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ON THE NONSTANDARD DUALITY THEORY 
OF LOCALLY CONVEX SPACES 

ARTHUR D. GRAINGER 

This paper continues the nonstandard dual i ty theory of locally convex, 
topological vector spaces begun in Section 5 of [3]. In Section 1, we isolate an 
external property, called the pseudo monad, t h a t appears to be one of the central 
concepts of the theory (Définition 1.2). In Section 2, we relate the pseudo 
monad to the Fin operation. For example, it is shown tha t the pseudo monad 
of a ju-saturated subset A of * £ , the nonstandard model of the vector space E, 
is the smallest subset of A t ha t generates Fin (^4) (Proposition 2.7). 

The nonstandard model of a dual system of vector spaces is considered in 
Section 3. In this section, we use pseudo monads to establish relationships 
among infinitesimal polars, finite polars (see (3.1) and (3.2)) and the Fin 
operation (Theorem 3.7). These relationships, along with pseudo monads, are 
used to obtain a necessary and sufficient condition for the nons tandard hulls 
of a locally convex, topological vector space to be invar iant (Proposition 4.4). 
Also in Section 4, we examine the pseudo monad of F(cf)} the union monad 
of equicontinuous sets. We show, in Proposition 4.5, for Schwartz spaces this 
pseudo monad, denoted by fL(F((o)), has a nice characterization. Also, we 
give examples t ha t tend to support the conjecture t ha t the characterization of 
Proposition 4.5 is only true for Schwartz spaces. 

P r e l i m i n a r i e s . Throughou t this paper, K will denote either the real or 
complex numbers and E will symbolize an infinite dimensional vector space 
over K. I t is assumed tha t E and K are entities of a full set-theoretical 
s t ructure 

BY = \B.\ a Ç T}, 

where T is the set of types. We will assume tha t the nonstandard s t ructure 
*Br is a higher-order, K-saturated ultrapower of B r , where K is the cardinal i ty 
of U(rç r B r. Note tha t the cardinali ty of any ent i ty of B r is strictly less than K. 
Also due to a theorem of Kenneth Kunen, /^-saturated ul trapowers exist, 
wi thout the assumption of the generalized cont inuum hypothesis ([1], Theorem 
10.4, page 239 and [6], Theorem 1.6.4, page 32). 

We make the usual definitions and extensions for * £ and *K as found in the 
preliminaries of [2], [3] and [4]; e.g., /x(S) denotes the monad of a filter g, 
/ifl(x) denotes the monad of the filter of ^-neighborhoods of x G E for topology 
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NONSTANDARD DUALITY 461 

6 on E, jLt(O) symbolizes the set of infinitesimals of *K, etc. For A C *E, 
define Fm(A) as follows: 

F i n ( 4 ) = {z e *E\ \z e A for each X G /x(0)}. 

T h e set Fin (^4) is nonempty if and only if 0 Ç ^4. I t can be shown tha t 

(0.1) Fin (Fin (A)) = Fin (A). 

Also it is easy to see tha t Fin(/x(0)) is the set of finite numbers of *K. For 
further properties of Fin (^4), the reader is referred to [2]. 

Actually, the above definitions and extensions can be made for any ent i ty F 
of Br t ha t is a vector space over K; therefore, we make these assumptions 
for such an ent i ty F without further elucidation. 

1. P s e u d o m o n a d s . We begin this section by illustrating one of the most 
useful properties of monads of sub-additive filters on vector spaces. The proof 
of the following proposition is essentially due to Henson and Moore (cf. [3], 
Theorem 1.6). 

PROPOSITION 1.1. Let F be an entity of BY such that F is a vector space over 
K. If % is a filter on F for which M (5) + M (S) C M (5) ^en for z Ç M (S) there 
exists an infinite œ G *K such that uz Ç M ( 8 ) -

Proof. Let z £ M (S)- For each n £ N and x Ç g, define the internal set 
A(n, x) as follows: 

A(n,x) = [m\m Ç *N, n < m and mz G *X\. 

Since M (3) + M (8) C M (8) implies nifi(%) C M (5) I o r each m G N, we have 
tha t each set A(n, x) is nonempty. Also the collection 

â = \A(n, x)\ n G N, x G %} 

has the finite intersection property since g is a filter. By Theorem 2.7.12 of [6] 
and the saturat ion of *Br, there exists co Ç H (f. We thus infer œz G M(5) 
and co is infinite. 

The main idea of this note is to exploit subsets of *F t ha t satisfy the con­
clusion of Proposition 1.1. Since most of the subsets of *F are not filter monads, 
we need a way of extending the conclusion of Proposition 1.1 to arbi t rary 
subsets of *F. The following definition provides such a procedure. 

Definition 1.2. Let F be an ent i ty of By such tha t F is a vector space over 
K. For A C *F define jï(A) C A as follows: a G [l(A) if and only if a £ .4 
and there exists an infinite 0 Ç *K such tha t /3a £ A. The set j&C<4) is called 
the pseudo monad of A. 

T h u s if F and a filter g on F satisfy the hypotheses of Proposition 1.1 then 

AOxOS)) = M ( 5 ) . 
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462 ARTHUR D. GRAINGER 

Observe tha t fi(A) ^ 0 if 0 G A. We shall see tha t fi{A) is non trivial if A 

satisfies the following condition. 

Definition 1.3. Let F be an ent i ty of B r t ha t is a vector space over K. A set 
A C *F is id-saturated if and only if X̂ 4 C A for each X G M ( 0 ) . 

For the remainder of this section, all vector spaces over K considered are 

entities of BT. 

PROPOSITION 1.4. Let F be a vector space over K. / / A C *F is ^-saturated 
and has a non zero element then p.(A) has a non zero element. 

Proof. Let z ^ A such t ha t s ^ O , let X0 G M(0 ) for which X0 ^ 0 and con­
sider So = X02. Note t ha t z0 7^ 0 and z0 G A. Also X0 G /x(0) implies X0

2/3 G /x(0) 
and X0~1/3 is infinite. Hence 

X0-
1/3£o = Xo-1/3(X0z) = Xo2/% G 4 

since A is /x-saturated. Therefore, z0 is a non zero element of fi(A) since z0 G ^4, 
X0

_1/32;o G 4̂ and X0~1/3 is infinite. 

PROPOSITION 1.5. Let F bea vector space over K and let A C *F be ^-saturated. 
If z G fi (A) then there exists a positive, infinite ft G *R for which az G fi (A) for 
a G *K such that \a\ ^ 0. 

Proof. Let s G A 04) which implies z G 4̂ and there exists an infinite 0i G *K 
such t ha t jSiZ G ^4. Now^, fii being infinite implies fi\~l and /3i~2/3 are infini­
tesimals. Thus , there exist a>i, co2 G * N \ N for which coi/3i_1 and a>2/3i-2/3 are 
infinitesimals. Let fi = min{a>i, co2}. Hence (3 is a positive, infinite element of 
*R. 

Now, consider a G *K for which |a| ^ 0. Since 

l^r1! s t3\Prl\ S WiPrl\ 

we have a:/^-1 G M ( 0 ) . Similarly, 

| ^ i ~ 2 / 3 | è P\Pi~2n\ ^ IC02/3!-2/3! 

implies a(3r2/3 G M ( 0 ) . 
Therefore, if a G *K such t ha t \a\ ^ 0 then 

az = affr1^) G 4 

since /3iZ £ A, A is ju-saturated and api~l G M ( 0 ) . Also, 

^i/a(az) = P^afir1^) = apr*'*(plZ) G ^ 

since a^i"2 7 3 G M ( 0 ) . We thus infer t ha t az G fi (A) since /3i being infinite 
implies /3i1/3 is infinite. 

PROPOSITION 1.6. Let F be a vector space over K. / / A and B are ^-saturated 
subsets of *F then fi(A C\ B) = fi(A) (~\ fi{B). 
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Proof. Clearly fi{A C\ B) C fi(A) H fi(B). Let z G fi {A) H fi(B) which 
implies z ^ A C\ B and there exist positive, infinité /3i, /32 G *R such tha t as G 4̂ 
for |a| ^ /3i and £2 G 5 for |£| ^ /32 by Proposition 1.5. Let 0 = min{0i, /32j. 
Consequently, 0z £ A C\ B which implies s G fi (A C\ B) since 0 G *K is 
infinite. Therefore fi{A) (~\ fi(B) C fi{A C\ B). 

Using Propositions 1.1 and 1.5, we can give conditions for a filter, in a vector 
space, to have a basis of balanced sets. 

PROPOSITION 1.7. Let F be a vector space over K and let g be a filter on F for 
which n(%) + M ( S ) C M ( 8 ) - If M ( 5 ) is n-saturated then $ &as a filter basis of 
balanced sets. 

Proof. Let s £ /z(g) and let X G *K such tha t |X| g 1. Proposition 1.1 
implies ju(/x(S)) = M ( 5 ) Î therefore, there exists a positive, infinite /3 G *R 
such tha t as G M (8) f ° r \a\ = £ by Proposition 1.5. In particular, Xz G M (S) 
since |X| ^ 1 < /3. Consequently M(5) is *-balanced which implies 8 n a s a 

filter basis of balanced sets ([2], Proposition 2.6). 

From the above proposition, we derive the following s tandard results. 

PROPOSITION 1.8. Let F be a vector space over K and let ç : K X F —> F 
denote the scalar multiplication map. Let 6 be a topology on F for which vector 
addition is continuous. If <p is continuous at (0, 0) then the map x —» Xx is 
6-continuous on F for each X G K such that |X| ^ 1. 

Proof. Let^Ke(O) denote the filter of ^-neighborhoods of 0 G F and let ne(0) 
denote the monad oî^Ve(0). By the continuity of vector addition, we have tha t 
for 7 6 ^ ( 0 ) there exists W G ^ ( 0 ) such tha t W+WC F ; therefore, 

M(,(0) = ne(0) + ne(0) ([2], Proposition 2.8). Also, Theorem 4.2.7 of [7] and 
the continuity of <p a t (0, 0) imply *<p[n(0) X M*(0)] C ju*(0); i.e., ne(0) is 
ju-saturated. Consequently, there exists a filter basis S C ^ e ( 0 ) such tha t each 
F G S is balanced by Proposition 1.7. Since X(x + F) = Xx + XF C Xx + F 
for x (z F, V G <̂  and X G K such tha t |X| ^ 1, we infer tha t the map 
x —> Xx is ^-continuous for each X G K such tha t |X| :§ 1. 

COROLLARY 1.9. If 0 and F satisfy the hypotheses of Proposition 1.8, then 
(F, B) is a topological group with respect to vector addition. 

Proof. Apply Proposition 1.8 with X = — 1. 

PROPOSITION 1.10. Let 6 and F satisfy the hypotheses of Proposition 1.8 and 
let^Ve(0) denote the filter of 6-neighborhoods of 0 G F. If each V G ^ e ( 0 ) is 
absorbing then (F, 6) is a topological vector space. 

Proof. Arguing in the manner of Proposition 1.8, we infer from Proposition 
1.7 the existence of a filter basis S C ^ « ( 0 ) of balanced sets. Therefore (F, 6) 
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is a topological vector space since the members of SJ are absorbing and, for 
V G &, there exists W G ê such that W + W C V ([5], Theorem 1, page 81). 

2. Pseudo monads and the Fin operation. In this section, we establish 
the relationship between the pseudo monad and the Fin operation. The objec­
tive is to show that p(A) is the smallest subset of a ^-saturated set A that 
generates Fin (^4). 

PROPOSITION 2.1. Let F be a vector space over K. If A C *F such that 0 G A 
then 

Fin (4) = Y'm(p(A)). 

Proof. Since p. (A) C A implies Y m (fi {A)) C Y'm(A), it suffices to show 
that Fin (A) C Fin(p(^L)). 

Let z G Fin (.4) and let X G M(0). There exists an infinite 0 G *K such that 
(3\ G /x(0). Hence \z G A and p(\z) = (p\)z G A. Therefore \z e P(A). We 
thus infer that z G Ym(p(A)) since X G M(0) was arbitrary. 

PROPOSITION 2.2. Let F be a vector space over K. If A C */7 swcfe / t o 0 G 4̂ 
then 

A (Fin (A)) CAG4). 

Proof. Let s G jù(Fin(^4)). Hence 2 G Fin (71) and there exists an infinite 
P G *K for which $z G Fin(.4). Now, /fc G Fin (4) implies \(/3z) G 4 for 
each X t M(0). In particular z = /3"l(^z) G A since 0-1 G /x(0). Also 

/3"1/3 G M(0) 

which implies /32/3z = P~in(/3z) G -4. Consequently, s G A(^4)-

COROLLARY 2.3. Z,e£ F be a vector space over K. If A C *F is ^-saturated then 

fi(Fm(A)) = fi(A). 

Proof. A being /x-saturated implies A C Fin(^4) ([2], Proposition 1.3); 
therefore, p(A) C p(Y'm(A)). Proposition 2.2 implies jut (Fin (̂ 4 ) ) C p(A). 

COROLLARY 2.4. Let F be a vector space over K. If A C *F is ^-saturated 
then p(p(A)) = p(A). 

Proof. A being /x-saturated implies 0 G P(A); therefore, 

P(A) = P(Ym(A)) = p(Y'm(p(A))) C P(P(A)) 

by Corollary 2.3 and Propositions 2.1 and 2.2. By definition, p(p(A)) C P(A); 
therefore, p(A) = p(p(A)). 

Now we are in a position to show that fi(A) is the smallest subset of a /x-satu­
rated set A that generates Y'm(A). 
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LEMMA 2.5. Let F be a vector space over K and let A C *F be /z-saturated. If 

B C *F such that Fin ( 4 ) C F i n ( £ ) , then p.(A) C fi(B). 

Proof. A being jit-saturated implies 0 £ A C Fin (A); therefore, Fin (^4) C 
Fin(B) implies 0 G Fin(73) which implies 0 G B. Consequently, 

fi(A) = j t t (F inU)) C / i (F in (5 ) ) C p ( 5 ) 

by Proposition 2.2 and Corollary 2.3. 

PROPOSITION 2.6. Let F be a vector space over K. If A and B are id-saturated 
subsets of *F for which Fin(.4) = F'm(B) then p{A) = fi(B). 

Proof. Fin(yl) C Fin (73) implies p.{A) C P(B) by Lemma 2.5. Conversely, 
Fm(B) C F i n ( ^ ) implies fi(B) C fi(A) again by Lemma 2.5. Therefore 
HA) = fi(B). 

PROPOSITION 2.7. Let F be a vector space over K and let A C *F be ^.-saturated. 
If B C *Ffor which ¥'m(B) = F'm(A) then p.(A) C B. 

Proof. Fin (A) C Fin (73) implies fi(A) C P{B) C B by Lemma 2.5. 

Example 2.8. We now exhibit a Fin invariant set of infinitesimals tha t agrees 
with its own pseudo monad. 

Let / = [0, 1], let F = K J and define 

31 = \x t F\ 0 < x(i) for each i f 7). 

Consider an infinitesimal i G *R such tha t 0 < i which implies i £ */ . Fol­
lowing the notat ion of [2] we define 

*\(?l) = {X G *K| |X| S *x(i) for each x (E 21}. 

Since \*x\ x Ç 21} is an external subset of some *-finite subset of *2(, it can be 
shown tha t *\(2l) is non trivial, i.e., *\(2I) ^ {0} (see [6], Example 1.5.3). By 
Proposition 4.9 of [2], ^(21) is Fin invariant, i.e., ^(21) = Fin(vL(21)), since 
21 satisfies Definition 4.4 of [2] (see [2], Theorem 6.6). 

Consider X0 £ ï\(2l)- For x £ 21 and w G N, define 7}(x, w) C *N as follows: 

Z)(x, n) = {m ^ *N| |mX0| ^ *x(i) and n < m\. 

Now, x £ 21 implies m _ 1 x £ 21 for each m Ç N which implies |X0| ^ ra_1*x(i) 
for each m Ç N ; therefore, ^ = {Z)(x, w)| x £ 31, w 6 N} is a collection of 
non empty internal subsets of *N. Fur thermore, we infer tha t 2) has the 
finite intersection property since {xi, . . . , x?j C 21 implies x = Xi A . . . A 
Xj G 21. By Theorem 2.7.12 of [6] and the saturat ion of *BT, there exists 
co Ç r\ 2). Consequently, œ is infinite and coX0 (E y t(2l). Therefore, /À(I \ (21)) — 
^(21) since X0 £ ^(21) was arbitrary. 

https://doi.org/10.4153/CJM-1980-037-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-037-4


466 ARTHUR D. GRAINGER 

3. Pseudo monads and dual systems. Let F be a vector space over K 
and let ( . . . , . . . ) be a bilinear functional on E X F. The collection (£, F, 
( . . . , . . . ) ) is said to form a dual system if and only if the following conditions 
are satisfied: 

(i) If x G E and x ^ 0 then (x, y ) ^ 0 for some y £ F, and 
(ii) If ;y G ^ and y ^ 0 then (#, 3/ ) ^ 0 for some x G E. 

Throughout this section, it will be assumed that the bilinear functional 
( . . . , . . . ) and the vector space E and F form a dual system. 

Let A be a subset of *£ (internal or external). Following the notation of [3] 
we define 

(3.1) A* = {g e *F\ (p,g,) G M(0) for all p G A], 

(3.2) i ^ l g G *F| <£,?> G FinG*(0)) for all £ G 4 } . 

We define A l and Af similarly for A C *F. Also we denote (̂ 4*)z" by Ali and 
04 O7 by Aff. Immediately from the definition we derive 

(3.3) {A"U B)1 = A* r\Bl and {AVJB)f = Afr\Bf 

for subsets A, B of either *£ or *77. Also we will make use of the properties of 
A1 and Af listed in Lemma 5.5 of [3]. 

LEMMA 3.4. Let A and B be subsets of G, where G is either *E or *F. 
(a) If Au = A and Bu = B then {A C\ B)u = A C\ B. 
(b) IfA" = A and Bff = B then (A H B)ff = A C\ B. 

Proof. A H B = Au C\ Bu = (A'\J BlY hy (3.3); therefore, 

(A C\B)U = (AtKJB*)*" = (A*\J B1)1 = A C\ B 

by Lemma 5.5 (vii) of [3]. A similar argument proves (b). 

We will say that a topology 6 on E is compatible with the dual 
system (E, F, ( . . . , . . . ) ) if and only if 6 is a Hausdorff, locally convex linear 
topology and a(E, F) C 0 C r(E, F), where a(E, F) and r(E, F) are respec­
tively the weak and Mackey topologies on E generated by F and ( . . . , . . . ) 
(see [5], Proposition 4, page 206). 

In [3], Henson and Moore showed that if 6 is a linear topology on E com­
patible with the dual system then 

(3.5) [M*(0)]<= F(<f), [F(<?)V = »e(0) 

(3.6) (me)* = Fin (/x* (0)) and F((f) = Fm(me) 

where me = [Fin(jU0(O)]\ S is the collection of all 0-equicontinuous subsets of 
F and F((f) = U {*A\ A G £\ (see [3], Theorems 5.8, 5.9 and 5.11). The 
central concept in the above results is the fact that /xe(O) is a filter monad. In 
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the following theorem, we extend Henson and Moore's results to pseudo 
monads. 

T H E O R E M 3.7. If A C * £ such that jl(A) = A then: 
(a) A' = Fin ([Fin ( 4 " ) ] ' ) = A', 
(b) Fin ( 4 " ) = [Fm(Au)y\ 

(c) A' = [Fin ( 4 " ) ] ' , 
(d) , 4 " = Fin ( 4 " ) = [ F i n ^ " ) ] " ^ 
(e) Fin (y4") = [Fin ( 4 " ) ] " . 

Proof. If z G Fin ([Fin (4 " ) D then As G [Fin ( 4 " ) ] * for each X G /x(0) 
which implies (q, Xz) G /x(0) for X G /x(0) and g G Fin (.4")-

Let s G Fin ([Fin (A ii)]i) and consider an arbi t rary p G A. A = fi (A) im­
plies the existence of an infinite ftp G A. Consequently, 

(p,z) = (P~lPP,z) = (PPiP-h) G „(0) 

since P~l G /x(0) and , 4 " C F i n ( . 4 " ) , i.e., / ^ G F i n ( v 4 ^ ) and p~lz G 

[Fin ( 4 " ) ] * . Therefore z U 1 ' . 
Let 2 G i * and consider an arbi t rary q G Fin(^4") . If X G /x(0) then 

(g, Xz) = <\g, z ) G /x(0) since Xg G Au. So, Xz G [Fin ( 4 " ) ] * for each 
X G /x(0); thus, z G Fin ([Fin (4 ")]*)• Therefore, 4 * = Fin ([Fin (A ")]*)• 

By Lemma 5.7 of [3], we have Fin(^4*) = Af. Consequently, 

Af = Fin (4*) = Fin (Fin ([Fin (.4 ")]*)) = Fin ([Fin ( 4 " ) ] ' ) = A1 

by (0.1). Hence, (a) is established. 

Let q G [ F i n ( 4 " ) ] " and let X G /x(0). If z £ ,4 * then Xz G [Fin ( 4 " ) ] S by 
(a), which implies (Xq, z ) = (g, Xz ) G /x(0) since [Fin 0 4 " ) ] * " = [ F i n ( ^ " ) ] f 

([3], Lemma 5.5(vii)). Consequently Xq G Au which implies q G Fin ( .4") 
since X G M(0) was arbitrary. We infer Fin 04**) = [ F i n ( A u ) ] u which estab­
lishes (b) since ¥'m(Au) C [Fin 0 4 " ) ] " ([3], Lemma 5.5(vi)) . 

Let z G Ai and let q G Fin 0 4 " ) be arbi trary. For X G M(0) we have 
(<7, Xz) = (Xq,z) G M(0) since Xg G ^4ÏZ; consequently, (g, z ) G Fin(ju(0)) 

which implies z G [Fin04 ^O]'. 
Let z G [Fin 0 4 " ) ] ' and let ^ G ^ be arbi trary. Since p.(A) = 4 C 4*1" C 

Fin 0 4 " ) , we have tha t there exists an infinite f3 G *K such tha t ftp G A 
which implies ftp G Fin 0 4 " ) . So, 

(p,z)= (p-^p, z > = /3- 1 <0/>, z ) G M(0) 

since fi~l G M(0) and (fip,z) G Fin(/x(0)). Consequently z G 4̂ " therefore, 
(c) is established. 

Let q G 4 " a n d let X G /x(0). For z G 4̂ * we have (\q, z } = X (g, z ) £ M(0 ) 
since (g, z ) G Fin(/x(0)). Hence Xq G ^ 4 " which implies q G Fin 0 4 " ) since 
X G M(0) was arbi trary. 

Let g G Fin 0 4 " ) which implies Xq G ^4" for each X G M ( 0 ) . If z G 4 * then 
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^ ( ( 1 J Z )
 = (^ÇiZ) £ M(0) for each X Ç /x(0) which implies (q,z) Ç Fin(/x(0)). 

Hence g £ Aif; therefore, Aif = Fin (,4"). 
Also Aif = [ F i n ^ * ' ) ] " since [Fin^l1 '*)]' = Ai from (c). Consequently (d) 

is established. Finally, we obtain (e) by observing 

[Fin(,4* i)] ' /= Fin ([Fin 04") ]" ) = Fin (Fin ( 4 " ) ) = Fin (4"') 

from Lemma 5.7 of [3], part (b) and (0.1). 

Remark. In figure 1, we summarize the results of Theorem 3.7 with a flow 
diagram. Observe that once (3.5) is established, (3.6) and the other results of 
Theorems 5.8, 5.9 and 5.11 of [3] are obtained from Proposition 1.1 and 
Theorem 3.7. 

A* = F in (LFin( i4" ) ]0«^ |F in(A")] ' 

• F i n ^ " ) 
Fin 

FK.UKE 1. A flow diagram of Theorem 3.7. 

In the next proposition and corollary, we relate the pseudo monad of A l 

to Fin 04") . 

PROPOSITION 3.8. Let A C *£ such that p.(A) = A. If B = Fin ( 4 " ) then 

Proof. Assume that x0 G [jl(Bi)]i such that xQ (I B = Fin(,4"). Hence, 
there exists X0 £ /x(0) for which X0x0 (f_ A li. Thus, there exists z0 G A * for which 

(3 .9) <X0Xo,2o> i M ( 0 ) . 

Now, A1 = Fin (5*) by Theorem 3.7(a); therefore, A1 = Fin (#(!**)) hy 
Proposition 2.1. Thus, z0 Ç A l and X0 G /x(0) imply X0Zo G fi(B*) which implies 
(xo, Xô o) G M(0), since x0 G [j&(£*)]\ contradicting (x0, X0Zo > = (X0x0, z0 ) G 

M(0). We thus infer [ju (£*)]* C B. 
By Theorem 3.7(b) we have Bu = B; therefore, U{B*) C B* implies 

B = Bil C MB*)]* (see [3], Lemma 5.5(iv)). 
Consequently, [ju (£')]* = £ . 

COROLLARY 3.10. If A C*E such that (i(A) = A then [p.(A*)y = Fin 04") . 

Proof. Observe that fiiA*) = p.([Fin(A **)]*) by Theorem 3.7(a) and Corol­
lary 2.3 since [Fin(^4a')]* is ju-saturated by Lemma 5.5(ii) of [3]. Therefore, 
[p.(A*)y = Fin(yl^) by Proposition 3.8. 
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4. App l i ca t ions . Let 6 be a compatible topology on E, let S denote the 
collection of 0-equicontinuous subsets of F and let 

F(éd) = VJ {*A\A G <f}. 

From (3.5), we infer [F(é>)]ii = F(éû) and [/*„<*•.*) ( 0 ) ] " = Ma<F,*)(0); con­
sequently, 

F^) r\ nffiF,E)(0) = [F(<f ) n / M F , * ) ( O ) ] " 

by Lemma 3.4(a). 
From the fact that pns^(*£) C Fin (^(0)) , we have 

[fl(F(<?))]" = [Fin M0)) ]< C [pns,(*E)]< 

= [F{éd) r\ H.V.EAO)]" = F ( < ? ) n M ^ ^ ) ( 0 ) 

by Corollary 3.10, Lemma 5.5 (iv) of [3] and Theorem 6.1 of [3]. Therefore, 
we have 

(4.1) A W ) ) C [ A ( / W ) ] " C F(<^) ^ /M*.*)(0) 

(see [3], Lemma 5.5 (vi)). 
In this section, we give a sufficient condition for the sets of (4.1) to coincide 

(Proposition 4.5) and we exhibit examples for each of the three cases when the 
sets of (4.1) do not coincide (see Examples 5.1, 5.2 and 5.3). 

For a balanced convex, a(F, E)-compact subset A of F, let 

FA = \J {nA\n G N+}. 

Consequently, FA is a vector subspace of F. Let gA be the gauge (Minkowski 
functional) of A on FA. Hence gA is a norm on FA, since a(F, E) is Hausdorff. 
Let rA denote the normed topology on FA generated by gA. The notat ion /zA(0) 
will denote the monad of the filter, in FA} of r^-neighborhoods of 0 G FA. Thus , 

(4.2) tiA(0)C*AC*FA and 

z G /xA(0) if and only if *gA(z) G M ( 0 ) . 

Our first proposition of this section gives the structure of jl(F(éô)) when éû 

is the collection of 0-equicontinuous subsets of F for a compatible topology 
6 on E. 

PROPOSITION 4.3. Let 6 be a compatible topology on E. If S\ is the collection of 
all <r(F, E)-closed, balanced convex 6-equicontinuous subsets of F, then 

fi(F(^)) = U ( ^ ( 0 ) | i G A } 

= U { ( * F ) ' | F G ^ ( 0 ) | 

where ^Ve(0) is the filter of 6-neighborhoods o / O f E. 

Proof. If s G MA(0) then there exists an infinite X G *K such tha t Xz G MA(0) 
by Proposition 1.1. Thus , from (4.2), we infer U {nA(0)\ A G <^o} C P ( F ( ^ ) ) . 
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Now, consider z G jl(F((f)) which implies z G F(cf) and \z G F(SJ) for 
some infinite X G *K. Consequently, there exist ^4i, y42 G <̂  such that 
z G * ^ , a n d \ z g *^2. Let ^ be the bipolar of Ax U ,42, i.e., A = ( i i W i 2 ) 0 f l ; 
therefore, ^ G ^ o ([5], Theorem 1, p. 192). Also, z G *A and Xz G *A. 

If £ G K such that £ > 0 then *gA(z) < p. Indeed, if gA{z) ^ p then 

*gA{\z) = \\\*gA(z) ^ |Xb 

which would imply *^4(Xs) is infinite, contradicting \z G *^4. Hence 2 G MA(0). 

We conclude p.(F(<?)) = U { M A ( 0 ) | / l G A } . 
Now, consider F G ^ ( 0 ) and let A = F° which implies A ^ S\ ([5], 

Proposition 1(e), p. 190). For z G MA(0) and n G N+ we have z G *(w~1^l) = 
*[(wF)°] which implies | (y, z )\ rg n _ 1 for each z; G *F. Thus, we infer MA(0) C 
(*F)Z'. If z G (*F)* then (v, z ) G /x(0) for each v G *F which implies 
1(^,^)1 S n~l for each v G *F and each n G N+ . Hence z G *(n~1T/0) = 
*(n~lA) for each w G N+. 

We conclude MA(0) = (*F)'. Consequently, 

u{MA(o)M e ^0} = v{(*vy\ F G ^ ( O ) } . 

Using the latter two sets of (4.1), we now give a necessary and sufficient con­
dition for a compatible topology 6 on E to have invariant nonstandard hulls. 
Essentially, the condition can be considered as the dual statement of Lemma 
l (v)of [4]. 

PROPOSITION 4.4. Let 6 be a compatible topology on E and let S be the collection 
of 6-equicontinuoiis subsets of F. (E, 6) has invariant nonstandard hulls if and 
only if 

[ A W ) ) ] " = / W n M * < F . * ) ( o ) . 

Proof. Assume (E, 6) has invariant nonstandard hulls. By Lemma l(i and v) 
of [4], we have Fin M O ) ) = pns*(*E); therefore, pns0(*£) = {pl(F(S)))Y 
by Corollary 3.10 since /x*(0) = [/x*(0)]". Now, [F(<f) C\ ^FtE) (0)]* = 
pnsfl(*£) by Theorem 6.1 of [3]; therefore, 

[A(F(<f ) ) ] " = [pns,(*E)]' 

= [ f (^)n w ? , s ) (o ) ]« 

Conversely, assume F(<f) C\ /MF,E)(0) = [p.(F(éJ))]u. Thus, 

Fin M O ) ) = [>x{F{eu))Y = [ A W ) ) ] ' • " 

= [ f (<?) H //,<*,«(0)]' = pnse(*£) 

by Corollary 3.10, Lemma 5.5 (vii) of [3] and Theorem 6.1 of [3]. Therefore, 
(E, 6) has invariant nonstandard hulls by Lemma l(i and v) of [4]. 
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The next proposition gives a sufficient condition for the three sets of (4.1) to 
coincide. 

PROPOSITION 4.5. Let 6 be a compatible topology on E and let Sd be the collection 
of 6-equicontinuous subsets of F. If {E, 0) is a Schwartz space, then 

A ( / W ) = F(£)C\vaiFtE)(0). 

Proof. Let z G F(é°) C\ /X<T(F,#)(0). There exists a balanced, convex A G c? 
such tha t z G *A C\ II<T(F,E)(Q). Also, there exists a balanced, convex B £ $ 
such t ha t A C B and A is a r^-compact subset of (FB, rB) (see [5], Theorem 1 
and Proposition 5, p. 277). Consequently, each element of *A is rB-near-
s tandard ([7], Theorem 4.1.13, p. 93) which implies 

(4.6) M n / M F , * ) ( 0 ) C M B ( 0 ) . 

Indeed, if y £ *A H Mff(F,^)(0), then 3/ — *a Ç ^#(0)? f ° r some a (z A, which 
implies *a — y t / M F , £ O ( 0 ) , since /is(0) C V<T(F,E) (0) ; therefore a = 0, since 
0-(7s E ) is Hausdorff, 3> + (*a — y) = *a and y G M(*\#)(0). 

Thus , by (4.6), we have z Ç M/?(0), which implies 

by Proposition 4.3. From (4.1) we infer F(é°) C\ na(FtE)(0) = p.{F(S))). 

Remark. I t is a conjecture of the author tha t Proposition 4.5 is true only for 
Schwartz spaces. 

5. Examples . We now give examples for the cases when the sets of (4.1) are 
not the same. In Example 1 we exhibit a space for which the last two sets of 
(4.1) are equal and properly contain the first set. Example 2 yields a space for 
which the three sets of (4.1) are distinct. Finally, in Example 3, we observe a 
class of spaces for which the first two sets of (4.1) are equal and are proper 
subsets of the third set. Since the first two examples are the function spaces of 
[2] (see [2], Section 4) , we begin by establishing the necessary notation and 
definitions. 

Unless stated otherwise, / will denote the closed interval [0, 1] equipped 
with the usual topology. Let G = KJ, the vector space of all K-valued func­
tions on / . For x £ G, define 

(5.1) s(x) = {je J\x(j) ^ 0 ) . 

Let E = K ( / ) , the set of all x £ G for which s(x) is finite. Hence, E is a 
proper vector subspace of G (it is assumed tha t 0 is a finite set) . 

For j G / , define e$ G E as follows: ej(j) = 1 and ej(k) = 0 for k £ / such 
tha t k 9^ j . Clearly, {ej\j £ J} is a Hamel basis for E. Let 31(G) be the col-
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lection of all x Ç G for which x(j) > 0 for each j Ç J. For x £ E and y Ç G 

define 

(5.2) <x, y) - X) *(JMJ)-

Clearly, (. , . ) is a bilinear form on £ X G. For B C E, define 13° C G as 
follows: ;y G ^ ° if and only if | (x, y )| ^ 1 for each x G i*. We define B° C £ , 
for B C G, in a similar manner. 

For x G G, define [x] C G, as follows: z £ M if and only if \z(j)\ ^ \x(f)\ 
for each j Ç / . If / l C G is non empty , then let 

(5.3) [A] = {[x]\xCA\. 

Definition 5.4. A set A C G is said to have the linear topology property ( L T P ) 
if and only if A is non empty , A C 21(G) and the following conditions hold: 

1. For x, y (z A, there exists z Ç A such tha t z(j) ^ min(x ( j ) , y(j)) for 
each j G / . 

2. For x ( | i , there exists y (z A such tha t 2y(j) g x( j ) for each j £ J . 
3. For <5 > 0 and j G / , there exists x G yl for which x( j ) < 5. 

Remark. For A C_ G, we will say t ha t yl has L T P whenever A satisfies 
Definition 5.4. 

If A C G has L T P , then the filter g on G generated by [/I] induces a unique 
Hausdorff, locally convex linear topology 6 on E such t ha t g#, the trace of $ 
on £ , is the filter of ^-neighborhoods 0 in E. Therefore, such a topology will be 
called the linear topology induced on E by A, whenever A has L T P . 

For A C G having L T P and 0, the linear topology induced on E by A, we 
need to characterize the linear subspace F of G t h a t is the dual of (E, 6) via the 
bilinear form (5.2). This characterizat ion is derived from the following two 
propositions. 

PROPOSITION 5.5. Let x £ 31(G). If y £ ([x] C\ E)° , //zerc s(;y) is countable. 

Proof. Assume s(y) is uncountable. Hence, there exists n (E N + such tha t 

/ i = \J£J\n-1 < \y(j)\\ 

is uncountable. Also, 0 < x(j) for each j £ / i ; therefore, there exists m £ N + 

such tha t 

J2 = {j G / i l w - 1 < x(j)} 

is uncountable . Let >̂ = 2mn, let {i^}?=i C Ji and define 

& = ^C7*)bC7*)l(yO*))-1 

for k = 1, . . . , p. T h u s for z0 = £ J = i frt^, we have |s0(j/t)l = |/3*| = x(jk) 
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for k = ! , . . . , £ ; therefore, z() G [x] f~\ E. Observe, 

(zo,y)\ = Z ft^O'*) Z ^0'fc)bO*)l 

= Z *0*)bO*)l è w \ xp = 2 

which contradicts y G (M O £)°. Consequently, 5(3/) is countable. 

PROPOSITION 0.6. / / x 6 31(G) /kw y G ([x] r\ E)° if and only if s(y) is count­
able and T,Jts(y)X(j)\y(j)\ è 1. 

Proof. Let y (z G. Assume s(y) is countable and Ylitsiy) x(j)\y(j)\ = 1-
Consider 2; G [x] P\ £ , which implies s(z) is finite, z = Z i ^ ( z ) 2 ( i ) ^ a n ( l 

|z(j)| ^ x(j) for j Ç 5(2). It can be assumed that 5 = s(y) H 5(s) is not 
empty. Hence, 

K*,:y>l = \Zx**U)yU)\ 
S ZKs\z(J)\(x(j))->x(j)\y(j)\ 

è ZKsX(j)\y(j)\ £ 1 

since \z{j)\{x(j))~l ^ 1 for j Ç 5. We infer 3/ G ( M r\ E){\ 
Conversely, assume y 6 ([#] O £ ) ° . Thus , s(y) is countable by Proposition 

5.5. Let 5(3/) = {jk}kLi and, for & Ç N+, define 

For w (j N+, let xn = S = i A t ^ l therefore, x„ G [x] Pi £ for each n G N+. 
Observe, 

Z x(jk)\y(jk)\ = 

Z ^y(ifc) 

Z x(Jk)\y(jk)\(y(jk)) ly(h) 

{*n,y)\ 

for each n G N+. So, y £ ( M P\ £ ) ° implies £ L i oc(Jk)\y(Jk)\ = \ (xn, y)\ ^ 1 
for each n Ç N+. Therefore, 

E^w *0")b(.7)l ^ i-

Let 4̂ C G have L T P and let 6 be the linear topology induced on E by A. 
U F d G is defined as follows: 

y Ç F if and only if 5(3/) is countable and E;esO/) ^ ( j ) b ( j ) | < °° 

for some x (z A 

then it can be inferred, from Proposition 5.6, tha t F is the dual of (E, 6) via the 
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bilinear form (5.2) (see [5], Proposition 3, p. 204). In other words, 
(E, F ( . , . ) ) is a dual system and 6 is a compatible topology on E. 

Next, we need a description of the infinitesimal polars, in *F, generated by 
*(M (^ E) for x £ A. Recall that a subset S of * / is *-countable if and only 
if 5 is internal and there exists an internal mapping of *N+ onto S. 

PROPOSITION 5.7. If x £ 21(G) then z £ [*([x] P E)]1 if and only if s(z) is 
*-countable and X^GS-(Z) *#(0lz(0l is an infinitesimal. 

Proof. Let z G *G. Assume s(z) is *-countable and J^^esiz) *X(L)\Z(L)\ = 
P 6 M(0). Consider v 6 *([x] P E). If s{v) P s(z) = 0 then | (v,z)\ = 0. If 
5 = s(v) P s(z) j*. 0, then 

K*,*>I - i z ^ a w o i 
^ Z^tOKMO^MOKOI 
^ Z^M0N(0l ^ 0 

since |z>(0| (*x(t))_1 ^ 1 for each i £ */, and 5 C s(z). Thus, | (v,z)\ ^ /3 
and 0 £ M(0) imply (fl, s ) Ç M(0). We infer JS G [*([x] Pi £) ] ' • Conversely, 
assume s Ç [*([*] P £ ) ] ' . Since [*([x] P E ) ] ' C *[(M P £)°], we can 
deduce, from Proposition 5.6 that 5(2) is *-countable. Let s(z) = {tA;Ue*N + 
and for k 6 *N+, define 

0* - *x(ik)\z(ik)\(z(Lk))-\ 

For 77 G N+, let xv = J^l=i &A r Consequently, xv £ * ([x] P £ ) for each 17 £ *N+. 
Observe, 

E*x(t,)k(Oi 

23 *x(tÂ;)k(^)|(s(tA;))~1s(^) 
A : = l 

E 0*2(1*) 
*=i 

*N4 

= | <*„*)! Ç M(0) 

for each 77 G 11+. 

For positive f G R, we have 

ZMi*)|s(t*)| = K*„*>l < r 
k=l 

for each r? G *N+, which implies Sioo?) *^ (01s (01 = f- Since f > 0 was 
arbitrary, we infer Zie*(2)M0N(0l £ M(0). 

Finally, we must define a class of scalar valued functions called funnels. 

Definition 5.8. For X a non empty subset of an interval / of real numbers 
we say that x G K J is an X-funnel if and only if x is a positive, real valued 
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function and the function >F(x) £ K*7, denned by: ^(x)(j) = x(j) for 
j Ç J\X and ty(x)(j) = 0 for 7 Ç X, is continuous. 

Example 1. Let / = [0, 1], G = K / and let ,4 = [A(7)] be the set of all 
functions in G t ha t are 5-funnels for some non empty finite subset 5 of J. I t can 
be shown tha t [A (J)] has L T P (see [2], Theorem 6.6); therefore, let 6 denote 
the linear topology induced on E by [A( / ) ] . As stated earlier, the dual of 
(E, 6) is the vector subspace F C G defined as follows: y £ F if and only if 
s(y) is countable and 2./€*(?/) x(j)\y(j)\ < °° for some x £ [A( / ) ] . Also, the 
sets of the form ([x] Pi E)° , for x £ [A( / ) ] , consti tute a fundamental system 
for <f, the collection of #-equicontinuous subsets of F. 

The objective of this example is to produce an element z0 of *F such tha t 
z0 É [jl(F(é)))yi and 20 ZfiiFie*)). We will use the fact tha t [ p ( F ( < ? ) ) ] " = 
[Fin M O ) ) ] ' (Corollary 3.10), fi(F(^)) = U {[*([*] H E ) ] ' | * G [A( / ) ] j 
(Proposition 4.3) and actually exhibit an element z0 of [Fin(/xe(0))]* such tha t 
So 2 [*([>] H £ ) ] * for each funnel x in [A( / ) ] . 

Let X be a positive infinitesimal. Let Wo = {A} and let 

Wv = {X + (2ife - l ) 2 - ^ + 2 ) | k = 1, . . . , 2»-1! for v Ç *N+ . 

If we define 

W = U { W ^ Ç *N), 

then W is a *-countable subset of *[0, 1/2]. 
Define z0 G *G as follows: z 0 (0 = 0 for 1 G V \ W , z0(X) = 2" 1 and 

(5.9) 20(0 = 2~2» for t Ç W% and v G *N+ . 

Consequently, s(z0) = W. Observe tha t Zlt6^7?
so(0 = 2~(T?+1) for each 

rj G *N and 

(5.10) Z iew3o(0 = E U 6 * N [ Z I € T T , 2 O ( 0 ] 

= E ^ N 2 - ^ > = 1. 

Also, if \ \ = U*=o ^ , for J G *N, then 

(5.11) Z ^ v ^ o W = E,=«+ i2-< '+ 1> = 2 - ( ^ ) 

for each J G *N. 
As in Example 2.8, we will use the notation of [2] and define vL([A(J)]) C 

*K, for 1 e V , as follows: 5 G vL([A(J)]) if and only if \d\ S M O for each 
x G [A( / ) ] . I t can be shown tha t 

(5.12) , t ( [ A ( / ) ] ) 0 ( 0 ) 

for each t Ç *J ([2], Definition 4.4, Theorem 6.6 and Propositions 4.8 and 4.9). 
Let v Ç Fin (/xg(0)). Hence, there exists a s tandard finite subset Q of J for 
which v(j) G Fin(/x(0)) for j Ç Ç and */(i) G ^ ( [ A ( / ) ] ) for t <G * / \ ( ? ([2], 
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Proposition 4.13). Since s(v) is *-finite and *J\Q is internal, we have t ha t 

(5.13) So = s(v) r\ (*J\Q) 

is *-finite and s(v) = Q^J S0. Also if we denote 

(5.14) Si = Q r\ W and S2 = So H W, 

then Si and S2 are disjoint and 

(5.15) i-wn^w = Sius2. 
Note tha t S2 is *-finite and Si is a s tandard finite set since Si C Q and W is 
internal. 

I t can be assumed t ha t Si and S2 are non empty sets. 
If j (E Si, then j G Wr, for some infinite rj of *N, since X t /i(0) implies 

Ww C * J \ / for each n G N ; therefore, from (5.9) we infer z0(j) (? /x(0) for 
each 7 G Si. Consequently, 

(5.16) 0o = ZKSL\V(J)\ZO(J) e M ( 0 ) 

since ^(7) is finite for each j G Q. 
Next, there exists t0 6 S2 such t ha t \V(L)\ S \V(LQ)\ for each 1 c S2 since S2 

is *-finite. Also, v(i0) Ç ^ 0 ( [ A ( / ) ] ) implies Ï/(I0) G M(0 ) by (5.12) therefore, 
there exists a positive infinite 7 Ç *R such t ha t 

(5.17) y\v(h)\ £ M(0) 

by Proposition 1.1. Consequently, there exist £ £ * N \ N for which 

1 + E 2 ^ ^ 7. 
7 7 = 1 

Let V% = uS=o V îj and define 

(5.18) 5 3 = S2 H I\ t and S4 = S2 H [ fF\ IA] . 

Thus S3 C\ SA = 0 and S2 = S3 W S4. Again, it can be assumed t ha t S3 and Si 
are non empty *-finite sets. Hence, there exists £1 £ {1; . . . ; 1 + ]CTI=I 277-1} 
for which there is an internal bijection of {1, . . . , £1} onto S3, which implies 
si ^ 7. Observe, 

/3i= Z.€s,|»(t)|2o(0 ^ E, e s , |»(i) | ^ Z ^ ^ W I 

= Si|»(io)| = 7|»(io)| € ju(0) 

since (5.10) implies z0(i) ^ 1 for each i £ s ( s ) ; therefore, 

(5.19) 0X 6 M(0). 

Also 

ft = Z . e s J » ( 0 | 2 o ( 0 ^ E,€s42o(0 ^ Z . e ^ \ v t z o ( t ) = 2"<«+i> £ M(0) 
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from (5.11) and (5.18) since V(L) G ju(0) for i G S\ and £ is infinite; therefore, 

(5.20) £2 G M ( 0 ) . 

From the above arguments , we deduce 

I <*, 2o)| = I Z ^ u .s2*(0*o(OI ^ E ^ I *(OI*o(0 + £l€,s2 K 0 h ( 0 

= /30 + Zc€«3 KO|zo(0 + Z ^ s 4 H O M O = 0o + /3i + /32 

which implies (v, z0) G M ( 0 ) . We infer z0 G [Fin(jue(0))]7' since v G Fin(jue(0)) 
was arbi trary. 

Now, consider an arbi t rary funnel x G [A( / ) ] . Hence x is an 5-funnel for 
some finite subset S of / . Consequently, there exists n G N such tha t 
2~ ( w + 2 ) G S which implies 0 < x(2 _ ( ' i + 2 ) ) and x is continuous at 2~ ("+ 2 ) . Thus , 
there exists ô > 0 such tha t ô < *X(L) for each i G M(0) + 2 - ( " + 2 ) . In par­
ticular, 

Ô < *x(X + 2-^+ 2 ) ) . 

Note tha t X + 2~^+2) G IF„ which implies s0(X + 2~^2)) = 2~2" by (5.9). 
Let f = X + 2-<w+2>. If we define w{) = * < < > r , then w0 G * ( M H £ ) and 

\(wo,Zo)\ = *x(r)-o(f) >Ô2-2 W 

therefore, z0 G [*(W H £ ) ] ' by Proposition 5.7. 
We infer, from the above arguments , z0 G [fi(F(â ))][l and z{) ff jl(F(cf)); 

Since (E, 0) has invariant nonstandard hulls ([2], Fxample 2, Theorem 0.0 
and Theorem 4.17) we have [fi(F(é0))][l = F(â) C\ M«T(F,^)(0) by Proposition 
4.4. 

Remark. In the construction of W, we used an arbi t rary positive infinitesimal 
X; therefore, there exists an infinite collection of *-linearly independent ele­
ments of [fi(F\(f))]ii t n a t a r e n o t elements of fi(F(6rJ)). 

Example 2. For J = [0, 1], let [A( / ) ) denote the collection of all functions 
in G = K*7 t ha t are 5-funnels for some non empty finite subset S of [0, 1). 
Note tha t [A(J)) is a proper subset of [A(J)]. In particular, [A (J)) contains 
no {l}-funnels. However, [A( / ) ) does have L T P ; therefore, let 6 denote the 
linear topology induced on £ = K ( J ) by [A(J)) , Also if F denotes the set of 
all y G G for which s (y) is countable and 

Z ,̂s'(?/)*C0I y(j)\ < °o 

for some x G [A(J ) ) , then F is the dual of (E, 0). 
Now consider z0 G *G of Fxample 1. Since s(z{)) C *[0, 1/2] it can be shown, 

by using the arguments of Fxample 1 and [2], Section 4, tha t z0 G îx{F(6d)) 
and z0 G [jl(F(é)))]ii. We will now exhibit an element of F((f) H na(FiE)(0) 
t ha t is not an element of [p,(F(SJ))]il. 
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Let X be a positive infinitesimal. For f = 1 — X, consider eç. Clearly 

eK e /WnM.(F,*)(0); 

therefore we need only to show that eç Q [Fin(/xe(0))]* since [fi(F(e>)))]ii = 
[Fin M O ) ) ] ' by Corollary 3.10. 

It is easy to show that z (E ^ ( 0 ) , for z £ E, if and only if z(i) G ^ t([A(7))) 
for each i Ç J which implies z £ Fin (JUG (0)) if and only if 

z(i) Ç Fin (v. ([A ( / ) ) ) ) 

for each L G / . Using the fact that x is continuous at 1 and x( l) > 0 
for each x £ [A(J)), it is easily shown that vL([A(J))) = /x(0) for each 
i 6 *[0,1] C\ M(1). Thus we infer ef 6 Fin(jue(0)). However 

< ^ r > = *r(f)*r(r) = 1 

which implies ef is not an element of [Fin(/z0(O))]\ 
Consequently, (E, 6) is an example of a space for which the three sets of 

(4.1) are distinct. 

Remark. In Example 1, we could have shown, with considerably less effort, 
that so e E(«?) n 

/MF,tf)(0) and Zo (l $(F(SJ)). However, in Example 2 it is 
crucial that z0 is an element of [fi(F(é>))]ii. Thus, the work we could have 
avoided in Example 1 would have to be done in Example 2. 

Example 3. Let (E, 6) be an infinite dimensional normed linear space and let 
F be its dual. Let 5 and Sf be the unit balls in E and F respectively. Also let /3 
denote the normed topology on F generated by S'. Since {nS'\ n G N+( is a 
fundamental system of <S, the 0-equicontinuous subsets of F, and S' is a 
^-bounded, ^-neighborhood of 0 £ E, it can be shown that F((f) = F in(^(0)) 
which implies p.(F(<o)) = np(Q) by Corollary 2, 3 and Proposition 1.1. From 
the fact that [Fin (/**(()))]* = np(0) (see [3], Theorem 5.12) we deduce 

[£(E(<f ) ) F = [/*((>)]" = ^ ( 0 ) = £(E(<f )). 

However, infinite dimensional normed linear spaces do not have invariant 
non-standard hulls ([3], Theorem 4.4); therefore, 

by Proposition 4.4. 
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