2 there are three actions, for
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n = 3 there are three actions, and for n > 4 there is a unique action for every odd n,

and there is no action for any even n.

THEOREM 6. If Fix(h") = S, U S;, the disjoint union of two simple closed curves,
then (up to weak equivalence) for n = 2 there are three actions, and for n > 3, there

is a unique action for every odd n and there is no action for any even n.

Throughout this paper we work in the PL category. We divide the paper into six
sections. In Section 1 we list all standard 7, actions on T, and all nonfree involutions
on S! x S x §'. In Section 2, 3, 4 and 5 we prove Theorems 3, 4, 5 and 6 respectively.
In Section 6 we investigate Z;, actions on S! x §? x §* when Fix(h™) = eight points.

Let h be a periodic map of period n = ml on a space M. Then hA™ has period
l. Let ¢: M — M/h™ be the orbit map induced by h™. Then there exists a homeo-
morphism A on M/h™ of period m, uniquely determined by A such that hq =qh. A
is called the periodic map on M/A™ induced by h. Throughout this paper we denote
S x 8§ x S by T?, the torus S! x S by T, the Klein bottle by K and the Mobius
band by Mb. We view S? as the set of complex numbers z with |z| = 1.

1.

In this section we give a list of standard cyclic actions on T'. We also write a list
of standard nonfree actions on 7°. The proof of Theorem 1 may be found [6] and [9].
The proof of Theorem 2 is in [4] and [7].

THEOREM 1. Let h be a periodic map of period n, acting on T'. Then h is
weakly equivalent to one of the following maps.
I. h preserves orientation.
2) h(z,y) = (z,wy), w=e
Fix(h') =0 1€i<n
T/h=T.
b) h(z,9) = (G,2y), n=6
Fix(h) = {(1,1)}
Fix(h?) = {(1,1), (w,w), (w?,0?)}, w = e*ri/3
le( )_{(1)1)v(1> )’( lal)v( 17—1)}
T/h~ S*
c) hlz,y) = (y,T), n=4
Fix(h) = {(1,1),(-1,-1)}
Fix(hz) = {(1,1),(-1,-1),(1,-1),(-1,1)}
T/h=~ S§%.
d) hk(z,y)=(z9,z), n=3
Fix(h) = Fix(h?) = {(1,1),(w,w), (w?,w?)}, w = e2™i/3
T/h~ 5%,

2rifn
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e) h(z,y) =(z,9), n=2
Fix(h) = {(1,1),(-1,-1),(1,-1),(-1,1)}
T/h =~ S*.
II. h reverses orientation, and hence n is even, n = 2k,

a’) h’(xﬁ'/) = (wwfy)a w = eZm’/n

Fix(h*) =0, 1<i<n
T/h=~K.
b) h(z,y) = (zw,zy), w=e*"/* &k even,
Fix(h') = 0, 1€i<n
T/h~K.
¢) h(z,y) =(z,wy), w=e*"/* & odd,
Fix(hi) =0, 1<i<k
Fix(h*) = S} U 5]
T/h~S'xI.
d) h(z,y) = (zyw,q), w= e2™/k &k odd,
Fix(h') = 0, 1<i<k
Fix(hk) =5
T/h =~ Mb.

THEOREM 2. The following is a standard list of nonfree involutions on T?.

(1) hi(z,y,2) = (2,9, %), Fix(hy) =T U Ty,

(2) hz(fv,y, z) = ('y 12), Fix(hz) =T,

(3) z,y,2) = (%,7,2), Fix(h3) = S] U S; U S3 U Sy,
(4) ( z,y,z) = (=lc 19, 2), Fix(hy) = $1 U 53,

(5) hs(z,y,2) = (%,9,2), Fix(hs) = eight points.

2. PROOF OF THEOREM 3

(2.1) Fix(h®) = Ty UT;. In fact we may view h™ as given by h™(z,y,z) =
(z,9,2), Ty = Tx{1},T: = Tx{-1}. T1UT; isinvariant under h. T;UT, separates T
into two components A and B, each of which is homeomorphic to T'xI. Since T,UT, is
invariant under h, we have h(4) = B or h(A) = A, but h"(A) = B, hence h(A) =
and n is odd. Moreover h(T;) = T;, t = 1,2. Let ¢: T° — T3/h" ~ T x I be the
quotient map. h induces h: T3/h"™ — T3/h™, h is a periodic map of period n, which
keeps each of the two boundary components invariant, and is orientation preserving.
Henceit is equivalent to A': TxI — T'xI, k'(z,y,t) = (9(«,y),t), where g is a periodic
map on T' with period n [5]. Nowlet h: T® — T® be given by hi(z,y,z) = (¢9(z, ), 2),
then hy: T°/hT — T3/h} may be given by hy(z,y,t) = (g9(z,y),f). Hence h is
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equivalent to h;. Therefore there exists a homeomorphism ¢: T3 /AT — T3/h™ such
that At = th,. Define I: T® — T® as follows: for each z; € A; C T?, let z, = h}(z;),
then qi(z1) = qi(z2) = z € T3/h}. If t(z) =y € T3/h™, then there exists y; € A,
y2 € B such that ¢(y1) = ¢(y2) = y. Let {(z1) = y1. Similarly define #(z) for z € B.
It is easy to check that hf = {h; and h equivalent to h;.

(2.2). For n = 3 there are two cases - (a) Fix(g) consists of three points, and (b)
Fix(g)=10.

Case (a). h is given by the following formula (see Section 1).

h(z,y,z) = (27,2, )

Fix(h) = six points

Fix(h?) = {(1,1),(w,w), (w?,&?)} x §', w= e?m/3
Fix(h®) = Ty U Ty.

h is unique up to weak equivalence.
Case (b). See (2.3).
(2.3) For n > 3, n odd. From Section 1, A is given by

h(:l:,y, z) = ($7wy) 2)7 w = 821ri/n

Fix(h') =0, 1<i<n
Fix(h™) = Ty U Ts.

For each n, h is unique up to weak equivalence. [}
3. PROOF OF THEOREM 4

Fix(h™) = T1, hence h(T1) = T and h"(z) = = for all z € T;. A™ interchanges
the sides of Ty, therefore h interchanges the sides of Ty and n is odd. Cut T? along
Ty to get a manifold M ~ T x I and an induced homeomorphism h: T x I — T x I
of period 2n, where (T x {0}) = T x {1} and Fix(h) = 0.

Now A? is orientation preserving of period n which keeps each of the boundary
components invariant. Hence there exists a periodic map ¢g: T — T of period n,
which is orientation preserving such that k is equivalent to h' where h'(z,y,t) =
(g9(x,y),t) [5]. Without loss of generalily we may assume h*(z,y,t) = (g(z,y),t)
(after parametrising M ~ T x I'). Now we have two cases - (a) Fix(h?) = 0, and
(b)Fix(R?) # 0.

Case (a). Fix(h?) = 0, hence Fix(g) =@ and g is weakly equivalent to g(z,y) =
(z,uy),u = e2™/"*. R*: T x I — T x I induces ‘an involution h': T x I/h?* — T x
I/R?* = T x I, where h' interchanges the two sides of T x I and Fix(h') = 0. Hence

https://doi.org/10.1017/50004972700026721 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700026721

(5] Cyclic group actions 193

k'(z,y,t) = (=, ~y,1 —t) (after parametrising T x I/h® = T x I'). From this it is easy
to show that h(z,y,z) = (z,wy,1 ~ 1), w = e™/™. Identifying (z,y,0) with (z,-y,1)
in TxI weget h: T — T with Fix(h') =0, 1 <i < n, Fix(h*) =T;. h is unique
up to weak equivalence.

Case (b). Fix(h?) # 0. Hence Fix(g) # 0 and from Section 1, n = 3 and
h%(z,y) = (zg,z), up to weak equivalence. h induces an involution h": T x I/h* —
T x I/h* ~ S§* x I, such that Fix(h") C I; UI,U I3 the union of three simple arcs, and
R"(Lhul,Ul) = [ UL UI;. But there is no such involution on $? x I with these
properties. Indeed there is no involution on $? with an invariant three point set and

fix point set consisting of two points or empty. |
4. PROOF OF THEOREM 5

(4.1). Fix(h™) = 5;US5;US;US,, the union of four simple closed curves. Without
loss of generality we may view A" as given by h"™(z,y,z) = (Z,5,2). Let ¢: T° —
T3/h™ be the quotient map. Now T?/h™ =~ $% x §! and h induces a periodic map
Re (52 x 8L,ULa(S0) — (57 x 8%, U3 a(S:)) of period 7. 1

LEMMA 4.2. h is equivalent to a periodic homeomorphism h, given by
hy(z,y,2) = (9(=,v),0(2)), where ¢g"(x,y) = (£,7) and §™(z) = z.

PROOF: Let ¢1: T — T3/h} ~ S? x S'. hy induces hy: T3/h} — T®/R} of
period n, where hq([z,y],2) = (3([z,9]),8(z)), where g: T/g™ — T/g™ ~ S? is the
induced map by g, and [z,y] is the image under the quotient map ¢2: T — T/g™.
Now h and h; are equivalent [1]. Hence we can define a homeomorphism ¢: T3 — T
such that th; = ht in exactly the same way as we did in Theorem 3. From this it
follows that h is equivalent to h;. [

(4.3). For n = 2, then by Section 1, g(z,y) = (y,%) and f(z) equals (a) z, (b)
z, (¢) —=z. In each case h is unique up to weak equivalence and is given by:

(a) Mz,y,2) = (y,%,%)
Fix(k) = {(1,1,1),(1,1,-1),(~-1,-1,1),(-1,-1,-1)}
Fix(h?) = {(1,1),(1,-1),(-1,1),(-1,-1)} x S™.

(b) h(z,y,2) = (yai)z)
Fix(h’) = {(1’1)a(_1a "1)} x St
Fix(h?) = {(1,1),(~1,-1),(1,-1),(-1,1)} x 5.
(C) h(w,y,z) = (y,f:,—z)
Fix(h) =0
Fix(hz) = {(171)7(_17—1)’(1a_1)1(-_1a1)} x ST,
(4.4) For n = 3, by Section 1, g is given by g(z,y) = (7,zy) or g(z,y) = (

»7) -
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flz)=we, w= e?™/3 . Hence we get the following cases. In each case h is unique up
to weak equivalence.
(a) h(z,y,2) = (9,zy,2)
Fix(h) = {(1,1)} x $?
Fix(h%) = {(1,1), (w,w), (w?,w?)} x §?, w=e?m/3
Fix(h®) = {(1,1),(-1,-1),(1,-1),(-1,1)} x S*.
(L)  h(z,y,2) = (F,zy,wz), w=e?™/3
Fix(h) = Fix(h?) = 0
Fix(h®) = {(1,1),(-1,-1),(1,-1),(-1,1)} x S
(c) h(z,y,z)=(%7,wz), w=e?™/3
Fix(h) = Fix(h?) = 0
Fix(h®) = {(1,1),(-1,-1),(1,-1),(-1,1)} x S™.

(4.5). For n > 3 by Section 1, g(z,y) = (Z,¥) and n has to be odd. Hence for
every odd n > 3 there is a unique action up to weak equivalence, and there is no action
for any even n > 3. h is given by the following standard formula

h(z,y,2) = (2,5,wz), w=e™/"
Fix(hi) =0, 1<i<n
Fix(h™) = {(1,1),(-1,-1),(1,-1),(-1,1)} x S*.

5. PROOF oF THEOREM 6

(5.1). Fix(h™) = S; U S, the union of two simple closed curves. Without loss
of generality we may take T = T x I/ ~ (z,y,0) ~ (A(z,y),1) = (-, —y,1) and
h"(z,y,t) = (Z,9,t). Let ¢: T — T3/h™ =~ §? x S be the quotient map. A induces
a period n homeomorphism h: (T®/h™,q(S1,US2)) — (T*/h™,q(S: US2)). In the
same way in the proof of Lemma (4.2), h is equivalent to hy, where hy(z,y,t) =
(g(:c,y),ﬂ(t)), where gn(m’y) = (‘E:g) and ﬂ"(t) =t.

(5.2). For n =2, g(z,y) = (y,Z) and B has three different forms. Hence we have
three different cases. In each case h is unique up to weak equivalence. A standard h
is given by

(a) A(lz,y,t])=[y,z,1 ¢

Fix(h) = {[1,1,3],(-1,-1,3]},(1,-1,0],[-1,1,0]}

Fix(h?) = {(1,1),(1,-1),(-1,1),(-1,-1)} x I/ ~x 5, U S;,
{(b) h([:l:,y,t]) = [yﬁiat]

Fix(h) = {(1,1),(-1,-1)} x I ~= 5,

Fix(h?) = S, US,,

() hlz,u,1]) = { 2,04 3]

[ya iat - %]1
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Fix(h) = 0
Fix(h?) = 5, U S; .
(5.3). For n = 3, then g¢(z,y) = (9,2y) or g(z,y) = (%,7), and B(t) has two

forms. Also we need gA = Ag hence g(z,y) = (Z,7) and there is a unique action up
to weak equivalence which may be given by:

h([.’l:,y,t]) _ { [ia'g>t+ 3],

0<t
[-z,-5,t -3, }<t
Fix(h) = Fix(h?) = 0
Fix(h®) = $; U S,.

<3
<1

(5.4). For n > 3, g(z,y) = (%,7) and n is odd. Hence there is a unique action for
every odd n > 3, up to weak equivalence and there is no action for any even n > 3. A
standard h may be given by:

W v.1]) (Z,7,t + %], 0gtg 2zt
z,Y =
’ [-2,-g,t— 21, 2=l i<l

le( )_0 1€i1<n
Fix(h™) = 5; U S,.

6. FI1x(h") = EIGHT POINTS

(6.1). Without loss of generality h™ may be given by
h*(z,y,2) = (%,9,2).

Hence h is orientation reversing and n is odd. If there exists an invariant torus
T, then h may be viewed as a product h(z,y,2) = (9(=,v),2), ¢"(=,y) = (%,7).
(6.2). For n = 3, g(z

z,y) = (J,zy) and h is unique up to weak equivalence. h
may be given by

h(x’:% Z) = (:'771:'.(/7 2)
Fix(h) = {(1,1,1),(1,1,~1)}
Fix(h?) = {(1,1), (w,w), (v*,w?)} x §?
Fix(hs) = eight points .
(6.3). For n > 3, the only action g on T such that g"(z,y) =

= (ﬁay) is 9(1‘,3/) =
(Z,7), but then the period of A would be 2. Hence there is no such action.
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(6.4). There is a nonstandard action A which may be given by

hz,9,2) = (3,7, 2)

Fix(k) = {(1,1,1),(-1,-1,-1)}
Fix(h?) = S,

Fix(h3) = eight points .

Hence the proof of the case Fix(h™) = eight points is not complete.
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