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ON THE NONSTANDARD DUALITY THEORY
OF LOCALLY CONVEX SPACES

ARTHUR D. GRAINGER

This paper continues the nonstandard duality theory of locally convex,
topological vector spaces begun in Section 5 of [3]. In Section 1, we isolate an
external property, called the pseudo monad, that appears to be one of the central
concepts of the theory (Definition 1.2). In Section 2, we relate the pscudo
monad to the Fin operation. For example, it is shown that the pseudo monad
of a u-saturated subset 4 of *E£, the nonstandard model of the vector space E,
is the smallest subset of A that generates Fin(4) (Proposition 2.7).

The nonstandard model of a dual system of vector spaces is considered in
Section 3. In this section, we use pseudo monads to establish relationships
among infinitesimal polars, finite polars (see (3.1) and (3.2)) and the Fin
operation (Theorem 3.7). These relationships, along with pseudo monads, are
used to obtain a necessary and sufficient condition for the nonstandard hulls
of a locally convex, topological vector space to be invariant (Proposition 4.4).
Also in Section 4, we examine the pseudo monad of F(&), the union monad
of equicontinuous sets. We show, in Proposition 4.5, for Schwartz spaces this
pseudo monad, denoted by 4(F(&)), has a nice characterization. Also, we
give examples that tend to support the conjecture that the characterization of
Proposition 4.5 is only true for Schwartz spaces.

Preliminaries. Throughout this paper, K will denote either the real or
complex numbers and £ will symbolize an infinite dimensional vector space
over K. It is assumed that £ and K are entities of a full set-theoretical
structure

By =B, o€ T},

where T is the set of types. We will assume that the nonstandard structure
*B 1 is a higher-order, k-saturated ultrapower of B, where « is the cardinality
of User Br. Note that the cardinality of any entity of B is strictly less than .
Also due to a theorem of Kenneth Kunen, k-saturated ultrapowers exist,
without the assumption of the generalized continuum hypothesis ([1], Theorem
10.4, page 239 and [6], Theorem 1.6.4, page 32).

We make the usual definitions and extensions for ¥/ and *K as found in the
preliminaries of [2], [3] and [4]; e.g., u(¥) denotes the monad of a filter ¥,
pe(x) denotes the monad of the filter of -neighborhoods of x € E for topology
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6 on E, 1(0) symbolizes the set of infinitesimals of *K, etc. For 4 C *E,
define Fin(4) as follows:

Fin(4) = {z € *E| Xz € 4 foreach X € u(0)}.
The set Fin(4) is nonempty if and only if 0 € A. It can be shown that
(0.1) Fin(Fin(4)) = Fin(4).

Also it is easy to see that Fin(x(0)) is the set of finite numbers of *K. For
further properties of Fin(4), the reader is referred to [2].

Actually, the above definitions and extensions can be made for any entity [
of By that is a vector space over K; therefore, we make these assumptions
for such an entity /* without further elucidation.

1. Pseudo monads. We begin this section by illustrating one of the most
useful properties of monads of sub-additive filters on vector spaces. The proof
of the following proposition is essentially due to Henson and Noore (cf. [3],
Theorem 1.6).

ProrosiTiON 1.1. Let [ be an entity of By such that I is « vector space over
K. If § is « filter on F for which u(F) + p(F) C u(F) then for z € u(F) there
exists an infinite w € *K such that wz € p(F).

Proof. Let 2 € u(§). For each n € N and x € [, define the internal set
A (n, x) as follows:

Am,x) = {mlm ¢ *N,n < mand ms € *X}.

Since p(F) + w(F) C u(F) implies mu(F) C p(F) for each m € N, we have
that each set 4 (n, x) is nonempty. Also the collection

¢ =144, x)|necN xc F

has the finite intersection property since § is a filter. By Theorem 2.7.12 of 6]
and the saturation of *Br, there exists w € M &. We thus infer wz € u(F)
and w is infinite.

The main idea of this note is to exploit subsets of * I that satisfy the con-
clusion of Proposition 1.1. Since most of the subsets of */* are not filter monads,
we need a way of extending the conclusion of Proposition 1.1 to arbitrary
subsets of *F. The following definition provides such a procedure.

Definition 1.2. Let F be an entity of By such that F is a vector space over
K. For 4 C *F define g(4) C 4 as follows: « € g(4) if and only if ¢« € 4
and there exists an infinite 8 € *K such that 8« € 4. The set a(4) is called
the pseudo monad of 4.

Thus if FFand « filter § on F satisfy the hypotheses of Proposition 1.1 then

(@) = n(@).
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Observe that a(4) # 0 if 0 € 4. We shall see that 2(4) is non trivial if 4
satisfies the following condition.

Definition 1.3. Let F be an entity of Br that is a vector space over K. A set
A C *Fis p-saturated if and only if AA C A for each N € p(0).

For the remainder of this section, all vector spaces over K considered are
entities of Br.

ProrosiTiON 1.4. Let F be a vector space over K. If A C *F 1is u-saturaled
and has a non zero element then f(A) has a non zero element.

Proof. Let z € A such that z # 0, let Ay € u(0) for which Ay # 0 and con-
sider 2o = N¢z. Note thatzo # Oand zy € 4. Also Ny € w(0) implies A¢*”* € u(0)
and Ao~/ is infinite. Hence

}\0—1/320 —_ )\0—1/3()\02) — )\02/32 c A

since 4 is p-saturated. Therefore, 2, is a non zero element of 4 (4) since 3¢ € 4,
N~ 13z0 € 4 and \y~!/3 is infinite.

PropPosITION 1.5. Let F bea vector space over K and let A C *F be p-saturated.
If 2 € p(A4) then there exists a positive, infinite 8 € *R for which az € a(A4) for
a € *K such that |a| = B.

Proof. Let z € p(A4) which implies 2 € 4 and there exists an infinite 3; € *K
such that 81z € 4. Now, 8; being infinite implies 8;~! and 8;7%/* are infini-
tesimals. Thus, there exist w;, w2 € *N\N for which w;8:~! and ws8,7%/* are
infinitesimals. Let § = min{w;, ws}. Hence B is a positive, infinite element of

*R.
Now, consider & € *K for which |« < B. Since

laB1™ = BIB17Y = fwiBiTY
we have af;7! € p(0). Similarly,
laB:=2/5] < BIB172] = [waBr ™27

implies a8;72/% € u(0).
Therefore, if @ € *K such that |a| < 8 then

az = a1 (Byz) € 4
since 312 € A, A is p-saturated and aB;~! € u(0). Also,
B1' % (az) = B1t B (B12) = aB1 7 (Biz) € A

since af172* € u(0). We thus infer that az € a(4) since B, being infinite
implies 3;!/? is infinite.

PRropoSITION 1.6. Let F be a vector space over K. If A and B are up-saturated
subsets of ¥*F then p(A N B) = p(4) N a(B).
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Proof. Clearly p(4d N\ B) C a(4) N a(B). Let 3 € a(d) N\ a(B) which
impliesz € A M B and there exist positive, infinite 81, 82 € *R such thataz € 4
for |@| = 81 and &z € B for |¢| < B2 by Proposition 1.5. Let 8 = min{g, 8:}.
Consequently, Bz € 4 M B which implies z € (4 M B) since B € *K is
infinite. Therefore a(4) M a(B) C a(4 N B).

Using Propositions 1.1 and 1.5, we can give conditions for a filter, in a vector
space, to have a basis of balanced sets.

ProposiTION 1.7. Let F be a vector space over K and let T be a filter on F for

which uw(F) + w(F) C u(F). If u(F) is u-saturated then §F has a filter basis of
balanced sets.

Proof. Let z € u(F) and let N € *K such that |\ = 1. Proposition 1.1
implies 4(u(F)) = w(F); therefore, there exists a positive, infinite § € *R
such that az € u(F) for |a| £ 8 by Proposition 1.5. In particular, Az € u(F)
since |\ £ 1 < 8. Consequently u(F) is *-balanced which implies § has a
filter basis of balanced sets ([2], Proposition 2.6).

From the above proposition, we derive the following standard results.

ProposITION 1.8. Let F be a vector space over K and let ¢ : K X F— F
denote the scalar multiplication map. Let 0 be a lopology on F for which vector
addition 1s continuous. If ¢ is continuous at (0, 0) then the map x — \x is
6-continuous on F for each N € K such that |\| < 1.

Proof. Let A 4(0) denote the filter of #-neighborhoods of 0 € F and let u(0)
denote the monad of 4#/4(0). By the continuity of vector addition, we have that
for V € A4(0) there exists W € .474(0) such that W + W C V7; therefore,
re(0) = pe(0) 4+ we(0) ([2], Proposition 2.8). Also, Theorem 4.2.7 of [7] and
the continuity of ¢ at (0, 0) imply *¢[u(0) X we(0)] C we(0); i.e., ue(0) is
u-saturated. Consequently, there exists a filter basis & C A4/4(0) such that each
17 € & is balanced by Proposition 1.7. Since N(x + 1) = e + AV C A + V
for x € F, V¢ & and N € K such that |A\] £ 1, we infer that the map
x — Ax is f-continuous for each A € K such that [\] = 1.

CoROLLARY 1.9. If 6 and F satisfy the hypotheses of Proposition 1.8, then
(F, 0) is a topological group with respect to vector addition.

Proof. Apply Proposition 1.8 with A = —1.

Prorosition 1.10. Let 6 and F satisfy the hypotheses of Proposition 1.8 and
let NV 4(0) denote the filter of 8-neighborhoods of 0 € F. If each V € N 4(0) is
absorbing then (F, 8) is a topological vector space.

Proof. Arguing in the manner of Proposition 1.8, we infer from Proposition
1.7 the existence of a filter basis & C .A44(0) of balanced sets. Therefore (F, 9)
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is a topological vector space since the members of ¢ are absorbing and, for
17 ¢ & thereexists W € & such that W -+ W C 17 ([5], Theorem 1, page S1).

2. Pseudo monads and the Fin operation. In this section, we establish
the relationship between the pseudo monad and the Fin operation. The objec-
tive is to show that @(4) is the smallest subset of a p-saturated set 4 that
generates Fin(4).

ProrositioN 2.1. Let IF be a vector space over K. If A C *F such that 0 € 4
then

Fin(4) = Fin(a(4)).

Proof. Since p(4) C 4 implies Fin(a(4)) C Fin(4), it suffices to show
that Fin(4) C Fin(a(4)).

Letz € Fin(4) and let X € u(0). There exists an infinite 8 € *K such that
BN € u(0). Hence Az € 4 and B(\z) = (BN)z € A. Therefore \z € a(4). We
thus infer that = € Fin(2(4)) since X £ u(0) was arbitrary.

ProrositioN 2.2, Let F be a vector space over K. If A C *F such that 0 € A
then

a(Fin(A)) C a(4).

Proof. Let z € a(Fin(4)). Hence 2 € Fin(4) and there exists an infinite
8 ¢ *K for which g8z € Fin(4). Now, 8z € Fin(4) implies N(8z) € A for

cach N € u(0). In particular = = B=1(8z) € A since B~ € u(0). Also
BT € u(0)
which implies 823z = 8=13(8z) ¢ 4. Consequently, s € a(4).
COROLLARY 2.3. Let I be a vector space over K. If A C *F is p-saturated then
aFin(4)) = a(4).

Proof. A being p-saturated implies 4 C Fin(4) ([2], Proposition 1.3);
therefore, g(4) C a(Fin(4)). Proposition 2.2 implies g(Fin(4)) C a(4).

CoOROLLARY 2.4. Let F be a vector space over K. If A C *F 1is p-saturated
then p(a(4)) = a(4).
Proof. A being p-saturated implies 0 € 4(A4); therefore,
p(4) = a(Fin(4)) = a(Fin(a(4))) C a(a(4))

by Corollary 2.3 and Propositions 2.1 and 2.2. By definition, a(2(4)) C a(4);
therefore, p(4) = a(a(4)).

Now we are in a position to show that a(4) is the smallest subset of a u-satu-
rated set A that generates Fin(4).
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LEMMmA 2.5. Let I be « vector space over K and let A C *F be p-saturated. If
B C *F such that Fin(4) C Fin(B), then a(4) C a(B).

Proof. A being p-saturated implies 0 € 4 C Fin(4); therefore, Fin(4) C
Fin(B) implies 0 € Fin(B) which implies 0 € B. Consequently,

p(4) = pFin(4)) C aFin(B)) C a(B)
by Proposition 2.2 and Corollary 2.3.

ProrosiTioN 2.6. Let F be « vector space over K. If A and B are p-saturated
subsets of *I' for which Fin(4) = Fin(B) then p(4) = p(B).

Proof. Fin(4) C Fin(B) implies a(4) C a(B) by Lemma 2.5. Conversely,
Fin(B) C Fin(4) implies a(B) C a(4) again by Lemma 2.5. Therefore
a(d) = p(B).

ProrositioN 2.7. Let F be « vector space over K and let A C *F be u-saturated.
If B C *F for which Fin(B) = Fin(4) then p(4) C B.

Proof. Fin(4) C Fin(B) implies g(4) C pa(B) C B by Lemma 2.5.

Example 2.8. We now exhibit a Fin invariant set of infinitesimals that agrees
with its own pseudo monad.
Let 1 = [0, 1], let I' = K and define

W= {x ¢ F|0<x() for each z € [}.

Consider an infinitesimal « € *R such that 0 < ¢ which implies « € *I. Fol-
lowing the notation of [2] we define

v, () = {N € *K| [N = *x(¢) for cach x & A}.

Since {*x| x € A} is an external subset of some *-finite subset of *3, it can be
shown that ».(2) is non trivial, i.e., », () # {0} (see [6], Example 1.5.3). By
Proposition 4.9 of 2], ».(A) is Fin invariant, i.e., ».(3) = Fin(»,(A)), since
I satisfies Definition 4.4 of [2] (see |2], Theorem 6.6).

Consider Ny € », (). For x € Y and n € N, define D(x, n) C *N as follows:

D(x,n) = {m € *N| |m\| £ *x(1) and n < m}.

Now, x € I implies m~'x € A for each m € N which implies || £ m—*x (1)
for each m € N; therefore, & = {D(x,n)| x € A, n € N} is a collection of
non empty internal subsets of *N. Furthermore, we infer that & has the
finite intersection property since {xi,...,x;} C U implies x = x1 A ... A
x; € A By Theorem 2.7.12 of [6] and the saturation of *Br, there exists
w € N . Consequently, w is infinite and w)\y € »,(A). Therefore, a(»,(A)) =
v, () since Ny € »,(A) was arbitrary.
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3. Pseudo monads and dual systems. Let F be a vector space over K
and let (...,...) be a bilinear functional on E X F. The collection (E, F,
{...,...))issaid to form a dual system if and only if the following conditions
are satisfied:

(1) If x € E and x # 0 then (x,y) % 0 for some y € F, and
(i) If y € Fand y 5 0 then (x,y) 5 0 for some x € E.

Throughout this section, it will be assumed that the bilinear functional
(...,...)and the vector space E and F form a dual system.

Let 4 be a subset of *E (internal or external). Following the notation of [3]
we define

(3.2) A’ = (g€ *F| (p,q) € Fin(u(0)) for all p € A}.

We define 47 and A7 similarly for A C *F. Also we denote (4%)¢ by 4% and
(47)7 by A7) Immediately from the definition we derive

(33) (AUB)Y =A'NB" and (AUB) = A'N B

for subsets 4, B of either *£ or *F. Also we will make use of the properties of
A?and 47 listed in Lemma 5.5 of [3].

LemMA 3.4. Let A and B be subsets of G, where G is either *E or *F.
(@) If A" = A and B'* = B then (A M B)" = A M B.
(b) If 477 = A and B = B then (A M B)// = 4 M B.

Il

Proof. AN B = A""M B = (47U B") by (3.3); therefore,
(AN B)it= (41U B)ii = (4*UBY" = AN B
by Lemma 5.5 (vii) of [3]. A similar argument proves (b).

We will say that a topology 6 on E is compatible with the dual
system (E, F, {...,...)) if and only if 6 is a Hausdorff, locally convex linear
topology and o(E, I') C 6 C 7(E, F), where o(E, F) and 7(E, F) are respec-
tively the weak and Mackey topologies on E generated by Fand (...,...)
(see [5], Proposition 4, page 206).

In [3], Henson and Moore showed that if 6 is a linear topology on E com-
patible with the dual system then

(3.5)  [me(0)]" = F(&), [F(E)] = pe(0)
(3.6)  (my)' = Fin(ue(0)) and F(&E) = Fin(my)

where my = [Fin(ue(0)]?, & is the collection of all §-equicontinuous subsets of
Fand F(&) = U {*4| A € &} (see [3], Theorems 5.8, 5.9 and 5.11). The
central concept in the above results is the fact that ue(0) is a filter monad. In
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the following theorem, we extend Henson and Moore's results to pseudo
monads.

TuEOREM 3.7. If A C *E such that p(4) = A then:
(a) A" = Fin([Fin(4%)]?) = A4/,

(b) Fin(4") = [Fin(4)]",

(c) 4" = [Fin(4™)),

(d) A% = Fin(4") = [Fin(4*))/’ and

(e) Fin(4%) = [Fin(4)]".

Proof. If z € Fin([Fin(4%)]%) then Xz € [Fin(4%)]* for each X\ € u(0)
which implies (g, Az) € u(0) for X € x(0) and ¢ € Fin(4%).

Let z € Fin([Fin(4%%)]?) and consider an arbitrary p € 4. 4 = (4) im-
plies the existence of an infinite 8p € 4. Consequently,

<Prz> = <6—16Pvz> = <i8pv B—IZ> € #(O)

since 7' € p(0) and A C Fin(4%), ie., Bp € Fin(4%) and g~z €
[Fin(4)]% Therefore 5 € A"

Let 2 € A" and consider an arbitrary ¢ € Fin(4%). If N € p(0) then
(g, N2) = (A\q, z) € p(0) since N\g € A". So, Az € [Fin(4%%)]¢ for each
N € u(0); thus, z € Fin([Fin(4%)]%). Therefore, 4* = Fin([Fin(4%%)]?).

By Lemma 5.7 of [3], we have Fin(4%) = A’. Consequently,

A7 = Fin(4%) = Fin(Fin([Fin(4%)]%)) = Fin([Fin(4%)]?) = 47

by (0.1). Hence, (a) is established.

Let ¢ € [Fin(4)]" and let X € u(0). If 2 € 4" then Xz € [Fin(4")]%, by
(a), which implies (\g,z) = (g, N\z) € u(0) since [Fin(4)]*** = [Fin(4%%)]’
([3], Lemma 5.5(vii)). Consequently \¢ € 4% which implies ¢ € Fin(4)
since A € u(0) was arbitrary. We infer Fin(4%) = [Fin(4)]% which estab-
lishes (b) since Fin(4%) C [Fin(4'%)]"* ([3], Lemma 5.5(vi)).

Let 2 € A" and let ¢ € Fin(4") be arbitrary. For N € x(0) we have
(g, Mz) = (N\g,2) € u(0) since N\¢ € A'"; consequently, {(q,z) € Fin(x(0))
which implies z € [Fin(4%)]..

Let 3 € [Fin(4%)]/ and let p € 4 be arbitrary. Since g(4) = 4 C A" C
Fin(4%), we have that there exists an infinite § € ¥*K such that gp € 4
which implies 8p € Fin(4"). So,

(p,2) = B7'68p,2) = B71(Bp, 2) € u(0)
since B~' € u(0) and {(Bp,sz) € Fin(u(0)). Consequently z € A%; therefore,
(c) is established.

Let g € A" and let X € u(0). For z € A% we have (\q,z) = N{q, z) € u(0)
since (g,z) € Fin(u(0)). Hence A\¢ € A% which implies ¢ € Fin(4%?) since
X\ € u(0) was arbitrary.

Let ¢ € Fin(4') which implies \¢g € A"t for each N\ € u(0). If z € A* then
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Mg, z) = (\g,z) € u(0) for each N € p(0) which implies (g, z) ¢ Fin(u(0)).
Hence g € A%; therefore, 477 = Fin(4 ).

Also AY = [Fin(4')]// since |Fin(4)} = A from (c). Consequently (d)
is established. Finally, we obtain (e) by observing

|Fin(47)]" = Fin([Fin(4%)]%) = Fin(Fin(4%)) = Fin(4")
from Lemma 5.7 of |3], part (b) and (0.1).

Remark. In figure 1, we summarize the results of Theorem 3.7 with a flow
diagram. Observe that once (3.5) is established, (3.6) and the other results of
Theorems 5.8, 5.9 and 5.11 of |3] are obtained from Proposition 1.1 and
Theorem 3.7.

~
S

A" = Fin(|[Fin(4*)]") «———[Fin(A")]"
A Fin ,
iy T Sl

: TRy
A - —> Fin(4%)
Fin

Ficure 1. A flow diagram of Theorem 3.7.

In the next proposition and corollary, we relate the pseudo monad of A4°
to Fin(4).

ProrositioN 3.8. Let A C *E such that p(A) = A. If B = Fin(A%) then
[a(B9)]* = B.

Proof. Assume that xy € [a(57)]" such that xy ¢ B = Fin(4'"). Hence,
there exists N\g € p(0) for which Npxy ¢ 4. Thus, there exists z, € 4 for which

(3.9) (Noxo, 20) ¢ u(0).

Now, A* = Fin(8*) by Theorem 3.7(a); therefore, A% = Fin(a(B?)) by
Proposition 2.1. Thus, 20 € 4%and Xy € u(0) imply Nezo € 2(B?) which implies
(w0, Nozo ) € u(0), since xo € [a(BY)]?, contradicting {xo, Nz ) = (Ao, 20) 7
w(0). We thus infer [a(B?)]* C B.

By Theorem 3.7(b) we have B' = B; therefore, g(B%) C B’ implics
B = B" C [a(BY]* (see [3], Lemma 5.5(iv)).

Consequently, [a(BY)]! = B.

CoroLLARY 3.10. If A C *E such that p(A) = A then [G(49)] = Fin(4%).

Proof. Observe that (A7) = a({[IFin(4%)]%) by Theorem 3.7 (a) and Corol-
lary 2.3 since [Fin(4%)]" is u-saturated by Lemma 5.5(ii) of [3]. Therefore,
[a(AH]" = Fin(4 %) by Proposition 3.8.
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4. Applications. Let 6 be a compatible topology on E, let & denote the
collection of 6-equicontinuous subsets of F and let

(&) =\U{*4| 4 ¢ &),
From (3.5), we infer [F(&)]" = F(&) and [wo@r. (0)]7 = pow.z (0); con-
sequently,

F((g}) M Mo (F E) (O) = lF(éu) M Mo (F E) (0)]“

by Lemma 3.4(a).
From the fact that pnsg(*£) C Fin (us(0)), we have

[B(F(&)N]" = [Fin (4(0))]" C [pnss(*E)]’

= [F(@@) M por,m (0)]7 = F(OQ) M por,x(0)
by Corollary 3.10, Lemma 5.5 (iv) of [3] and Theorem 6.1 of [3]. Therefore,
we have
(4.1) a(F(&)) Cla(F(EN)]" C F(E) M pogr5 (0)

(see {3], Lemma 5.5 (vi)).

In this section, we give a sufhcient condition for the sets of (4.1) to coincide
(Proposition 4.5) and we exhibit examples for each of the three cases when the
sets of (4.1) do not coincide (see EExamples 5.1, 5.2 and 5.3).

For a balanced convex, ¢(F, E)-compact subset 4 of F, let

P‘A = U {nAl n C N+}.

Consequently, F, is a vector subspace of F. Let g, be the gauge (Minkowski
functional) of 4 on F4. Hence g4 is a norm on Fy, since ¢ (F, E) is Hausdorff.
Let 7, denote the normed topology on F, generated by g4. The notation u,(0)
will denote the monad of the filter, in I, of 74-neighborhoods of 0 € F,. Thus,

(4.2)  wa(0) C*4 C*Fy and
z € uys(0) if and only if *g,(z) € u(0).

Our first proposition of this section gives the structure of a(#(&")) when &
is the collection of #-equicontinuous subsets of F for a compatible topology
6 on E.

PROPOSITION 4.3. Let 6 be a compatible topology on E. If & is the collection of
all o (F, E)-closed, balanced convex 6-equicontinuous subsets of F, then

BF(E)) = U lpa(0)| 4 € &)
= U L) T A0
where N 4(0) s the filter of 8-neighborhoods of 0 € E.

Proof. If 2 € u4(0) then there exists an infinite A € *K such that Az € u4(0)
by Proposition 1.1. Thus, from (4.2), we infer \U {u,(0)| 4 € &} C a(F(&)).

https://doi.org/10.4153/CJM-1980-037-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1980-037-4

470 ARTHUR D. GRAINGER

Now, consider z € a(F(&)) which implies z € F(&) and Nz € F(&) for
some infinite N\ ¢ *K. Consequently, there exist 4, 4, ¢ & such that
z € *4,and s € *4,. Let 4 be the bipolar of 4, U 44, i.e., 4 = (4:\J A4,)%;
therefore, 4 ¢ &y ([5], Theorem 1, p. 192). Also, z € *4 and \z € *4.

If p € K such that p > 0 then *g,(z) < p. Indeed, if g4(z) = p then

*ea(\z) = W*KA(Z) = \)\ip

which would imply *g 4 (\2) is infinite, contradicting As € *4. Hence z € u,(0).
We conclude a(F(&)) = U {ua(0)] 4 € &},

Now, consider 17 € .44(0) and let 4 = VO which implies 4 € &, (|5],
Proposition 1(e), p. 190). For z € u,(0) and n € N, we have z € *(n™'4) =
*[(#17)°] which implies | (v, 2 )| £ n~! for each v € *17. Thus, we infer u4(0) C
FML I z€ (*1)°¢ then ({(v,2z) € u(0) for each v € *I7 which implies
|{v,2)] < n! for each v € *1” and each n € N.. Hence z € *(»n~'17°) =
*(n'4) for each n € N,.

We conclude p,(0) = (*17)% Consequently,

Ui (0)] 4 € &of = U LFT)| 1V €N(0)].

Using the latter two sets of (4.1), we now give a necessary and sufficient con-
dition for a compatible topology 6 on E to have invariant nonstandard hulls.
Essentially, the condition can be considered as the dual statement of Lemma

1(v) of [4].

PROPOSITION 4.4. Let 6 be « compatible topology on E and let & be the collection
of 0-equicontinuous subsets of F. (E, ) has invariant nonstandard hulls if and
only if

R(F(ENYT = F(E) N poe. (0).

Proof. Assume (E, #) has invariant nonstandard hulls. By Lemma 1(i and v)
of [4], we have Fin (ug(0)) = pnsg(*E); therefore, pnsg(*E) = [a(F(S))]°
by Corollary 3.10 since pg(0) = [1e(0)]"". Now, [F(&) N por,m(0)]* =
pnsg(*E) by Theorem 6.1 of [3]; therefore,

[(F(E)N]" = [pnse(*E)]
[F(éd) M Mo (F,E) (0)]“
F(é)) M Mo(F,E) (O)

It

Conversely, assume F(&) M gy 5 (0) = [a(F(E))] Thus,
Fin (ue(0)) = [2(F(E)N] = [a(F (&)1
= [F(E) M porm (0)]" = pnsy(*E)

by Corollary 3.10, Lemma 5.5 (vii) of [3] and Theorem 6.1 of [3]. Therefore,
(E, 8) has invariant nonstandard hulls by Lemma 1(i and v) of [4].
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The next proposition gives a sufhcient condition for the three sets of (4.1) to
coincide.

ProPOSITION 4.5. Let 8 be « compatible topology on E and let & be the collection
of 0-equicontinuous subsets of I. If (E, 0) is a Schwartz space, then

B(F(E)) = F(E) N por,(0).

Proof. Let 2 ¢ F(&) M wyr.1(0). There exists a balanced, convex 4 € &
such that 2 € *4 M p,r.x (0). Also, there exists a balanced, convex B ¢ &
such that 4 C B and 4 is a 7z-compact subset of (Fg, 75) (see [5], Theorem 1
and Proposition 5, p. 277). Consequently, each element of *4 is rz-near-
standard ([7], Theorem 4.1.13, p. 93) which implies

(4~6) *4 M Mo(r E) (0) C MB(0)~

Indeed, if ¥ € *4 M pop.z(0), then v —*« € uy(0), for some « € 4, which
implies *¢ — v € wyp.1)(0), since wp(0) C por ;) (0); therefore « = 0, since
o(F, E) is Hausdorff, y + (*« — y) = *« and y € we »(0).

Thus, by (4.6), we have z € pz(0), which implies

F(E) M oy (0) C a(F(E))
by Proposition 4.3. From (4.1) we infer (&) M per. 1 (0) = a2(F(S)).

Remark. It is a conjecture of the author that Proposition 4.5 is true only for
Schwartz spaces.

5. Examples. We now give examples for the cases when the sets of (4.1) are
not the same. In IExample 1 we exhibit a space for which the last two sets of
(4.1) are equal and properly contain the first set. Example 2 yields a space for
which the three sets of (4.1) are distinct. Finally, in Iixample 3, we observe a
class of spaces for which the first two sets of (4.1) are equal and are proper
subsets of the third set. Since the first two examples are the function spaces of
(2] (see [2], Section 4), we begin by establishing the necessary notation and
definitions.

Unless stated otherwise, J will denote the closed interval [0, 1] equipped
with the usual topology. Let G = K, the vector space of all K-valued func-
tions on J. For x € G, define

(1) sx) = {j e J[x() # 0.

Let E = K, the set of all x € G for which s(x) is finite. Hence, E is a
proper vector subspace of G (it is assumed that @ is a finite set).

For j € J, define ¢; € E as follows: ¢;(j) = 1 and ¢;(k) = 0 for k& € J such
that & # j. Clearly, {e;| 7 € J} is a Hamel basis for E. Let A(G) be the col-
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lection of all x € G for which x(j) > 0 for eachj € J. Forx € Eandy € G
define

(5:2) vy = 2, «(y0).
Clearly, {(.,.) is a bilinear form on E X G. For B C E, define B C G as
follows: y € BYif and only if |{x, ¥)| < 1 for each x € B. We define B° C E,
for B C G, in a similar manner.

For x € G, define [x] C G, as follows: z € [x] if and only if [z2(j)] = |x(§)]
for each 7 € J. If 4 C G is non empty, then let

(5.3) 4] = {[x]]x € 4}.

Definition 5.4. A set A C G is said to have the linear topology property (L'TP)
if and only if 4 is non empty, A4 C A(G) and the following conditions hold:

1. For x, v € A4, there exists 2 € 4 such that z(5) < min(x(j), ¥(j)) for
eachj € J.

2. For x € 4, there exists v € 4 such that 2y(j) < x(j) for each j € J.
3. Foré > 0andj € J, there exists x € 4 for which x(j) < 6.

Remark. For A C G, we will say that 4 has LTP whenever A4 satisfies
Definition 5.4.

If A C Ghas LTP, then the filter § on G generated by [4] induces a unique
Hausdorff, locally convex linear topology 6 on E such that §g, the trace of §
on £, is the filter of §-neighborhoods 0 in £. Therefore, such a topology will be
called the linear topology induced on E by A, whenever A has LTP.

For 4 C G having LTP and 6, the linear topology induced on £ by 4, we
need to characterize the linear subspace /" of G that is the dual of (E, 6) via the
bilinear form (5.2). This characterization is derived from the following two
propositions.

ProrosiTioN 5.5. Let x € A(G). If y € ([x] M E)°, then s(y) is countable.
Proof. Assume s(y) is uncountable. Hence, there exists # ¢ N, such that
Ji=Hie JInt < |y}

is uncountable. Also, 0 < x(Jj) for each j € Jy; therefore, there exists m € N,
such that

Jo=1j € Jofm™ <x(j)}
is uncountable. Let p = 2mun, let {j,}7—1 C J» and define
Be = 2y (G| (v (i)~
for k = 1,...,p. Thus for 20 = Xi_1Be;,, we have [20(ji)| = |8 = x(jx)
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for kB = 1,..., p; therefore, 2y € [x] M E. Observe,

I(Zovy>| -

LZ::I By(e) | = ‘Lz; x () ly (i)l

= ]; (GG zm™nTp =2
which contradicts y ¢ ([x] M E)°. Consequently, s(y) is countable.

Prorosition 5.6. If x € A(G) then y € ([x] M E)° if and only if s(y) 1s count-
able and 3 jeqy x(Nly ()| = 1.

Proof. Let y € G. Assume s(y) is countable and Y e,y x(F)|v()| £ 1.

Consider z € [x] M E, which implies s(z) is finite, z = > ;e 2(j)e; and
()] = x(j) for j € s(z). It can be assumed that s = s(y) M s(z) is not
empty. Hence,

eyl = | Zieez()y ()]
= 2l zMIEG)TxG)y ()]
= Y@@ =1
since [2(7)|(x(7))"' = 1forj € s. We infer y € ([x] N E)°.
Conversely, assume y € ([x] M £)° Thus, s(y) is countable by Proposition
5.5. Let s(y) = {ji}i=1 and, for £ ¢ N, define
Br = x () [y (G [ (v (i) "

For n € Ny, let x, = > .i—1 Bie;,; therefore, x, € [x] M E for each » € N,.
Observe,

n

S Gl = | 3 2 GG GGG

k=1

= ‘?::,1 By (jx)

for each n € No.. So, v € ([x] M )" implies Tiey vy (i)l = | @ y)| < 1
for each # € N,. Thercfore,

ZiEs(?/) x(])':y(])] é 1.

Let A C G have LTP and let 6 be the linear topology induced on E by 4.
If ¥ C G is defined as follows:

= [{xn, 3)]

vy € Fif and only if s(y) is countable and " jc.n x(7)|v(H)| <

for some x € 4

then it can be inferred, from Proposition 5.6, that F is the dual of (E, §) via the
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bilinear form (5.2) (see [5], Proposition 3, p. 204). In other words,
(E, F {.,.)) is a dual system and 6 is a compatible topology on E.

Next, we need a description of the infinitesimal polars, in *F, generated by
*(x] M E) for x € 4. Recall that a subset S of *J is *-countable if and only
if S is internal and there exists an internal mapping of *N onto .S.

ProrositioN 5.7. If x € A(G) then z € [*([x] N\ E)]! if and only if s(z) is
*_countable and 3 .c.» *x (V)|2 ()| is an infinitesimal.

Proof. Let z € *G. Assume s(z) is *-countable and X .ci» *x(V)|z()] =
B € u(0). Consider v € *([x] N E). If s(@) N s(z) = B then |{v,2) = 0. If
s = s() M s(z) # 0, then

v, 2)] = | Ziew()z(1)]
S Zel@(x()) ()2 ()]

S X'z =8
since |o(v)|(*x(t))~! = 1 for each « € */J, and s C s(z). Thus, |{v,3) =8
and B € p(0) imply (v,2) € u(0). We infer z € [*([x] N E)]. Conversely,
assume z € [*([x] N E)]. Since [*([x] M E)]* C *[([x] N E)"], we can
deduce, from Proposition 5.6 that s(z) is *-countable. Let s(z) = {u}resn+
and for & € *N_, define

Br = *x(u)]z(u)] (2 ()7L

Forn € N4, letx, = 2 j_1 Bie,,. Consequently, x, € *([x] M E) foreachy € *N.
Observe,

A

n

Z *x () |2 (u) |

k=1

|3 kel e

= EAZ:I; Bz (u)

for each n € *N_.

= [{xy 2)] € w(0)

For positive ¢ € R, we have
7
AZ_; o (u) 2 ()| = [(xg, 2)] <&

for each 7 € *N,, which implies > .co) *x(0)|3()] £ ¢. Since ¢ > 0 was
arbitrary, we infer X .c»*x(0)]2(t)| € w(0).

Finally, we must define a class of scalar valued functions called funnels.

Definition 5.8. For X a non empty subset of an interval J of real numbers
we say that x € KY is an X-funnel if and only if x is a positive, real valued
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function and the function ¥(x) € K7, defined by: ¥(x)(j) = x(j) for
7€ J\X and ¥(x)(j) = 0 for j € X, is continuous.

Example 1. Let J = [0,1], G = K’ and let 4 = [A(J)] be the set of all
functions in G that are S-funnels for some non empty finite subset .S of J. It can
be shown that [A(J)] has LTP (see [2], Theorem 6.6); therefore, let § denote
the linear topology induced on E by [A(J)]. As stated earlier, the dual of
(E, 6) is the vector subspace I' C G defined as follows: y € F if and only if
s(y) is countable and Y ;e x() |y ()] < o for some x € [A(J)]. Also, the
sets of the form ([x] M E)° for x € [A(J)], constitute a fundamental system
for &, the collection of #-equicontinuous subsets of F.

The objective of this example is to produce an element z, of *F such that
20 € [p(F(E))] P and 2o € a(F(&)). We will use the fact that [a(F (&))" =
[Fin(ue(0))]" (Corollary 3.10), a(F(<)) = U {*(x]1 N E)]|x € [AWU)]}
(Proposition 4.3) and actually exhibit an element 2z of [Fin(u(0))]° such that
29 ¢ [*([x] N E)]* for each funnel x in [A(J)].

Let X\ be a positive infinitesimal. Let W, = {A} and let

Wy,={N+ 2 —1)2=0D| kb =1,...,21} for n € *N,.
If we define
W =\U{W,|n € *N},

then W is a *-countable subset of *[0, 1/2].
Define zy € *G as follows: z4(:) = 0 for « € *J\W, 2¢(\) = 2! and

(5.9)  20(t) =221 forv € W,and n € *N,.

Consequently, s(zp) = W. Observe that Z%W,, z0(t) = 2=0+D for each
7 € *N and

(5.10)  Tiew 50() = Seonl Sierwy 20(0)]
= D ,en 270D =1,
Also, if Ty = Uﬁzo W,, for ¢ € *N, then
(5.11)  Xiewry20(l) = 2gop 270F0 = 27D

for each £ € *N.

As in Example 2.8, we will use the notation of [2] and define »,([A(J)]) C
*K, for « € *J, as follows: 6 € »,([A(J)]) if and only if |[§] = *x(.) for each
x € [A(J)]. It can be shown that

(5.12) »([A(N)]) C u(0)

for each « € *J ([2], Definition 4.4, Theorem 6.6 and Propositions 4.8 and 4.9).
Let v € Fin (ue(0)). Hence, there exists a standard finite subset Q of J for
which v(5) € Fin(u(0)) for j € Q and v(v) € ».([A(J)]) for € *J\Q ([2],
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Proposition 4.13). Since s(v) is *-finite and *J\(Q is internal, we have that
(5.13) Sy = s(@) N (FI\Q)

is *-finite and s(v) = QU S,. Also if we denote

G4y S i=Q0N W and S, =SeN W,

then Sy and S are disjoint and

(5.15)  s(w) Ms(zp) = S U Ss.

Note that S, is *-finitc and .Sy is a standard finite set since S; C Q and W is
internal.

It can be assumed that S; and Ss are non empty scts.

If 7 €8y, then j € W, for some infinite n of *N, since N\ ¢ u(0) implies
W, C *J\J for each n ¢ N; therefore, from (5.9) we infer z,(j) # u(0) for
cach j € S;. Consequently,

(5.16) Bo = Xjeslv()z0() € w(0)

since 9(7) is finite for each 7 € Q.

Next, there exists ¢y € .Sy such that |[v(.)| £ |v(y,)] for each ¢ &€ .S, since S:
is *-finite. Also, 9(i,) ¢ v, ([A(J)]) implies v(1,) € p(0) by (5.12) therefore,
there exists a positive infinite v € *R such that

(517) vlew)] ¢ w(0)

by Proposition 1.1. Consequently, there exist § ¢ *N\N for which

£
1+> 27 <y,
7=1
Let 1: = Us, W, and define
(5.18) Sy =S8N 1 and S, =S: N [W\T7].

Thus S3 M Sy = B and Sy = 53 U S, Again, it can be assumed that S; and S,
are non empty *-finite sets. Hence, there exists & € {1;...:;1 + Zf,:l 2n—1y

for which there is an internal bijection of {1, ..., &} onto S3, which implies
& = v. Observe,

Bi= 2ieslv(z0() £ Zessl v £ Xiessl v(00)]
= &Hv(w)| £ v|v(w)| € u(0)
since (H.10) implies 25(:) =< 1 for cach ¢ € s(z); therefore,
(5.19) 81 € u(0).
Also
Br = 2ies,lv()]z0() = Xieszo() £ 2wy 20(1) = 27ED € 4 (0)
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from (5.11) and (5.18) since v(¢) € u(0) for ¢« € Sy and & is infinite; therefore,
(5.20) B2 € u(0).

From the above arguments, we deduce

[0, 20)] = | Xies,u 8,0020(0)] £ Zies, [2()]20(0) + Xies, [0(0)]z0(0)
= By + Zlgs:; |7’(L){ZO('-) -+ ZLES4 {W(L)[Zo(b) = Gy + B1 + B2

which implies (v, z4) € u(0). We infer 2y ¢ [Fin(ue(0))]7 since v € Fin(ugs(0))
was arbitrary.

Now, consider an arbitrary funnel x € [A(J)]. llence x is an S-funnel for
some finite subset S of J. Consequently, there exists n « N such that
2=0+2) g § which implies 0 < x(2="*+») and x is continuous at 2—“+2 Thus,
there exists § > 0 such that § < *x(u) for cach ¢ ¢ w(0) + 2= In par-
ticular,

§ < *x(\ 4 2=,

Note that N 4 272 ¢ IV, which implies zo(N 4 27@2) = 272 by (5.9).
Let ¢ = N 4 2702 If we define wy = *x({)er, then w, ¢ *(Jx] M E) and

| (wo, 20 )] = *x(0)z0(¢) > 627

therefore, zo ¢ [*([x] M I2)]" by Proposition 5.7.

We infer, from the above arguments, z, ¢ |a(F (<N and 24 7 g (F(E));
Le, a(F(&)) # la(F(EN].

Since (£, 0) has invariant nonstandard hulls (|2], IZxample 2, Theorem 6.6
and Theorem 4.17) we have [a(F ()] = F(E) M poar m (0) by Proposition
4.4.

Remark. In the construction of W, we used an arbitrary positive infinitesimal
\; therefore, there exists an infinite collection of *-lincarly independent ele-
ments of [a(F(<))] that are not elements of a(I7(<)).

Example 2. For J = |0, 1], let |A(J)) denote the collection of all functions
in ¢ = K’ that are S-funnels for some non empty finite subset .S of [0, 1).
Note that [A(J)) is a proper subset of |A(J)]. In particular, [A(J)) contains
no {1}-funnels. However, [A(J)) does have LTP; therefore, let 6 denote the
linear topology induced on £ = K by [A(J)). Also if I' denotes the set of
all ¥ € G for which s(y) is countable and

Z]‘EA‘(?/) x(])\ y(])‘ < w0

for some x € [A(J)), then [ is the dual of (L, 6).

Now consider z4 € *G of lixample 1. Since s(zy) C *{0, 1/2] it can be shown,
by using the arguments of Iixample 1 and (2], Section 4, that =, 7 a(F(&))
and zo € [a(F(&))]" We will now exhibit an element of F(€) M wo ) (0)
that is not an element of [p(7(& )]
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Let X be a positive infinitesimal. For { = 1 — \, consider ¢;. Clearly
er € F(@@) M por,m) 0);

therefore we need only to show that e; ¢ [Fin(us(0))]? since [a(F(&7))]% =
(Fin (e (0))]* by Corollary 3.10.

It is easy to show that z € we(0), for z € E, if and only if 2(:) € ».((A(J)))
for each « € J which implies z € Fin(ue(0)) if and only if

z(1) € Fin(v.([A(1))))

for each « € J. Using the fact that x is continuous at 1 and x(1) > 0
for each x € [A(J)), it is easily shown that ».([A(J))) = u(0) for each
¢ € *[0,1] M u(1). Thus we infer e € Fin(us(0)). However

er,er) = er(P)ec(§) = 1

which implies e; is not an element of [Fin(ue(0))]%
Consequently, (E, 6) is an example of a space for which the three sets of
(4.1) are distinct.

Remark. In Example 1, we could have shown, with considerably less effort,
that 2y € F(&) M pew.m (0) and 2o ¢ p(F(S)). However, in Example 2 it is
crucial that 2, is an element of [a(F(&"))]*. Thus, the work we could have
avoided in Example 1 would have to be done in Example 2.

Example 3. Let (£, 0) be an infinite dimensional normed linear space and let
F be its dual. Let S and S” be the unit balls in E and F respectively. Also let 8
denote the normed topology on F generated by S’. Since {nS’|n € N,} is a
fundamental system of &, the #-equicontinuous subsets of F, and S’ is a
B-bounded, B-neighborhood of 0 € F, it can be shown that F(&) = Fin(us(0))
which implies g (F(&)) = ps(0) by Corollary 2, 3 and Proposition 1.1. From
the fact that [Fin(ue(0))]* = us(0) (see [3], Theorem 5.12) we deduce

[R(F(ENT = [1s(0)]" = ps(0) = B(F(E)).

However, infinite dimensional normed linear spaces do not have invariant
non-standard hulls ([3], Theorem 4.4); therefore,

[B(F(EN]T # F(E) N o 1) (0)
by Proposition 4.4.
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