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Abstract

Pointwise bounds for characters of representations of the classical, compact, connected, simple Lie groups
are obtained which allow us to study the singularity of central measures. For example, we find the minimal
integer k such that any continuous orbital measure convolved with itself k times belongs to L2. We also
prove that if k = rank G then /i2* e Lx for all central, continuous measures \i. This improves upon the
known classical result which required the exponent to be the dimension of the group G.
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1. Introduction

In this paper sharp, pointwise bounds for characters of representations of the classical,
compact, connected, simple Lie groups are obtained. Our prime motivation is to use
these estimates to study the singularity of central, continuous measures.

In [8] Ragozin proved the striking fact that if G was such a group and it was a central,
continuous measure on G, then fidm G e L' (G) (the product here is convolution). This
implies, in particular, that if g is not in the centre of G, then Ttk(g)/ deg X —> 0 as the
degree of the representation k tends to infinity [11]. Ragozin's result was improved
by one of the authors in [2] where it was shown that if g does not belong to the centre
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of G, then
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degX
<c(g)(degA)-2/(dimG-rankC).

A consequence of this bound on the trace function is that if k > dim G/2 and fi is a
continuous orbital measure, then (ik e L2(G), while if \i is any central, continuous
measure then fxk s Ll(G).

In this paper we improve these results, obtaining the following theorem for classical
Lie groups of rank n.

THEOREM 1.1. Let Gbea compact, connected, simple Lie group of type An, Bn,Cn

or Dn. For every g not in the centre of G there is a constant c(g) such that

degX

for all representations X if and only if

s <

l/(n-l) if G is type An_{ or Dn\

l/(2n - 1) if G'is type Bn;

2/(2n - 1) ifG is type Cn, n ^ 3;

1/3 if G is type Q.

(In contrast, dim G — rank G = O(n2).)
From Theorem 1.1 we are able to show that if G is type An-\, Cn for n ^ 3 or

Dn, and n is any continuous, orbital measure, then fik belongs to L2(G) if and only
if k > rank G = n. Furthermore, if ii is any continuous, central measure, then \L"
belongs to Ll{G). For type Bn the condition is k > 2n.

Key to proving Theorem 1.1 is to understand the structural properties of maximal
subroot systems. These are discussed in Section 2. In Section 3 we use these properties
and computational arguments based on the Weyl character formula to establish the
specified pointwise upper bounds on the trace function. Examples are found in
Section 4 which prove these upper bounds are best possible. Applications to the study
of the singularity of central measures can be found in Section 5.

2. Notation and structural properties of subroot systems

2.1. Notation Let G be a compact, connected, simple, non-exceptional Lie group
of rank n. Let Z(G) denote its centre and W be its Weyl group. Denote by ex,... ,em
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the usual unit vectors in Km, where m = n + 1 in type An and m = n otherwise. We
take a maximal torus T with <t> the set of roots for (G, T) described below.

Type Root system 4>
An {e{: - e}i : 1 < / ^ j < n + 1}

n

Cn [±2et, ±(e, ± e,-) : 1 < i ^j

Dn {±(ei ± ej) : 1 < i ^ ; < n]

Base
aJ =

aj =

aj =

A =
eJ ~

*J-

ej-

2en

ei ~

•• \<Xj

- eJ+i

• ej+l

• ej+i

• eJ+i

+ en

• • 7 = 1 .

fory 7̂

for; 9̂

for; ^

n

n

n

The set of positive roots associated with the base of simple roots A is denoted by <I>+,
the fundamental dominant weights relative to A are denoted by A u ... ,kn, and A +

is the set of all dominant weights. The set A + is in a 1-1 correspondence with G;
ak 6 G is indexed by its highest weight X e A + . The degree of ax is denoted by dk.
The weights of A € A + are given by

n(k) = {fieA: w(ix) < k for all w g W],

where /x < k means k — n is a non-negative integral sum of positive roots. We set
p = 53"_, kj. According to the Weyl dimension formula [13] the degree of A is given
by

(2.1)

For general facts about root systems we refer the reader to [5].
Given g e T we let <l>(g) = ( a 6 $ : a(g) e 2JT1] and let <P+(g) = <f>(g) f) <*)+-

It is easily seen that <t>(g) is a subroot system of $ and that <t>+(g) is a complete set
of positive roots of this subroot system. It is known that <I>(g) = 4> if and only if
g 6 Z(G) [1, page 189]. When <t>(g) is empty g is called a regular element of G .

For g in the torus, the Weyl character formula ([13]) states

wewdet w exp /(p + k, w(g))

This determines Tr k on G as characters are class functions.
When g e Z(G) an application of Schur's lemma shows that |TrA(g)| = dk,

hence the interest is when g £ Z(G). It was shown in [2] how one can evaluate the
Weyl character formula (by considering suitable directional derivatives if <l>+(g) is
not empty) to obtain
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o

[4]

An, n > 2

Bn, n > 3
n — 1 n

C, n > 2 -o—

A,, » > 4

n- l

n-2

FIGURE 1. Extended Dynkin diagrams.

Consequently,

(2.3)
|TrA(g)|

Thus in order to find pointwise bounds on the trace functions off the centre of G it
is useful to understand the structures of the subroot systems properly contained in <1>.
It clearly suffices to analyze those subroot systems which are maximal in the sense
that there is no other proper subroot system containing it. These subroot systems are
always associated with regular subalgebras, (although not always of maximal rank)
and hence their diagrams are subdiagrams of the extended diagram of the original
root system (see Figure 1). Note that the additional vertex, labelled 0, is identified
with the highest root a 0 ) Once all these subdiagrams have been identified we can
determine all possible sets of positive roots associated with maximal subroot systems
by considering Weyl conjugates of the bases corresponding to the subdiagrams.

We illustrate how to do this to find the positive roots of all maximal subroot systems
for type Bn. The other types are summarized below.

2.2. Maximal subroot systems of type Bn Consider the extended diagram of
Figure 2. Notice that if vertex 0 or 1 is removed the remaining subgraph is still type
Bn and thus is not proper. If vertex 2 is removed we are left with type At x A i x Bn-2-

https://doi.org/10.1017/S1446788700001841 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001841


[5] Size of characters 65

extended Bn

D2 x Bn_2

Dk x

Dn

o
o

o
1

-o—

-o—
4

n-2

n-2

—O
n-2

n-2

n-1

O=
n-1

n-1

n-1

=O
n

o-
2 n-2 n-1

FIGURE 2. Maximal subdiagrams for Bn.

Because the highest root is ex + e2, the two roots making up A, x Ax (in the base
we have chosen) are {ex ± e2], which for simplicity are referred to as D2. If any of
vertices 3 through n — 2 are removed, say vertex k, we have type Dk x Bn-k, where
k>3, n — k>2 and £>3 is understood to be the obvious root system. It has base

[a0, k_i) U , . . . , an]

which in terms of A may be expressed as

{«, ± e2, e, ~ ei+i : 2 < i < k - 1} U {e,,- ei+u en : k + 1 < i < n - 1}.

The Weyl group acts as the group of permutations and sign changes of the set
[et,... ,en}. Thus any set of positive roots associated with the subroot systems
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of type Dk x Bn-k is of the form

[et ± ej : i <j; i, j e J\} U [eh et ± e, : i < j ; i , j , I e J 2 ) ,

where Jx and J2 are disjoint subsets of { 1 , . . . , n] of sizes k and n — k respectively.
If vertex n - 1 is removed the subroot system is type A\ x Dn_i and the root in

A i is short. The sets of positive roots associated with this type of maximal subroot
system are of the form

[ei}U[e,±ej :l<j;l,j * i ) .

When vertex n is removed we are left with type Dn and positive roots

[et ±ej : 1 <i <j < n).

If vertices 0 and 1 are both removed we are left with the maximal system fin_i and the
sets of positive roots are Weyl conjugates of

{eh et± ej : 1 < i < j < n, I ^ 1}

and thus are of the form

, <?, ± ej : i n0}.

If any other two (or more) vertices are removed from the extended graph we clearly
do not have a maximal subroot system.

Notice that of all these maximal subroot systems only types Dk x £?„_* and A \ x Dn_,
are also of maximal rank.

2.3. Summary of maximal subroot systems In the charts which follow Ji and J2

denote disjoint subsets of { 1 , . . . , n] in types Bn, Cn and Dn; and disjoint subsets of
( 1 , . . . ,n + 1} in type An.

Type Maximal
subroot
systems

K

Bn

Ak x

Dn

Dk x

x £>„_,

Positive roots of the maximal subroot systems

{et -ej : 1 < i <j <n + l;i,j ^ n0]
{e, - ej : i <j; i, j e / ,} U {*?, - e} : i < j ; /, j e J2],
where | / , | = k + 1 > 2, \J2\ = n - k > 2

{eu e{ ± e; : i < j;i,j ,1 ^ n0]
{et ± ej• : 1 < i < j < n]

{e,±ej : i <j;i,j e J\] U [eh e,±ey : i <j;i,j, I e J2},
where |7 , | = k > 2, \J2\ = n - k > 2
{e,} U {«?, ± e, : / < j ; /, j ' ^ /}
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Cn An-i {s,e, — Sjej : 1 < i < j < n], whereSj = ±1
Ct x C _ * {2eh e, ± e, : i < j;i,j,1 e Jx)

U[2e,,e,±ej : i < j;i,j,1 e J2],

where |Ji | = k > 1, \J2\ = n - k > 1

Dn Dn_, {e, ± ej : i <j; i, j + n0)
An_i {5,e, — Sjej :\ <i <j <n], where s7 = ±1

and an even number of sj = — 1
Dk x £>„_* {e, ± e, : i < j ; i, j € 7i} U {e, ± e,- : j < j ; j , ; e 72},

where \J\\ = k>2,\J2\=n-k>2

Here D2 is understood to mean {e\ ± e2] and d = {2e,}. C2 and D3 are the obvious
root systems.

3. Upper bounds for the trace function

In this section we establish the sufficiency of the choice of s in our main result.
Each Lie group type must be handled separately, taking into account the possible
choices for'

THEOREM 3.1. Let G be a compact, connected, simple Lie group of type An, Bn,
Cn or Dn. For every g £ Z(G) there is a constant c(g) such that

<c(g)(deg\y
degA.

for all k e G provided

s <

1/(1-

1/(2/1

2/(2n

1/3

•1)

- 1 )

- 1 )

ifG
ifG

ifG

ifG

is

is

is

is

type

type

type

type

An

Bn

Cn

c3

-i orDn;
»

PROOF. Inequality (2.3) together with the Weyl dimension formula (2.1) show that
it is sufficient to prove that there is some constant c such that for all w G W and
representations A.,

< c.

https://doi.org/10.1017/S1446788700001841 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001841


68 Kathryn E. Hare, David C. Wilson and Wai Ling Yee [8]

Indeed, as a € O(g) if and only if w(a) e ®(w~l(g)), it suffices to prove there is a
constant c such that

^ = n «>+*. <*y n
whenever <£+/ is the set of positive roots of some maximal subroot system, and this is
what we show in each case.

Throughout this proof we assume p+k can be expressed in terms of the fundamental
dominant weights as YH=i m>^i- We also assume mk — max,=i „ m,. The letter c
denotes a constant which may vary from one line to another.

One common technique we use is an induction argument. We often partition <I>+

(and <t+/) into two sets, one of which is a positive root system (subroot system) of
smaller type. The product we need to study corresponding to these roots of smaller
type are handled by the induction assumption. Another common technique is to count
the number of positive roots a, from some appropriate set, such that (p + k, a) is
(essentially) maximal and see that there are enough of these terms occuring in the
product with a negative exponent to make the product suitably small. Both these ideas
are used in Case 1.1 below (when the maximal subroot system is type An_i in type
An). In other cases, the arguments are slightly more delicate, but always they are of
an elementary, combinatorial nature.

Case 1.1 Maximal subroot system is type An_,.
We proceed by induction on n. If n = 1, then O+' is empty and consequently s = 1

suffices. So assume inductively that (3.1) is satisfied with s — \/(n — 1) whenever
<t>+ is the set of positive roots of type An_i and <J>+' is the set of positive roots of a
subroot system of type An_2.

Let 4>+ be the set of positive roots of type An and let <J>+' be the set of positive
roots of a subroot system of type An_\; 4>+/ is a set of the form {e, — et•, : 1 < i: < j'• <
n + l;i,j ^n0}.

First assume k < n0 — 1 (which implies, in particular, that n 0 ^ 1). Partition O +

as <t>+ U <P% with

4>+ = {e, - ej : 2 < i < j < n + 1} and <t>J = {ex - ey : 2 < j < n + 1}.

Similarly partition 4>+/ as <t>J"' U <I>J', where

4>+' = { e i - e j : 2 < i < j < n + l; i,j ^ n0]

a n d

d>2
+/ = [ex - ej : 2 < j < n + 1; j ^ n0).
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The set <t>+ may be viewed as the positive roots of type An_i and <!>+' as the positive
roots of a subroot system of type An_2 (considering the vectors to be in K" by omitting
the first (zero) coordinate). When a € $*, then (p+k, a) is equal to ( £ " = 2 m,A.,, a) ,
thus the inductive hypothesis may be applied to conclude that if s < l/(n — 1), then

o + k,ay f ] (p + k,ay

Since the cardinality of 4>%' is n — 1 we clearly have

Recall that ei-eno = kx-\ K«0-i- As£ < n o - l this means that (p+k, ex-enst) >
mk, and since ex — eno e 4>J\4> '̂ we obtain the inequality

f ] (p +A.,

Therefore,

This is bounded if s(n — 1) + s — 1 < 0, that is, when s < l/n, giving the desired
result.

Otherwise k > n0 (and nQ ^ n + 1). In this case we partition <t>+/ into 4>f U Oj ' ,
where <I>J"' is the subset of <t>+/ consisting of all the words et — e, with i,j ^ n + 1,
and

Similarly partition <J>+ so that 4>J\4>J' = {eno — en+1}. Again the inductive hypothesis
can be applied to the factors of the product corresponding to a 6 <P* and <Df, and
this observation reduces the problem to proving

for s < l/n. As

(p + k, eno - en+l) = (p + k, kno H (- kn) > mk

the required inequality can be established in the same manner as the first part.
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Case 1.2 Maximal subroot system is type Ak x An_*_i, where k, n — k — 1 > 1.
We again proceed by induction on n. Notice that a maximal subroot system of this

type is not found in type At or A2, and consequently the initial step of the inductive
hypothesis is with n = 3 and <J>+/ the set of positive roots of type A\ x A | . We leave
it to the reader to verify the hypothesis for this initial condition.

We assume inductively that (3.1) holds with 5 = l / (n — 1) whenever <1>+ is the set
of positive roots of type An_! and <t>+/ is type Ak x An_k_2 for some k and n—k—2 > 1,
and proceed to verify the induction step for type An.

From Section 2.3 we know that any set of positive roots of type Ak x An_*_i in An

is of the form <I>+' = O f U <£>?, where

4>+' = {ei-ej :i<j; ij € J ,},

* J ' = [ei -ej : i <j; i, j e J2)

and Ji, J2 are disjoint sets whose union is { 1 , . . . , n + 1}, of sizes k + 1 and n — k
respectively. Without loss of generality we may assume 1 € J\.

Let

* ; = {et -ej : < i

(*J is taken to be empty if the cardinality of J{ is two) and V2 = * f ' \ * j . Let * , be
thesetof words e,—ej, i < j , on the letters {2 , . . . , n+lj .and*!^ = {ei—ej :j ^ 1}.
Then ^ may be viewed as the set of positive roots of type An_i, with *J U <t>2' a
subroot system of type At_i x An^k_i. Thus the inductive hypothesis may be applied
to yield

when 5 < l / (« — 1). (If *J is empty, then this is actually Case 1.1 which has already
been done.)

It remains to prove that for ^ = {ei — e; : j 6 ^i\{l}} and s < l/n,

If there exists some j 6 J2 such that j > it + 1, then for some a e ^2X^2

(p + k,a) = (p + k,el-eJ) = (j) + k,kl-\ h X;-_,) > mk.

Combining this with the fact that the cardinality of J\ is at most n - l w e obtain the
inequalities

Y[ Y\ (p + k,a)5-1 <cms
k
(W-l)ms-1 <c

https://doi.org/10.1017/S1446788700001841 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001841


[11] Size of characters 71

when s < l/n.
Otherwise, n + 1 € Ji and there is some y < k which belongs to J2. (Indeed, all

j € J2 must satisfy j < k.) Redefine

*; = {d - e,, : 1 < i < j < n; ij e •/]},

and *2, ^2 correspondingly. The argument now follows from the fact that (p+A., a) >
ej -en+i € * 2 \ * 2 -

Case 2.1 Maximal subroot system is type Bn-{.
The maximal subroot system <J>+' = {eh et ± e, : i < j ; i,j,l^n0}. We consider

the cases n0 = 1 and n0 ^ 1 separately and assume J < l/(2n — 1).
n0 = 1 : Notice (p + X, a ) = O(mk) for all or = ei, ei + £/ and these roots all

belong to <J>+ \ 4>+'. Also, |<D+'| = (n - I)2, and thus

(3.2)
ae<J>

Since

2 / z - l ~ n2 - « + 1

it follows that (3.2) is bounded whenever s < l/(2« — 1).
n0 ^ 1 : Here we proceed by induction, leaving the initial step with n = 3 to the

reader. The words from C>+' in <1>+ with letters from {2,.. . , n] are the positive roots
of a subroot system of type Bn_2 in type #„_!. Thus the inductive hypothesis reduces
the problem to consideration of

. a)'"'

where * ' and * are the remaining roots in <t>+/ and <J>+ respectively.
Set aj = maxfffj/ : I < j}. Notice that [ctj] is an increasing sequence and that

(p + A, e\ — ey) = O(cij). Also, both (p + A, eO and (p + A, et + e;) are O(mk). As
* ' = {et, ^i ± e; : y 7̂  1, no), this implies

+ A,ar = (p + A,e,r f j (P + ^'«) ' f t (/° + ^'«)J

;(n—no)
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Moreover, * \ W = [ex ± eno}, therefore

Hence

Y\ + k,
ore* '

and noting that both exponents are negative completes the argument.

Case 2.2 Maximal subroot system is type Dn.

In this case <t>+/ = {e, ± ei•, : 1 < i < j < n] and therefore <I>+ \ <t>+' is the set of
all words of length one in 4>+. Let bt = max{/n/ : / > i}. Then (p + k, a) = O(bt)
if a = et or e, + e, for any j > i. Also, (p + A., e, — ^ ) < 0(6,) whenever^" > i.
Thus

are<t>+'

and this is clearly bounded for s < \/(2n — 1).

Case 2.3 Maximal subroot system is type A{ x Dn_,.
The argument is essentially the same as Case 2.2.

Case 2.4 Maximal subroot system is type Dm x Bn_m; m,n — m > 2.
The positive roots of type Dm in type Bm were already treated in Case 2.2, so it

suffices to show

P =

is bounded when

* ' = [e,,ej ± ej : i < j ; i,j,l € J2) a n d * = [e, ± ej : / € J u j 6 J2).

We consider the cases 1 e J\ and 1 e / 2 separately. The argument is much easier
when 1 e 7i and hinges on the fact that in this case * 2 {e\ ± £/ : j e J2}. Thus

^ < J~[(P + *. «i)J ]~I (p + A., e,- ± Cy)J ]~[(P + k, ex ± gy)1"1.

Let bi = max{wi; : / > i} and «/ = max{m; : / < /} . With this notation, for i < j we

(p + k, et + ej)= O(bi), (p + k, es) = O(bt)

have
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(p + A., e, - e}) < O(aj), (p + *

Hence we can further bound P by

p <

73

- «,-) = 0(o,-).

The final product is bounded over all A. since | J2\ < n — 2 and s < 1/ (2n — 1).
Now assume 1 e J2. Here a further induction argument is useful. Partition * ' as

Xi U X2 and * as ^ U Y2, where

= {<?,, e, ± e, : i" < j , 1 ^ i,y, / € J2], X2 = {et, ex ± e}•.

and

and assume inductively that

(p + A, a)1

= to ±

< c
aeX,

for 5 < 1/ (2« — 1). (The initial case is left for the reader). We need to check that

< C

aeX2 aeY2

to complete the induction step. Since (p + X, e{ + et) = O(mk) for all / 6 Ju

and (p + X, e{ - e,-)5"1 < 1, the product above is bounded by m^Xliml
k
s~1)W. As

\X2\ = 2\J2\ — 1 and 7i has at least two elements the desired result is obtained.
This completes type Bn.

TypeC
Case 3.1 Maximal subroot system is type An-\.
When k = n then (p + A., 2et) = O(mk) for all / = 1 , . . . , n and as these roots

belong to <t>+\4>+' it follows that for s < 2/(2n - 1),

When k ^ n we proceed inductively. The words from 4>+ and 4>+' built on the
letters {2 , . . . , n] form a subroot system of type An_2 in Cn_i and thus our standard
induction argument reduces the problem to showing that

https://doi.org/10.1017/S1446788700001841 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001841


74 Kathryn E. Hare, David C. Wilson and Wai Ling Yee [14]

where * ' and * are the remaining words of <I>+' and 4>+ respectively.
As * ' contains only one of e\ ± en, it follows that (p + X, a) = O(mk) for at

least two ot € vj/\vl/', namely, a = 2el and the one of e\ ± en which is not in * ' .
Furthermore, | * ' | = n — 1, hence

P < mf-%f-",

and this is certainly bounded for s < 2/(2n — 1).

Case 3.2 Maximal subroot system is type Cx x Cn-\.
This case is much more delicate than any of the others. When n = 3 it can be done

by explicit calculation and we leave this for the reader. So we begin with n > 4 and
take s > 2/(2n - 1).

As the maximal subroot system is

<D+' = {2ek} U {2eu e, ± e, : i < j ; i , j , l * k ) ,

(3.1) can be written as

= f\(p + X, 2e,y f ] (p + X, e, ±«jY f ] |(p + X, ^ ± e
'=1

Let fe, = max{/n( : / > i}. When i < j then (p + X, e, + e,) = O(fe,) = (p + X, 2e,).
Thus

1) Q,(3.3)

where

P

Q

= 41
; = i

= n(p + X

b*" ' 1 1 b\"
i>it>

Notice that 2 is the product we considered for the problem of the maximal subroot
system of type An_2 in type An_i (Case 1.1), and thus is bounded provided s <
1/ (n — 1). This is true in our situation since we have the stronger inequality s <
2/(2n - 1).

Simplifying, and using the fact that when i > i0 then fc, < bio, we obtain

p < c£»+(n-«o)(*-D T~T ̂ »(»-i'+l)-l T~[ t*(«-i+l) /o

and hence

(3.4)
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To continue, we split the problem into two cases. First, suppose k > i0. Then
bt = mk whenever i < i0. Recall also that Q is bounded, thus

P -. ^^^(n—*o+l+(n—io+I)(n—*o)/2)—(n—io) t I j(n—i+1) — 1
< cmk I I wi^

Routine calculations reduce this to the inequality

s(n2+n)/2-n+i
r — mk

which one can check is bounded for our choices of n and s.
Now, suppose k < i0. A standard argument with inequalities shows that the expo-

nent of bh in (3.4) is negative (for s < 2/(2n-l)) if i0 ^ n. Also, s(n-i +1) - 1 < 0
if / > 1. Consequently,

~\cb\n-xQ \fio^n.

We factor Q as

Q= f ] (P + A, e, - eyr(p + A, <?, - efc)'-' g,,
y/i.io

where

e. = n 0°+A- e- -.̂ )j n \(?+x- ̂  - ̂ r 1 •

(2I is bounded being the product we consider for the problem of a maximal subroot
system of type An_3 in type An_2 (on the letters {2,... ,«}; note that the assumption
k < i0 implies i0 / I ) . Also, as k < i0, (p + A, ex — eh) = O(mk), thus

But Z?n < Z>n_i and b , = mk, hence

cmf "-1'-2

As « > 4 we have 5 < 1/3, and thus P is bounded in either case.

Case 3.3 Maximal subroot system is type Ck x Cn-k; k, n — k > 2.
This is similar to Case 1.2 (but easier because of the fact that (p + k, ex + e,)

0{mk) for ally).
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A,
Case 4.1 Maximal subroot system is type Dn_x.
Assume 5 < l(n — 1) and

<t>+' = (et ± ej•, : 1 < i < j < n; i , j ^ « 0 } .

The case when k > n0 can be done directly by counting, but is slightly different
from the earlier cases because of the fact that (e{ + en, kn-\) = 0. Observe that
<j>+\<j)+' = [e. ± eno : i ^ no} (where et — en<1 should be understood to mean eno — e,
when i > n0)- Because k > n0,

(p + X,a) > mk for a =
et + eno Vz ^ n0, provided k ^ n — I;

ei + en Vi! ^ «0 or n, if k = n — 1;

„„ — en if it = n — 1 (so that n0 ^ n).

Thus for all it > n0, (p + X,a) > mk for at least n — 1 elements in 0+\<t>+/, and so

Combined with the fact that |<J>+'| = 2("~'), this yields

Yl (P + X, ay Y\ (p + X, a)5'1 < „„;;<-•><-»+<'-»<-'>,

which is clearly bounded when s < l/(n — 1).
If it = n — 1 and n0 = «. then (p + X, e, — eno) = O(mk) for all i = 1 , . . . , n — 1

and so the argument is similar.
Otherwise we proceed inductively. The words from <t>+ and <t>+' based on the

letters {2 , . . . , n} are a subroot system of type Dn_2 i
n Ai-i and so are handled by the

inductive hypothesis, leaving us to show that

is bounded. But this is quite routine because the assumptions k < n0 - 1 and k ^ n — l
ensure that (p + X, e\ ± eno) > w t .

Case 4.2 Maximal subroot system is type An_,.
It is convenient for the induction argument used in this case to assume <$>+> =

{s,e, - sj ej : i < j } , taking no consideration for the parity of the signs, st. We leave
the initial case of n = 4 for the reader, so assume n > 4 and proceed inductively.
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Suppose first that k < n — 2. Applying the induction argument one can see that it
suffices to establish the boundedness of

(3.5)

where 4> = {ex ± e,•• : 1 < j < n] and 4>' = * n <P+I. Because (p + k, a) > mk for
a = ex±en-\ and a =e{±en, at least two of which belong to *\<I>', and | * ' | = n — 1,
the product above is at most c/nf ""1)+2<J~1) and hence is bounded when s < l / (n — 1).

If k = n, then let J denote the number of Sj = + 1 . Notice that if s, and sj are the
same sign, then \(p + k, s,e, + Sjej)\ > mn. A counting argument shows that

17/
 v

< cnin mn

and one can readily verify that this exponent is negative for our choices of s and n.
The case k = n — 1 is similar letting J denote the number of elements of

{^i,... , in_i, —sn] equal to + 1 .

Case 4.3 Maximal subroot system is type Dk x Dn_k; k, n — k > 2.
Here it is convenient for the induction argument to allow k or n — k to equal 1,

understanding that D\ is the empty set. When n = 3 we can only have Di x D2, which
is actually just D2, and this was done in Case 4.1 of this section. (Indeed, Case 4.1
does D\ x Dn-\ for general n.) This begins the induction argument.

From the previous remarks one can see there is no loss of generality in assuming k
and n — k > 2. Moreover, we may assume

4>+' = {ei ± e} : i < j ; /, j e J{] U {*>, ± e,- : / < y ; i , ; 6 72},

where 7| and J2 are disjoint subsets of { 1 , . . . , n] of sizes /t and n — k, and 1 6 7i.
The induction argument applies to the factors with a = e,; ± ey, 1,7 9̂  1, thus we

need only consider the product over the remaining words:

n0.6)

If A: ^ n — 1, then (p + A., ̂ i +e,-) > mk for ally" € J2. If k = n — 1, it is still true that
(p + X., e\ +ej)> mk for ally €72excepty = n, butthenalso (p + A, ei — en) > mt.
In either case there are at least \J2\ positive roots a 6 {ei ± e}•, : j e J2] such that
(p + k, a) > mk. As |72| > 2 and | / i | < n — 2, this implies (3.6) is bounded when
s < l/(n — I) and completes the proof for type Dn. •

REMARK 3.1. The expressions obtained for the maximal subroot systems of the
exceptional Lie groups, E6, Ey, and E%, are too cumbersome for the application of
this method.
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4. Optimality of the upper bounds

[18]

In this section we demonstrate the optimality of the choice of s in the main theorem,
in the sense that there exist g € G and infinitely many representations k such that
TrX(g) = O(dl~s). The elements g in the torus T which we work with, and the
corresponding sets ^ ( g ) , are listed below. Notice that the sets $+(g) are the positive
roots of maximal subroot subsystems of type An_(, Dn, Q x Cn_t and £>„_! in An,
Bn, Cn and Dn respectively.

Tjpe Element g of T
/ i n v nx, x, . . . , x) t û

where x = n/{n + 1)
Bn (n,...,7i)
Cn ( T T , 0 , . . . , 0 )

Dn (n, 0 , . . . , 0)

Positive subroot system <
{e{,- et : 2 < i <j < n

{e, ± e)•, : 1 < i < j < n)
[2ex)\J{ei±ej,2ek:i<
[ei ±ej : 1 < i < j < n]

THEOREM 4.1. Suppose G is a compact, connected, simple Lie group of type An,
Bn, Cn or Dn. Let g be the element in T listed in the chart above and let k = mk\
with m an even integer (k = wA.3 in type C3). Then

Trk(g)

degX

for some constant c(g) independent ofk if

s =

\/(n - 1

l/(2n -
2/(2n -
1/3

)

1)

1)

ifG
ifG
ifG
ifG

is

is

is

is

type
type

type

type

An_i or
Bn;

Cn,n ^

c3.
3;

The strategy of the proof is to first establish that

detwsgnl | | (p + k, w(a)) I exp/(p + k, w(g))
\O€<t>+(g) /

is constant over w e W. This fact, together with (2.2), show that

Trk(g)

and we shall see that it is a straightforward matter to prove that the latter ratio is O (dk
 s).

First, some preliminary results.
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LEMMA 4.2. Let k be any representation, let <J>+(g) be as above and let w —
W\W2 € W where W\ is a product of sign changes and w2 a permutation, (u^ = 1 in
type An.) Then

\ [detu^ in type Bn;

(g) ) ((-lr^-'detu; intypeAn,CnorDn.

PROOF. Obviously sgn((p + k, w2(a))) = 1 when a = e>: + e; , et or 2et. If i < j
and w2(i) < w2(J), then sgn((p + k, w2(et — e,-))) = 1, while if w2 reverses their
order the sign is negative. Thus if we let

X = {(/,7) : et - ej € <$>+(g), i < j and w2(i) > w2(j)},

then

sgnf

In type Bn,

X = [(i,j) : 1 < i < j < n and w2(i)

hence (— 1)|X| = detw2- For the othef types the pairs (1,7) are never included in X
and therefore

Hence,

in types An, Cn or Dn. This completes the proof for type An as w2 = w.
Next, assume w\ is a simple sign change, say wi (e,) = —e, if i = i0 and Wj (e,-) = et

otherwise. Then

k,wi(eio - ek)) = (p + k,eh +ek)(p + k, eh - ek),

while of course (p + k, Wiie^)) = —(p + k, eh). Since <P+(g) only contains words
of the form e, ± e, in types Bn and Dn,

n (p+k,wiia))=\-u^(p+"'a) intypeC-;

«6y(«) l+nae*+(g)(p+>•.«) in typeB" ° r o.•
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We can determine the effect of an arbitrary sign change by repeating this argument
the appropriate number of times:

sgn I I
\ O 6 V

, , J \ ((-D#signchanges = detu)l in type Cn;

/ l + l in type B, or A,.

This is also the determinant of W\ in type Dn since only an even number of sign
changes are allowed in the Weyl group.

Combining these observations completes the proof. •

LEMMA 4.3. Let g e G be as above and let X = ^m,X, with mt even {and
mn = mn-\ = 0 mod 4 in type Dn). Let w € W, w = WiW2, where W\ is a product
of sign changes (u^ = 1 in type An) and w2 a permutation. Then

f ^ intypeAn,CnorDn;

in type Bn

for some complex numbers 9 of modulus one which do not depend on w.

PROOF. Type Bn. Here w2 is clearly irrelevant. Expressed in terms of the standard
basis vectors the j 'th entry of p + £ m.A.; is

J ElZj m, + mn/2 + n - j + 1/2 if j ? n;
\(mn + l)/2 if j=n.

The reader can easily check from this that if w\ changes k signs, then

for an appropriate choice of 6.
Type Cn. In terms of the standard basis vectors

m,,+n - 1 , . . . , mn

Suppose w2(l) =j. Then,

As all m, are assumed even,

, w2(g)) = (-ly
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Because g = —g, the sign changes have no effect on g and thus the argument is
complete.

Type Dn. One can verify that if Wi(1) =j, then

: (E^V + («.-i +mn)/2 + n -j)n ifj <n-2;

±(1 + («„_, +mn)/2)7t i f j = n - I ;

±imn - mn_,)7r/2 if j = n

(p + X, wig)) =

with the choice of ± depending onu),. As these are all integer multiples of n the
choice of ± does not affect the parity of {p + X, w(g)), and since mu ... , mn_2 and
l/2(mn_i ± mn) are even integers, it follows that for all choices of j we have

exp i(p + X, w(g)) = (—iy exp //Z7r.

Type An. The_/'th entry of p + J2 "ijA.,- is

—— (-(m, + 1) - 2(m2 + 1) + • • • + imj + l)(n - ; + 1) + ••• + («„ + 1)) .

The same kinds of calculations as used for the other types show that if w2(l) = j then

expi(p + X, wig)) = exp i(p + X, gK-lY'1. D

PROOF OF THEOREM 4.1. Combining these lemmas we clearly obtain

detwsgnl

and this is independent of w. Thus

\TrX(g)\ maxweW\Y[a^+ (p + X,w(a))\
— i— - c ^ TT—'(—n—^ •

F o r t y p e Bn n o t i c e t ha t <J>+(g) 2 [e\ ± £> '• j ^ 1 } - A s X = mX\ w e h a v e
(p + X, e\ ± ej) > m, thus

max
weW

X,wia))

Since also (p + X, et) = O(/n) and (p + A, a) is bounded independently of m for all
other a e <I>+, it follows that dk = cmln~l and hence

as claimed.
The other cases are similar. •
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5. Singularity of central, continuous measures

[22]

A measure fi on G is called central if fi commutes with all other measures on G
under the action of convolution. Central measures are characterized by the fact that
their Fourier transforms are scalar multiples of identity matrices:

= akld.K, where ak = / d[i.
JG dk

We simply write jii(A.) in place of ax.
An interesting class of singular, central measures are the orbital measures. The

orbital measure ns, supported on the conjugacy class C(g) containing g € G, is
defined by

I f d[ig= / f(tgrl)dmG(t) for/ 6 C(G).
JG JG

Orbital measures are continuous if and only if g £ Z(G), the centre of G.
In [8] Ragozin proved that if g $ Z(G), then fx^mG e L\G). One can easily see

that JLĴ (A.) = Ti\(g)/dk, and using this fact it was shown in [2] that if k > dim G/2,
then ixk

g € L2. By appealing to the sharper results of this paper we can now prove:

PROPOSITION 5.1. The measures [xk belong to L2(G)forall g $ Z(G) if and only
ifk> ko, where

n if G is type An_,; C n , n ^ 3 ; or Dn;

2n if G is type Bn;

4 if G is type C3.

PROOF. From the Peter-Weyl theorem we know /z* e L2 if and only if

XeG

Trk(g) 2k

< oo.

It was shown in Corollary 9 of [2] that £X €g d[ < oo when t < - rank G/|<J>+|. This
fact, combined with Theorem 3.1, proves the sufficiency of the choice of k.

Necessity is a consequence of Theorem 4.1. For example, when G is type An and
g = (-nx, x,... ,x) for* = n/(n + 1) we know

XeG

2k

m even

2k

^{2-lkln)
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which is finite only if 2n — 2k < — 1. Thus we require k > n + 1/2, but as k G N this
means k > n + 1 is a necessary condition. The other types are similar. •

REMARK 5.1. Of course, if/z* € L2 then fi2
g
k is a continuous function.

The same result can be proved for central, continuous measures compactly sup-
ported on the conjugates of a set of the form [x e T : $>+(x) = <J>+'} for some fixed
set <t>+' as such measures fi also have the property that |/x(A.)| < O(d^s) for s as in
the main theorem (see [2]). We should point out, in contrast, that for any a < 1 there
are central, continuous measures fi such that /t(X) > d"~l for infinitely many k. This
is shown in [3] and is a consequence of the fact that although compact Lie groups do
not admit infinite central Sidon sets (an application of Ragozin's original work) they
do admit central (a, 1)-Sidon sets for all a < 1.

Finally, we are ready to improve upon Ragozin's result on convolutions of arbitrary
central, continuous measures.

PROPOSITION 5.2. Suppose fi\,... , /J-k are central continuous measures and k >
*o. Then /*, * • • • * fik e Ll(G).

PROOF. The proof is essentially the same as Theorem 11 of [2] but uses the stronger
results obtained in Proposition 5.1. •

REMARK 5.2. Ragozin observed that ixk
g is singular to Haar measure on G for all

k < dimG/dimC(g). As dim C(g) = 2(|<t>+| - |<J>+(̂ )|) ([7]) this means, for
instance, that if G is type An, then fxk

g is singular to Haar measure when k < n/2 + 1.
It remains open as to whether or not fik

g 6 L1 for all g 6 G\Z(G), when k is between
n/2 + 1 and n + 1 (other than for the trivial case Au where clearly k = 2 is the best
possible result).

A measure fj. is called Lp -improving if there is some p < 2 such that /x * Lp CL 2 .
Young's inequality implies that all functions in Lq, for some q > 1, are examples of
Lp -improving measures. A question of current interest is to understand which singular
measures on compact groups are Lp -improving. For example, surface measures on
analytic manifolds which generate G were shown to be U -improving in [9]. In [10]
it was shown that if g was a regular element, then fj,g * U C L2 if and only if
p > 1 -I- r/(2dim G — r). For arbitrary continuous, orbital measures we can prove:

PROPOSITION 5.3. If g i Z(G), then fxg is Lp-improving. Indeed, for any g £
Z(G), fig*L" C L2forp > 2 - 2/(w + 1) when G is type An-\, Dn or Cn, n ^ 3 ;
p > 2 - 2/(2n + 1) in type Bn\ andp > 8/5 for C3.
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PROOF. Proposition 5.1 tells us that the operator T^if) = ^ *f maps L\G)
into L2(G) whenever g $ Z(G). Since the identity map obviously maps L2(G) into
L2(G) an application of Stein's interpolation theorem [12] (see also [4]) gives that
ixg* V c L2 for the choices of p listed. •
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