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§1. Introduction

Let A be a regular local ring of dimA = 3 and p a prime ideal in
A of dimA/p=1. We put R,(p) = D50 p™t* (here ¢ denotes an indeter-
minate over A) and call it the symbolic Rees algebra of p. With this
notation the authors [5, 6] investigated the condition under which the
A-algebra R,(p) is Cohen-Macaulay and gave a criterion for R,(p) to be
a Gorenstein ring in terms of the elements f and g in Huneke’s condition
[11, Theorem 3.1] of R,(p) being Noetherian. They furthermore explored
the prime ideals p = p(n,, n,, n;) in the formal power series ring A =
k[X, Y, Z] over a field & defining space monomial curves X = ", Y = ¢™
and Z = ™ with GCD (n,, n,, n;) = 1 and proved that R,(p) are Gorenstein
rings for certain prime ideals p = p(n,. n,, ny). In the present research,
similarly as in [5, 6], we are interested in the ring-theoretic properties of
R,(p) mainly for p = p(n,, n,, n,) and the results of [5, 6] will play key roles
in this paper.

However, the problem whether R,(p) is a finitely generated A-algebra
is more fundamental and as far as the authors know, it remains open

’

even for the general space monomial curves p = p(ny, ny, n;). And the
problem was one of the motivations of J. Herzog and B. Ulrich to develop
a theory on self-linked curve singularities [9], where they gave a criterion
for R,(p) to be generated in degree two and proved that p is self-linked
and R,(p) is a Gorenstein ring, once R,(p) = Alpt, p®#*]. In our paper
we shall succeed the research of Herzog and Ulrich [9]; of course our
target is the next step, that is, the study of the A-subalgebra Alpt, p®#,
p9t] of R,(p). There are two purposes: one is to find the conditions
under which R,(p) is generated in degree three and the other one is to
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see what kind of ring-theoretic properties R,(p) possesses, when R,(p) =
Alpt, p@F, p@ .

Now let us explain our results. Throughout the work [9] the infor-
mation from [12] about p® played an important role and we will briefly
summarize the results on p® in Sections 2 and 4, because they are still
helpful for our purposes, too. But we furthermore need an explicit struc-
ture theorem of the third symbolic powers p®, which we will discuss in
Section 5. The ring-theoretic properties of R (p) heavily depend on wheth-
er p is self-linked or not. In fact, the ring R, (p) is necessarily Gorenstein,
if p is self-linked and if R(p) = Alpt, @8, p™¢]. But R,(p) cannot be
Cohen-Macaulay and the characteristic of the ground field has to be 2,
if p is not self-linked although R,(p) = A[pt, @, p®#]. These assertions
will be proved in Theorems (6.1) and (6.12), where the conditions under
which the A-algebra R,(p) is generated in degree three shall be summarized,
too. As was proved in [9], Alpt, p®#] is a Gorenstein ring if p is self-
linked. However, this assertion is no more true when 9 is not self-linked.
In fact, Alpt, p®#*] is not a Cohen-Macaulay ring for p = p(13, 14, 17), while
the rings Alpt, p®t*] are Cohen-Macaulay and of r(Afpt, p®#]) = 3 for a
certain large class of prime ideals p = p(n,, n,, n;) (cf. Section 3 and [9]).
Thus our main purposes will be attained to by the end of Section 6.

As a final topic we would like to include in Section 7 an answer to
a question posed by Huckaba [10, Remark 2.6 (3)]. He asked the rela-
tionship between Huneke’s condition [13, Theorem 1.4] of R,(p) being
Noetherian and his own condition for that. Our answer Theorem (7.1)
will show that they are equivalent to each other.

In what follows let A denote a 3-dimensional regular local ring with
maximal ideal m and p a prime ideal in A of dimA/p = 1. For a given
ideal I we denote by A(I) the analytic spread of I. Let ¢,M) and p (M)
respectively denote, for each finitely generated A-module M, the length
of M and the number of elements in a minimal system of generators for
M.

§2. Preliminaries

Let X, Y, Z be a regular system of parameters for A and assume that
# is generated by the maximal minors of a matrix M of the form

X« Y Z”]
M= ,
Yt 77 X~
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where «a, B, 7, &/, f/, 7/ are positive integers. Notice that if p = p(n,, n, ny)

and p,(p) = 3, then the ideal p satisfies the above assumption (cf. [7]).
The purpose of this section is to summarize certain results on the

second symbolic powers p®. To begin with we note the following

Lemma (2.1). A1) a+do, =R ory=£7.

@) 22+, 28+8 ory£7.

3) If » = p(ny, ny, ny) for some positive integers mn,, n, and n, then
a2, 28+ B or 2y = 7.

Proof. (1) See [6, Lemma (2.3)].

(2) Suppose that 20 = o/, 28 = § and y = . Then since (X** — Y*Z")
—(Y¥ - X7") = (X* — YO(X* + X°Y? + Y* + Z"), we have X* — Yiep
or X* 4+ X°Y# L Y* L Z"ecyp. Therefore at least one of Y? and Y* + Z7
must be in the ideal (X) + p = (X, Z¥, Y*Z', Y*), which is impossible.

(3) Suppose that o = 2/, 28 = p’ and 2y = ¢’. Then Z¥ — X“Y*ep
and X** — Y*Z" ep. Hence 3yn, = a'n, + 28n, and 3a'n, = fn, + 2yn,.
These equations imply o’n, = yn, and so X — Z"ep. Thus we get Z' ¢
X)) +p =(X, Z¥, Y*Z", Y*), which is impossible.

After suitable permutations of the rows and columns of M, we may
assume that M is one of the following types.

(I) e<a, < f and y <7,

) a>a, < B and y < 7.
We note that § is self-linked (resp. not self-linked) if and only if M has
type (I) (resp. type (D)) (cf. [9, Corollary 1.10]). We put

a=27Z"" — X“Y¥ b=X" —~Y!Z" and c= Y — XZ",
ProposiTioN (2.2) (cf. [6, 12, 19]). Suppose that M has type (I). Then
there exists d, e p® such that p® = (d,) + »* and
X¥dy = Z" "ac — Y#-¢b7,
Yéd, = ab — X“~Z"" "¢,
Z'd, = X“-2Y¥-fbc — a.
We furthermore have
d, = —Z"*" mod (X) if a« <o,
= —Z"*" mod (Y) if p< P,
= — X" Y mod (Z) if <y
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ProprosiTioN (2.3) (cf. [15]). Suppose that M has type (II). Then there
exists d, e p® such that »® = (d,) + §* and

X“d, = Z"Tac — Y¥ 4,
Yid, = Xo=ab — Z7-7¢,
Z'd, = Y¥ b — Xo~v'al,

Hence we have d, = — Y?#**' Z"-" mod (X).

COROLLARY (2.4). (1) Suppose that M has type (I). Then we have

) =4 if p=p ory=y,
=5 if B< B and y<7.

(2) If M has type (II), then p,(p®) = 1.

Proof. See [15, (2.8)] for the proof of the assertion (2).

(1) First we assume that § = . Then by (2.1) a <« or y<y. If
a<d, by (2.2) we have (X) + p® = (X, Z™*, Y*Z"™+", Y¥Z", Y*) so that
(X)) + p®)(X)) = 4. Hence p,(p®) = 4, because

(X) + p®)X) = p@)X) N p*»
— p@)/Xp(ﬂ)-

Similarly we get u(p®) = 4 also for the case y < 7/, because (Z) + p® =
(Z, Y*#, XY Xe+a'Y* Xe+2) A similar argument works to prove the
assertion in the case where y = ¢/, too.

Next assume that § < g’ and y < y’. Then by (2.2) we have (Y) 4 p@®
= (Y, Zr+' XeaZu+r XieZu Xtara 7T X'y gnd so #A((Y) 4+ p(Z)/(Y» = 5.
Therefore p,(p®) = 5.

§3. The Cohen-Macaulay property of the A-algebra A[pt, p®¢]

Let us maintain the same notation as in Section 2. The purpose is
to prove the following

THEOREM (3.1). Suppose that M has type (II) and (¢ — 22)(f' — 2B)
(' —2y) > 0. Then the A-algebra R = Alpt, p®#] is a Cohen-Macaulay
ring with r(R) = 3, where r(R) denotes the Cohen-Macaulay type of R (cf.
(8, p. 4D).

We divide the proof of Thecrem (3.1) into several steps. First assume
that M has type (II). Let T, T,, Ty and T, be indeterminates over A and
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put S = A[T,, T,, T,, T). Let : S— R be the homomorphism of A-alge-
bras such that (T}) = at, (T} = bt, y(T,) = ct and (T,) = d,t}, where
d, is the element of p® given in (2.3). Let P= Ker+. Then P is a
prime ideal in S of ht,P = 3 containing the following five elements

F=XT+ YT, + Z"T,
F,=Y'T,+ Z2'T, + X*T,
G =X“T, + YV-#T2 — Z"-"T\ T,
G, = YT, + Z"'T: — X*«T\T,,
G, =2'T, + X*-«T? — Y¥-*T,T,.
We put J = (F,, F,, G, G;, G,)S. Then J < P and we have
LemMA (3.2). S/J is a Gorenstein ring of dim S/J = 4.

Proof. Because J is generated by the Pfaffians of order 4 in the
following 5 by 5 antisymmetric matrix

0 T, T, —T, T,
—T 0 —X*«T, Y¥-*T, —Z"'T,
T, X“*T, 0 VA Yt |,

T, —Y¥#F-8T, 77 0 X
=T, Z'T, -y =X~ 0

to see that S/J is a Gorenstein ring of dim S/J = 4 it is enough by [2,
Theorem 2.1] to show that gradesJ = 3. We put B = A[T,, T5, T;]. Then
F,, F,e B and R(p) := >, p"t" = B/(F,, F))B (cf. [21, Theorem 3.6]). Hence
(F,, F)BeSpec B with hty(F,, F)B =2 and so (F, F))SeSpecS with
hty(F,, F,)S = 2. Obviously G, ¢ (F}, F,)S. Thus we get that gradegJ > 3,
while hte < 8 as J € mS. Hence gradeg = 3 as required.

LeMMA (3.3). AssgS/J = (P, mS).

Proof (cf. Proof of [9, Theorem 2.1]). Obviously AssgS/J 2 {P, mS},
so we shall prove the reverse inclusion. Since AssgS/J = Min:S/J by
(3.2), we see that mS is the unique associated prime ideal of S/J including
(X, Y?! Z"A. Hence there exists £e (X, Y?, Z")A such that &¢ @ for
any Qe AssgS/J\{mS}. We write & =, X" + ¢, Y? 4 ¢,Z’, where c,e¢ A
for 1 < i< 3, and we put G = ¢,G, + ¢,G, + ¢;G;. Then G = &T, — » with
7€ AT, T, T)l. Let S':=S[1/¢] = A[8][T, T,, Ty, T and let o:= pje.
Then since S'/(F,, F,, T, — p) = A[1&][T,, Ty, T5)/(F,, F,), we get that (I,
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F,, T, — p)S’ e Spec S’ and hty(F,, F,, T, — p)S’ = 3 (cf. the proof of (3.2)).
Let @ € AssgS/J\{mS}. Then we get JS' = @S’ because (F,, F,, T, — p)S’
C JS’ € @S’. This means that PS’ = @S’ so that P = @, which completes
the proof.

As JS, = PS; by the proof of (3.3), we know that P is the P-primary
component of J. Let C = S,5 and a = JCN S. Then we get

J=PNa ,
which implies P = [J: a]y and a = [J: Plg so that we have the following
Lemma (3.4). PlJ = [(0): a/d]s,; and afd = [(0): PlJ]s,,.

Let o, = min{e/,a0 — o}, By =min{s, f — f} and 7, = {y,7 —y} and
put K = (X, YA, Z')S.

ProposriTioN (3.5). R is a Cohen-Macaulay ring of r(R) = 3, if JC =
KCcC.

Proof. As K is mS-primary, we have a=JCNS=KCNS=K.
Hence as S/K is Cohen-Macaulay, we see by (3.4) and [16, Proposition
(1.3)] that R = S/P is Cohen-Macaulay, too. Let K be the canonical
module of B. Then we get

Ky = Homg,,(S/P, S|J) (by (3.2))
= [(0): Pld]s,,
= K| J (by (3.4)).

Therefore we have

r(R) = pp(K[dJ)
= Lr(K|(NK + J))
— 0(K/NK)
=3,

where N = mR + (T, T,, T\, T)R.
Now we are ready to prove Theorem (3.1).

Proof of Theorem (3.1).

It is enough to show that JC = KC if (¢« — 2a/)(8' — 28)(y' — 2¢) > 0.
Let us respectively denote by x,y, z and ¢, the images of X, Y, Z and T}
in C/JC. As Gy, G, and G, are in JC, we have
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(*1) x¥t, + ¥y — 2"t = 0,
(*2) Yt 4+ 27— x it =0,
(*3) 2t + xE — Yyt = 0.

By the equations (*1) and (*2) we get

0 = x¥tt, + y¥ P8t — t.(27't)
= x%tt, + yF o, — H(xe 't — yPt),

so that
x(x® "y, — x0Tt £ Yoyt 4 yP P Pg) = 0.
Suppose that y* > 2y. Then by (*1) and (*3) we have

0 = xt; + y¥'~Ptit, — 2" "1t (2't,)
= X"t} + Y7, — 2Ty Tl — 27,

so that

Xo(x o) xtm g VR o yP(yE - F g, — yF - Abig ) = 0.

o5l = Lol

e AU A S L 12
I B R e e R et R AN

Thus we get

where

Because

det U = —x ~oyb -p-bigl"=2p ¢ 3¢, — xo-a' -y’ -b-by2glt,

- xa’-anyﬂ—ﬂltltz . x“""'““yﬁ""z"’”ﬁtah ,

if (@ — 22)(8 —28) >0 or ¢ =2, we see that det U is a unit of C/JC
so that 2 = 0 as well as x* = y** = 0, which implies JC = KC.
We consider the case where y’ < 2y. Then by (*1) and (*3) we get

0 = 2"-"t,(2" " "tty) + x* V8, — yF Pt
= 2"t ('t + ¥R + xtCBity — yF PG,

so that

x4 a0 ty) + YR (P PR, — PR E) = 0.
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Hence we have

of 5l = Lol

U= X% -, — x*- - afit, yﬁ_ﬂltlh -+ yﬂ’—ﬁ_plt%ta
X Tl 4 e magdp g - bo Pl -T — yF -t '

where

If (@ — 22)(F —28) <0 or y = 2y, we see that det U is a unit in C(JC
whence x** = y* = 2" = 0. Thus we have JC = KC in this case, too.
This together with the result in the case where y/ > 2y completes the
proof of Theorem (3.1).

COROLLARY (3.8). Suppose that M has type (II) and satisfies one of
the following conditions

1 «d=p=¢r=1

2) a=2d, f =28o0r 7 = 2.
Then R = Alpt, 1] is a Cohen-Macaulay ring of r(R) = 3.

ExampLE (3.7). R = Alpt, p®1*] is a Cohen-Macaulay ring of r(R) = 3
for the following prime ideals p:

QD p=p*+2n+2,n+2n+1,n+n+ 1), where 2 << neZ.

@2 py=pr, nt+1,n+n+ 1), where 3 < nel.

3) p»=p17, 10, 19).

Proof. The prime ideals p of (1), (2) and (3) are respectively generated
by the maximal minors of the matrix

I'Xn Y'n Zn+1] [Xn Yn Z'n—l] and [X3 Y4 ZZ]
Y z XY Y Z X y: z x1I°

Hence we see by (3.6) that R is a Cohen-Macaulay ring of r(R) = 3.

ExampLE (3.8). Let p = p (13, 14, 17). Then the A-algebra R = Alpt,
p®¢*] is not a Cohen-Macaulay ring.

Proof. Notice that p is generated by the maximal minors of the matrix

Mo [X Y? zs]

Y Z Xx¢

of type (II). We put ¢ = 2Z* - X'Y?, b= X*—YZ® and ¢ = Y* — X*Z.
Then by (2.3) there exists d, e p® such that
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Xd, = Y*b* — Z'ac,
Yd, = Z%" — Xab and
Zd, = Xa* — Ybc.

Let S= A[T, T, T, T] and P be as in the proof of (3.1). Then the
following elements

F, = X'T, + YT, + Z*T,,
F,= YT, + ZT, + X*T;,

G = X'T, — Y'T; + Z*T\T;,
G,= YT, — Z2*T; + XT\T, and
G, = ZT, — XT} + Y*T,T,

are in P. We put J = (F,, F,, G,, G,, G)S, @ = mS, C = S, and a = JCN S.
As is shown in the proof of (3.1), we have J = PNa. Therefore by (3.4)
and [16, Proposition 1.3] it is enough to show that Sja is not Cohen-
Macaulay. First we prove

Cramn 1. Q*C < JC.

Proof of Claim 1. We respectively denote by x, y, z and ¢, the images
of X,Y,Z and T, in C/JC. Tt suffices to show that (x,y, 2)* = (0). Since
G,, G, and G, are in J, we have

(*1) &%, — ¥ + 2,8, = 0,

(*2) ot, — 2 + xtt, = 0,

(*3) zt, — xt2? + yt,t, = 0.

By the equations (*1) and (*2) we get x’tt, — Y, + ytt, + xt}, = 0 and
so y = ux, where u = ({it, + xt;t,)/(ytit, — t,t). Then by (*3) we have
zt, — xtt + Wx’ht, = 0 so that z = vx with v = (& — uPxt,t,)/t,, Thus the
equation (*1) yields x%(¢, — v*t2 + Vitt) = 0. Let @ = QC/JC. Then as

= —Lhft, mod @' and as v = #/t, mod @', we get t, — u*f + Vit = (& —
12+ £8t,)/t2 mod €’. Hence t, — ©’2 + v*.t; is a unit in C/JC and so x* = 0,
which claims that (x, y, 2)* = 0, because ¥y = ux and z = vx.

We put I = (f,g, h)S + @, where f= YT, + XT\T,, g = ZT, — XT?
and A = YT, + ZT,. Then IC = JC by Claim 1. We want to show that
I is @Q-primary and S/I is not Cohen-Macaulay, which will complete the
proof of (3.8) because I = a.

Let us consider the exact sequence

#) 0—> QI —> S/I—> S/ —>0.
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Cram 2. rankg,, @/ = 1.

Proof of Claim 2. We shall show that £, (QC/IC) = 1. Notice that
£QCIIC) < 1, because QC 2 IC 2 @*C and QC = (X, f, g)C. Hence it is
enough to show that QC = IC. Assume the contrary. Then QC = (f, g, h)C
by Nakayama’s lemma, which is impossible because

f X T, T. ©
gl=U|Y| where U=|-T2 0 T,
h VA o T T,

and because det U = 0.
We consider the following complex

0—> 8@ 28 —2— (5] — 22— 5@,
T, -1 TT, O
T, 0o T. T (T, —T.T, TI
- T, T, 0 T,

which is exact by [1, Theorem]. Let e: (S/@)°— Q/I be the S/Q-homomor-
phism such that ¢(e;) = Xmod I, ¢(e;) = Ymod I and &(e;) = Z mod I, where
e, e, and e, are the standard basis of (S/Q)’. Then since eog, = 0, there
exists an epimorphism p: (T,, —T\T;, TH(S/Q) — Q/I such that pog, =e.
Then p is an isomorphism by Claim 2. Therefore we have that Q/I is
embedded, via p, in S/Q and that proj. dimg,, @/I = 2. Thus we see that
Ass; Q/I = {@} and depth; (Q/I)y = 2, where N = wS + (T}, T3, T, T)S
(notice that S/ is a polynomial ring with four variables over the field
k= Aj/m). Hence by the exact sequence () we get AssgS/I = {Q} and
depthg,(S/I)y = 2, so that S/I is not a Cohen-Macaulay ring because
dim (S/I)y = 4. This completes the proof of (3.8).

§4. The generation of R,(p) in degree two

Let A be a regular local ring of dimA = 3 and p a prime ideal in
A of dimA/p = 1. In this general situation we shall characterize prime
ideals p whose symbolic Rees algebras R, (p) are generated by $¢f and p@¢.
The first result is

THEGREM (4.1). Suppose that A/m is infinite. Then the following
conditions are equivalent.
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(1) Ry(p) = Alpt, p@¢7].
2 CALf, 8 %) = 4-£,(Al(x) 4 p) for some f, g€ p® and xem\p.
(3 (f,8):p® =p for some f,gep®.
@ (f,8) 2 p® for some f,gep®.
When this is the case, R(p) is a Gorenstein ring.

Proof. See [5, Corollaries (3.8) and (3.9)] for the implication (2) = (1)
and the last assertion. ~

(D=2 As p™ = pp®=» 4 p®p®-D (n > 1), we get p* = [p®]" and
pE+D — p[p@]* for all n > 1. Hence depth A/[p®]* = 1 for any n > 1 and
so by [38, Corollary, (i)] we may choose f, g € p® so that [p®]"** = (f, g)[p®]
for some r > 0. Therefore we get the condition (2) by the proof of [11,
Theorem 3.1].

(2) => (4) See [5, Proposition (3.4)].

4 =>(@ Let B= A, and n = pA, Then n* =+ (f, g)B D n® (recall that
ps(n*) = 3). Therefore we get ¢,(n*/(f,g)B) =1 as B/(f,g)B is a Goren-
stein ring. Consequently £,(B/(f, g)B) = 4 and so by the additive formula
of multiplicity (cf. [18, p. 126]) we have

L (A[(f, g, %)) = e (A, 8))
= £5(B/(f, 8)B)-e..(A[p)
= 4-£,(A/(x) + p)
for any xecm\p. Thus we get the condition (2).

(4) = (3) Notice that (f, g) is a p-primary ideal and p® & (f, g). Then
we have (f, g): p® C p so that (f, g): »® = p, because (f, £): »® 2 p by the
assumption (4).

B) =@ Asp®2(f,8) 2pp®, we have that (f, &) 2p* and p = V(f, g).
Hence (f, g) 2 »®, because (f, g) is a p-primary ideal of A.

For prime ideals p with u,(p®/p?) < 1, we can improve Theorem (4.1)
as follows.

THEOREM (4.2). Suppose that A/m is infinite. Then the following
conditions are equivalent.
(1) Ry(p) = Alpt, p@¢] and p,(p®[p") < 1.
(2) CLA[f, & %)) = 2-L(Al(x) + p) for some fep, g€ p® and xem\p.
(3 p® =fp+ (8) for some fep and gep®.
@ (f,g): p=1p for some fep and gep®.
When this is the case, R(p) is a Gorenstein ring.
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Proof. (1)=(2) By (4.1) we can choose «, f € p® so that ¢,(A/(a, B, x))
= 4.-4,(A/(x) + p) for some xem\p. Then p® = («, Hp by [5, Proposition
(3.4), Lemma (3.5)]. If (a, f) € mp® + p% we have p® < mp® + p* so that
»® = p* by Nakayama’s lemma. Then as u,(p) = 2 by [12, (2.5) Corollary],
the assertion (2) is clear. Therefore we may assume B¢ mp® + p°. Let
g = . Then we have p® = (g) + p* as p,(p@/p*) <1 by our assumption.
We put B= A/gA and P = p/gA. Then as P = p®/gA, we have that
P? is P-primary. Because [p®] = (@, 2)p® (cf. The proof of [11, Theorem
3.1]), we get P* = aP® whence A(P) = 1. Choose fep so that P *! = fP’
for some r > 0. Then as v(B;y) = 2 = e(Bp) (notice that gep®\p®, cf.
[5, Proposition (3.7), (3)]), we see P?B, = fPB, by [17, 3.8. Theorem] so
that P? = fP, because P* and fP are P-primary ideals of B. Hence p® <
(f,8) < » and we have p® + (f) = (f, g). Thus (f, g) is a p-primary ideal
and fe p®, whence

C(AN], 8 x)) = e (A/f) + p®)
= L4 (AfA, + P°A)-e..(Alp)
= 2.4,(A/(x) + p)
for any x e m\}p.
(2) = (1) See [5, Propositions (3.4) and (3.7)].
(2= (8) As p® < (f, g) by [5, Proposition (3.4)], we get p® = fp + (g)
by [5, Lemma (3.5)].
B =>4 As (f,8)2p®, (f,8) is p-primary and (f,8): p 2 p. There-
fore (f, g): p = p, because p # (f, g).
4)=>@Q) As p* C(f,g) < p, we see that (f, g) is p-primary. Therefore
p® < (f, g) so that p® 4 (f) = (f, g), which implies fep®. Hence we
have ¢ Ap(A,,/fA‘, + p*A,) = 2 and so ¢,(A/(f, g, x)) = 2-¢,(A/(x) + p) for any
xem\p. Thus we get the assertion (2).

In the rest of this section let A, p and M be as in Section 2. Then
by (4.2) we get the following

CoROLLARY (4.3) (cf. [9, Corollary 2.12]). The following conditions are
equivalent.

(1) Rs(p) = A[pt9 p(Z)ﬁ]'
(2) M has type (1) and (1) p=p or (ii) a = and y =7
When this is the case, R,(p) is a Gorenstein ring.

Proof. (1) = (2) Since u,(p®/p*) < 1 by (2.2) and (2.3), we get p,(p®)
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< 4 by (3) of (4.2) so that M has type (I) and 8= g or y =7 by (2.4).
Suppose that 8 < p and y =y. We shall prove that « = /. Since we
get
(Y) + pp(% — (Y) + (ZET’ XaZ“" XSaZ3I’, X3a+a’Z27" X3a+2a'ZT’ X3a+3a’)
if 20 < o,
— (Y) + (ZST’ XaZ‘lT, Xa+a’Z3T, X3a+a'ZZT, X3a+2a'ZT’ X3a+3n’)
if 20 > o
by (2.2), we obtain
LAA[Y) + pp®) = 13ay + 6y  if 20 < &,
= 11lay + Ta'y if 20 > o',

On the other hand the condition (1) implies pp® = p® so that
CL(A[Y) + pp®) = L(AY) + p®)
= ey (A/p®)
= KA‘,(A»/ paA»)’gA(A/(Y) =+ p)
= 6(2ay + o'y).
Thus we have

120y + 60’y = 13ay + 6o’y  if 20 < &,
= 1lar + Ta'y if 20 > o',

Hence 2« > o and ay = o’y so that « = &/, as required.

(2) = (1) First we assume f = f. Then « <& or y <y by (2.1). Let
d, be the element obtained by (2.2). If a« <« (resp. y <7), then d, =
— 77" mod (X) (resp. d, = —X**** mod (Z)) so that
L(Al(c, dy, X)) = LAANY™, 277 X))
= 2fr + 4By
= 2-4,(A/X) + p)
(resp. £,(Al(c,dy, Z)) = £,(A[(Y?, X=*%' 7))
= 2P + 4o/B
= 2-4 (A[(Z) + p)),
whence R (p) = Alpt, p@¢?] by (4.2).

Next assume that « = ¢’ and y =¢. Then < g by (2.1). Hence
by (2.2) we get d, = —Z* mod (Y) so that
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L4(A[(b, Ay, Y)) = L(A[X?, 27, Y))
= 6ay
=2-4,(A[(Y) + D).

Thus R,(p) = A[pt, p®#*] by (4.2), which completes the proof of (4.3).

§ 5. The third symbolic power H®

The purpose of this section is to investigate the structure of p® for
the prime ideals p generated by the maximal minors of matrices M of
the form

M= [X“ Y# Z”] ,
Yt 77 X~

where X, Y, Z is a regular system of parameters for A and «, 8, 7, &/, §, 1/
are positive integers. We put ¢ = 2" — X“Y¥?, b = X*** — YFfZ" and
c= YI¥ — X7,

We begin with the case where M has type (I). By the equation
Yta + Z'0 + X*c = 0 and those given in (2.2), we have

b(Xed, + YF-#b*) = Z"-"abc = Z""e(Y*d, + X¥-2Z"-"¢Y),

ac(—Y*Pa — Xc) = Z'abc = Z¥-"b(Xd, + Y¥-Fb?) if 2y >7,

Z"-Yace(—Yta — X¥c) = Z" "abc = b(X°d, + Y¥-*b%) if 2r <y

so that

(6.1) Xebd, — X~ -Z¥"-¥c* = YPZ"-"ed, — Y¥-#b,

(5.2) XZ""bd, + X“ac* = —YPa’c — Y¥-PZ¥-"H if 2y > ¢/,
(5.3) Xebd, + X“Z"Vac* = —YPZ"Va’c — Y -Pb’ if 2y <7¢.

THEOREM (5.4). Suppose that M has type (I).
(1) Assume 2a < o or 2y < y. Then there exists d;€p® such that
bO = (d) + pp® and

d; = Z™* mod (X) if 2 < o' and 28 < B,
d; = Y¥-#Z"" mod (X) if 2 < o' and 28 > P,
d, = — X%+ Y¥-2% mod (Z) if 28< B and 2y <y,
d, = — X% mod (Z) if 26> p and 2r <y

(2) Assume 2a > o' and 2y > ¢/, Then there exist d, e p® and dje p®
such that p® = (d,, dj;) + pp'® and
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dy = X *Z™¥ mod (Y) and dj = Z"*" mod (Y) if 28< g,
dy= —Y*"%¥Z"-"mod (X) and dj= Y*¥ ¥Z"**" mod (X)
if 20 > o > a and 28 > B,

dy = —X**% mod (Y) and dj = —X"="Z"-" mod (Y)
if 26> 8 > 8,
d, = —X**** mod (Z) and dj= —X-*Y*** mod (Z)
if 26> p and 2y > ¢ > p,
dy = — X% mod (Z) and djepp® if 2a = o and 28 = B,
d, € pp® and dj=Z" — X*mod (Y)

if a=0a, 28=p and 2y = 7.

Remark (5.5). When M is not of any case stated in (5.4). M satisfies
the condition (2) of (4.3) so that p® = pp®,

Proof of Theorem (5.4).
(1) First we assume 2« < /. By (6.1) we have

X«bd, — X¥-%Z¥' -V = YHZ" Ted, — Y¥ %D if 28< 8,
= Y¥-HY*¥¥Z""cd, — b))  if 28 > .
Hence there exists d, e p® such that

bd, — X< -2 ¢ = Yid, if 28 < @,
— Yr-id,  if 28> B

As a < o, by 21) d;, = —Z"*" mod (X) and so
d, = Z"* mod( X) if 28 < @,
= Y¥-FZ" " mod(X) if 28>=P.
We put I:= (d;) + pp® (2 9°). Then if 28 < g, we have
(X) + I=(X, VAR €V AL Yo Zrewr ysses Zo
YZﬁ+2ﬂ’ZT+T” Y3ﬂ+2ﬂ’Z7’” Y3ﬁ+3ﬁ’) .
Hence ¢,(A/(X) + I)= 68y + 6By + 687. On the other hand we have
by the additive formula [18, p. 126] of multiplicity that
CANX) + D) = ex(Alp®)
= 0, (AJPA)-ex(Alp)
= 6-L,(A/(X) + D)
= 6fy + 68" + 687 .
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Thus we get £,(A/(X) + I) = £,(A/(X) + »®) and consequently (X) 4 I =
(X) 4+ p®. Hence p® = I + (X) N p®, so we have p® = I by Nakayama’s
lemma. Similarly we get p® = I for the case 28 > f, too.

Secondly, assume 2y < y’. Then by (5.3) we have

Xe(bd, + X=-2Z"-Vac?) = Y&(—Z"-Valc — Y¥-*b) if 28< 8,
= Y¥-H-Y¥¥ 7" Yac — b® if 28> p.
Hence there exists d, e p® satisfying
bd, + X¥-*Z"-Yqc* = Yid, if 28 < @,
= Y¥F-id, if 28> f
so that

dy= —X=%YF-%mod(Z) if 28< B,

—X?*** mod (Z) if 28> p.

fi

il

Let I=(d;) + pp®. Then similarly as in the proof for the case where
20 < o, we get

CAAIZ) + I) = 6a’B + 6a’B + 6ap
= L,(AZ) + p9),

whence I = p® by Nakayama’s lemma.
(2) Since 2a¢ > «/, we have by (5.1) that

Xo-a(Xt-'bd, — Z' YY) = YHZ"ed, — Y7 7*b°) if 28 < g,
= Y¥-H(Y¥FZ " ed, — b)  if 28 > B

On the other hand since 2y > 7/, we get by (5.2) that

X+(Z¥"bd, + X< ~*ac®) = Yi(—alc — Y¥-#ZV7'bY) if 26 < .
— YF-H(—Y*-Faic — ZVTHY) if 28 > p.

Hence there exist d; € p® and dje p® such that

X«-od, = Z""cdy, — YP-UY  if 28< B,
= Y#-#Z"ed, — b if 28> B,
Xte-e'bd, — Z¥"-¥cd = Y#d, if 26 < @,
= Y¥-id, if 28> P,

and
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Xed; = —a’c — Y¥F-U#Z0-Tp? if 28 < B,
= —Y¥ Fqalc — Z¥"b° if 26 > P,
Z¥-"bd, + X -%ac® = Yid; if 28 < p,
= Y¥-*d; if 28> p.
Then putting I = (d,, di) + pp®, we will get, similarly as in the proof of

the assertion (1), that I = p® for each case in the statement (2). The
detail shall be left to the readers.

CoroLLARY (5.6). Suppose that M has type (I). Then

#A(p(s)/pp(z)) < 1 lf 2o < o’ or 2r < T/»
<2 if 20 > o and 2y > 7.
Let us now assume that M has type (II). Then since Y?a + Z'b +
X¥c =0, we get by the equations given in (2.3) that
c(Z""ac — Y¥ b)) = X¥cd, = dy(—Y?Pa — Z'D),
a(X*ab — Z"-'c) = Ylad, = d(—Z'b — X%c) and
B(Y?-#bc — X*-<a¥) = Z'bd, = d(— Y?a — X“c).

Hence we have

5.7 Y?-tb*c — Ytad, = Z"-"ac* + Z'bd,,
(5.8) Z""ac* — Z'bd, = X*“a’b + X¥cd, and
(5.9) X “a’d — X%cd, = Y¥-?b’c + Ylad,.

We furthermore assume that

#) a+2d, 28+ pf or 27

(cf. (2.1), (3)). Then after suitable permutations of columns, M is assumed
to satisfy one of the followings:

(i) 2o <a, 28< P and 2y <7/;

(i) 2« < e, 28<p and 2r > 7/;

(i) 2« < a, 286> f and 2y >¢';

(iv) 2a >, 286> f and 2y > 7.

THEOREM (5.10). Suppose that M has type (I) and satisfies one of the
above conditions (1), (i1), (iii) and (iv). Then we have the following asser-

tions.
(1) 1If e A, then there exist d,, d; and d;’ in »® such that
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d, = 2Y"¥ Z" - "mod (X), dy= —Y***¥Z"-"mod(X) and
di = Y#**¥ Z"-"mod (X), if M is of case (i);
d, =2Y#¥Z"" mod (X), di= —Y** mod(X) and
dy = Y/*¥ Z"-"mod (X), if Mis of case (ii);
d, = 2Y¥*¥*Z"*" mod (X), di= —Y*** mod(X) and
dy = Y***¥' Z"-"mod (X), if M is of case (iii);
d, = 2Y*# ¥ Z"" mod (X), dj= —Y*Z"**" mod (X) and
dy = —Y*¥-#Z7% mod (X), if M is of case (iv).

We furthermore have p® = (d,, d;, di’) + pp®.
(2) If ch A = 2, then there exist e, c p® such that p® = (e;) + pp® and

e, = Y Z" " mod (X) if M is of case (i);

e, = Y mod (X) if M is of case (ii);
e, = — Y¥*%¥ mod (X) if M is of case (iii);
e, = —Y¥ ¥ 7" mod (X) if M is of case (iv).

Proof. (1) Let us assume the case (i). Then by (5.7), (5.8) and (5.9)
we have

YHY#-*b*c — ad,) = Z'(z"Yac® + bd,),
Z'(Z"-%ac* — bdy) = X (X**a*b + cd,) and
X¥(X"a’h — cdy) = YHY?#~*b'c + ad,).

Hence there exist d,, d; and di’ in p® such that

Yid, = Z"Yac* + bd,,
2'd) = X*"a'b + c¢d, and
Yidy = X*-*'a’h — cd,.
Thus
d, = 2Y** ¥ Z% - " mod (X),
di= —Y#*¥Z"-"mod (X) and
dy = Y Z"-"mod (X) .

Let I = (d,, d;, dy) + pp®. Then we have

(X) + I = (X) + (Zsr+sr" Yﬁzznar" ngznsr" Yapzsr"
Y,a+p'zzr+2r" Y2ﬁ+p'Zr+zr', Ysp»rp'er', Y B2 Zor -1
' . e P 9 g
Y2828 Zr+r , VLY AL , VARYAS r’ Y2B+38 77 7’
Y3ﬁ+aﬁ').
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Hence ¢,(A/(X) + I) = 6By + By + B7Y) = C(A/(X) + »®), which implies
X))+ I=(X)+ p® so that p® = I by Nakayama’s lemma. The same
proof works for the other case, too. For instance, in the case (ii), we
get by (6.7), (5.8) and (5.9) that

YHY#-%bc — ad,) = Z" "(ac* + Z¥-"bd,),
Z" ac* — Z¥"bd,) = X (X**qa*b + cd,) and
X¥(X%a?h — cdy) = YH(Y?-%b'c + ad,).
Hence there exist d,, d} and d; in p® satisfying
Yéd, = ac® + Z¥-"bd,,
Z2"'d) = X**q?b + cd, and
Yidy = X*-*'a*b — cd,
so that
d, = 2Y* ¥ 7" mod (X),
d; = —Y*¥% mod (X) and
dy = Y Z"-"mod (X) .

And therefore we can prove p»® = (d,, d;, d;) + pp® by showing that
LAAIX) + p®) = L(A/(X, dy, di, dY) + pp®) similarly as above. We would
like to leave to the readers the rest of Proof of Theorem (5.10), (1).

(2) Notice that

(5.11) Xea+ Y*b+ Z"c =0 and
(5.12) Yfa + Z'b + X“c = 0.

Then since ch A = 2, by (5.12) we get

(5.13) Y¥#a> + Z¥0* 4+ X*¥¢* = 0.
Suppose the case (i). Then by (5.11) and (5.13) we have

(Y'lﬁaZ + XZa’CZ)ZT’-‘.ZTC — _ZT’b?c
— (X“a + Y*D)b?,

whence
XZa’ZT'-ZTC3 . Xaab2 — Yﬁ’b3 . YZﬁZT’—27aZC .
Since 20’ < @ and 28 < p’ by our assumption, we get

XZa’(Z)”—ZTCS — Xu—?a’ab2) — YZﬂ(Yﬁ’—ZﬂbS . ZT’—ZTaZC) s
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from which we find e; € p® satisfying
Yz,ee3 — - _ Ye-w ght
Notice that e, = Y?***Z"-" mod (X). Then because

C(A[X, &) + pp™®) = 6(8r + B’ + BT
= LA[X) + p®),

we see (X, e;) + pp® = (X) + p® so that (e;) + pp® = p®. A similar proof
works for the other cases (ii), (iii) and (iv), whose detail shall be left to
the readers.

§6. The generation of R(p) in degree three

The purpose of this section is to characterize the prime ideals p
whose symbolic Rees algebras R (p) are generated in degree three. Let
us maintain the same assumption as in Section 5.

First we shall discuss the case where M has type (I) and the results
of this case are summarized into the next

THEOREM (6.1). Suppose that M has type (I). Then the following
assertions are equivalent.
(1) R,(p) = Alpt, p@¢, p@¢].
(2) M satisfies one of the following conditions.
(1) 2« < o and 28 = f.
(ii) 28=p and 2y <7
(i) 20a=a and 71 =7".
(iv) 2>, 28> and v =7
(v) B=Fp.
Vi) a=a and 1 =7.
When this is the case, R/p) is a Gorenstein ring.

We divide the proof of (6.1) according to the cases stated in (5.4).
The proof will be finished by the end of Proposition (6.11).

ProposiTiON (6.2). Suppose that M is of type (I) and satisfies 20 < o
and 28 < B'. Then R(p) + Alpt, p@t*, p®t*].

Proof. It is enough to show that p® == [p®] + pp®. Assume the
contrary and we have /,(A/(X) + »®) = £,(AIX) + [p@] + pp®). On the
other hand by (2.2) and (5.4) we get
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(X) + [p(Z)]Z + pp(a) =(X) + (Z2r+4r" YﬂZ7+4T” Y“ZW, Yp+p'Zr+3r',
Y4,e+ﬁ'Zar', sz+25’zr+2r', Y4,9+2,9’z2r" Y3ﬂ+3ﬂ’ZT+T’,
Y4ﬂ+3,s'Zr" Y(ﬁ+4ﬁ’)'
Hence if 38 > f/, we have
(X) + DOF + pp© = (X) + (27047, YIZr, Yoo gr, ysw sz,
Y2,9+2p'Zr+zr" Y4,s+25fzzr” Ya,s+3ﬁ’zr+r" Y4ﬂ+3ﬁ'Zr’,
Y4ﬂ+4ﬁ’).

because Y*Z* ¢ (Y#+#Z™*"), Therefore, counting the number of mono-
mials of Y and Z that are not in (X) 4+ [p®]* + pp®, we find

LLAIX) + [p®T + pp®) = 1187 + 1081 + 1087 if 36 <P,
= 88y + 108y’ + 1087 + gy if 36> @,
while
CAANX) + p®) = £, (A,[0'A) £ (AX) + p)
= 1008y + 1" + £'7)

by the additive formula [18, p. 126] of multiplicity. Thus we have

108y + By' + B7) = 11gy + 108 + 1087 if 3p< 8,
= 8fr + 108y + 1087 + pr  if 38> 4,
from which we conclude that fy =0 or 28 = . This contradicts our
assumption that 28 < f. Hence p® = [p®] + pp®.

ProposiTiON (6.3). Suppose that M is of type (I) and satisfies 2a < o’
and 28> . Then p*® = [p®) + pp® and the following conditions are
equivalent.

(1) R.(p) = Alpt, p®F, p©t].

(2) p(fv) —_ p(z)p(i*).

B 28=p orp=4p.

When this is the case, R,(p) is a Gorenstein ring.

Proof. By (2.2) and (5.4) we have

(X) _|_ [p(z)]z + pp(a) — (X) + (ernr" Ysp-p'ZrHr', Yﬁ+,9'ZZr+ar', Yz,sznzr"
Y2,9+2p'Zr+2r" Y4p+2,9’z27" Ysp+3,9’z7+7/, Y4,9+3ﬁ’Z7’,
Y4,9+4p')'

whence
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C(AIX) + [p®) + pp®) = 108y + 108 + 10877".
Because /,(A/(X) + »®) = 108y + 108y’ + 108y’ (cf. Proof of (6.2)), we get
(X) + [P + pp® = (X) + p® so that [p®] + pp® = p® as required.

(1) = (2) This is obvious.
(2) = (3) Since by (2.2) and (5.4) we explicitly have a system of
generators for the ideal (X) 4+ p®p®, we get

CAA[X) + p®p®) = 178y + 158y + 167y — pr  if 38 < 28,
= 148y + 158 + 1687 + By if 38 > 2p.
As 2,(A/(X) + p®) = £,(A/(X) + p®p®) by our assumption and as
CAANX) + p®) = £, (AP A,)- £,(A[X) + p)
= 158y + B + B7).
we have
16(8r + B’ + B7) = 17fy + 168" + 1687 — py  if 38 < 28,
— 14p; + 16p7 + 1587 + By if 38> 28"
Hence 28 = g’ or f = f/ by these equations.
(3) = (1) By (4.3) we have only to consider the case where 28 = g'.
Let d, be the element in (1) of (5.4). Then by [11, Theorem 3.1] R, (p) is
a Noetherian ring, because
C(A[X, ¢, dy)) = L (AX, Y, Z™))
= 3(8r + 387
=1-3-4(A(X) + p).

We want to check that R,(p) is a Gorenstein ring. Let I = (c) + p®.
Then since

(X) + I=(X) + (27, Y¥Z"', Y*),
we have ¢,(A/(X) + I) = 28y + 6py/, while
exs(All) = 4, (AJcA, + p'A)- L(AX) + p)
= 2By + 3p7) -

Consequently we get ¢,(A/(X) + I) = ex,(A/I), whence the ring A/l is
Cohen-Macaulay. Thus R,(p) is a Gorenstein ring (cf. [5, Theorem 1.1]),
which completes the proof of (6.3).
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ProrosITION (6.4). Suppose that M is of type (I) and satisfies 28 < p’
and 2y <7y'. Then R(p) + Alpt, p®8, p@t*].

Proof. We will show that p® = [p®] 4 pp®. Assume the contrary
and we have £,(A/(Z) + p®) = L (A/(Z) + [p®] + pp®). Notice that

LAAIZ) + [p®) + pp®) = 100/ + 10/ + 1lap — 2ap if p/ < 3B,
= 10’8 + 10ap’ + 10a’'f — af if /> 38

by (2.2) and (5.4). Then since /,(A/Z) + p®) = 10a/8 + 10a’f + 10af’,
we get

10’8 + 100’ + 10af’ = 10’8 + 10a’f + 11lap — 2ap if g/ < 3B,
= 10a/B + 10af’ + 10’8 — af if 8> 3p.

Hence 28 = #/, which contradicts our assumption that 28 < f.
The proof of the next proposition is quite similar as that of (6.3) so
that we would like to leave it to the readers.

ProprosiTiON (6.5). Suppose that M is of type (I) and satisfies 28 > B
and 2y <7y. Then p® = [p®] 4+ pp® and the following conditions are
equivalent.

D R.(p) = Alpt, p@¢, pt].

(2) p(f’) — p@)p(ii).

(3) 28=p or p=p.

When this is the case, R(p) is a Gorenstein ring.

ProposiTiON (6.6). Suppose that M is of type (I) and satisfies 2a > o,
28 < B and 2y > ¢'. Then the following conditions are equivalent.

(1) R.(p) = Alpt, p@¢, pOF].

@) p® = [p?] + pp® and PO = p@p® 4 pp®.

(38) M satisfies one of the following conditions:

(1) a=do and y=7.
(1) 2a¢=2a and y =7
When this is the case, R(p) is a Gorenstein ring.

Proof. (1) = (2) This is obvious.
(2) = (3) Since p® = [p®]* + pp®, we get by (2.2) and (5.4) that
(#) (Y) + p(() — (Y) + (ZZT+4T', XaZ4T+2T” X3a—n'Z27'+37" X'laZ3T+ZT’,
X3LIZ4T+T' X3uZT+3T’ X‘2a+a’Z‘lT+21' X4AZ4T X2a+2n’ZT+2T’,
X4a+a’Z37’ X4a+2a'Z27 X4a+3a'ZT’ X4a+4a’).
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where we can delete
X3aZ7+37’ and X2a+2a‘ZT+27' if 37 < 27,’,
X8¢Z47'+7" lf 37, 2 27,/’
out of the system of generators for the ideal (Y) + »®. Hence
L (ANY) + p®) = 1lay + 10ay’ + 10ay  if 3y < 27,
= 8ay + 120y’ + 10a’y if 3y > 2.

On the other hand, as /4,(A/(Y) + p®) = ey (A/Hp®) = 10(ay + ay + 'T),
we get

10(ey + ay’ + o'y) = 11lar + 10y’ + 10’y  if 3y < 27/,
= 8ay + 120y’ + 100’y if 3y > 2y.
Hence y = y/. Thus by (2.2), (5.4) and (4) we have
(Y) + p(z)p(:;) + ppﬂ) —_— (Y) + (ZBT, XZ«—a’Zﬂ" X4a-a’ZGT’ Xa+a'Z6T’

X4aZ57, X4a+a’Z4T’ X3u+3a’Z3T’ X5a+3n’Z2T’
Xﬁn+4n’Z7, X5a+5a’).
where we can delete
. Gt Al if 3a > 2,
Xere' Z® if 3a < 2/,
out of the system of generators for the ideal (Y) 4 p®p® + pp®. Therefore

we find

L (AI(Y) + p®@p® + pp®) = 29y + 16’y if 3 > 2o/,
= 320y + 14’y if 3a < 24'.
Since p® = p®p® L pp® by our assumption and since £, (A/(Y) + p®) =
30y + 15a’y, we see
30y + 16a’y = 29ay + 16’y if 3 > 2o,
= 32ay + 14a'y if 3a < 2.

The first (resp. second) equation implies o = o’ (resp. 20 = o).

(3) = (1) We may assume the case (ii) (cf, (4.3)). Let d, be the ele-
ment in (5.4), (2). Then since £,(A/(Y, d;, b)) = 1-3-4,(A/(Y) + p) and since
A/(b) 4+ p® is a Cohen-Macaulay ring, we have by [5, Theorem (1.1)] that
the A-algebra R (p) is a Gorenstein ring generated in degree three.
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ProrosiTION (6.7). Suppose that M is of type (I) and satisfies 2a >
o >a, 28> p and 2y >y'. Then the following conditions are equivalent.
M R = Alyt, 97, p8].
) »® =[P 4+ pp® and p® = p@p® + pp©.
(8) M satisfies one of the following conditions.
(i) p=2¢p.
(ii) r=7¢.
(i) 28=p and 2y = 7.
When this is the case, R,(p) is a Gorenstein ring.
Proof. (1) = (2) This is obvious.
(2) = (8) Since £ (A[X) + p®) = LL(A[X) + [p®T + pp®), we get

LAANX) + p®) = 11pr + 98y + 1187 — pr  if 3y > 2/,
=8By + 118y + 987 + 28y if 3y <2,

while £,(A/(X) + p®) = ex(Ap®) = 10(8r + By’ + B7)). Hence we have

108y + B + B7) = 11py + 9fy" + 1187 — py  if 3y > 27,
= 8fy + 118/ + 98y + 28’7 if 3y < 27/,
where the first (resp. second) equation implies that (8 — B4/ — ) =0
(resp. (B — B)(2r — ¢/) = 0) so that B = g or y = ¢/ (resp. B = f or 2y = ¢').
If 2y = ¢/, we have
C(AIX) + p®p® + pp®) = 478y + 2987y if 38 < 28,
= 44pp + 31877 if 38 > 24’
Therefore since ¢,(A/(X) + p®) = £,(A/(X) + pPp® + pp®) by our assump-
tion and since ¢,(A/(X) + p®) = ey, (Alp®) = 15(38y + 287), we get

15(38y + 2By) = 478y + 298’y if 3p< 28,
= 4py + 318y if 38 > 2.
The first (resp. second) equation implies 28 = #’ (resp. 8 = #'), whence the
assertion (3).
(3) = (1) We may assume the cases (ii) and (iii) (cf. (4.8)). First assume
the case (ii) and let d, and d, be the elements obtained by (2.2) and (2)
of (5.4). Then we have

LAy, dyy, X)) = C(ANZY, Y*#P¥, X))
= 3r(48 + 2§
=2-3-4,(A/X) + ).

https://doi.org/10.1017/50027763000003792 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000003792

124 SHIRO GOTO, KOJI NISHIDA AND YASUHIRO SHIMODA

Hence R,(p) is Noetherian (cf. [11, Theorem (3.1)]). We put I = (d,) + »®.
Then since

(X)) + I=(X) 4 (Z%, Y#+FZY, Y2 ZT, Y42

by (6.4), we get £, (A/(X)+ I) =108y + 58y = exs(A/I) so that A/I is
Cohen-Macaulay. Thus R,(p) is a Gorenstein ring generated in degree
three (cf. [5, Theorem (1.1)]).

Secondly we consider the case (iii). Let d; be the element in (2) of
(5.4). Then ¢,(A/d;, ¢, X)) = 1-3-4,(A(X) + p) and A/(c) + »® is Cohen-
Macaulay. Hence R,(p) is a Gorenstein ring generated in degree three.

ProprosiTION (6.8). Suppose that M is of type (I) and satisfies 2a > o,
28> B > B and 2y > ¢'. Then the following conditions are equivalent.
(D) R.(p) = Alpt, p@t, p©¢'].
(2) p(‘) — [p(2)]2 + pp(!&) and p(5) — p(?)p(a) + ppu).
@ r=r.
When this is the case, R,(p) is a Gorenstein ring.

Proof. (1) = (2) This is obvious.
(2) = (8) Similarly as in Proof of (6.7) we get

LAANY) + [0®) + pp®) = Say + 12 + ey — oy if 3y > 27,
= lday + 8ay’ + 8a'y + o'y’ if 3y < 2.

Since p® = [p®] + pp®, we have

10(ey + ay’ + o'y) = 8ay + 1207 + 1la’y — &'y’ if 3y > 2y,
= lday + 8ay’ + 8a'y + oy if 3y < 2y.
The first (resp. second) equation implies (2a — «’)(y — 7’) = 0 (vesp. 2o — )
@r—7)=0) and so 2a =« or y =7 (resp. 20 =« or 2y =y). We
want to show that the equality 2y =y’ is impossible and that y =/, if
20 = of. First assume that 2« = «’. Then we have

L (AIY) + p®p® 4 pp®) = 43ay + 17ay’ if 8y > 2y,
= 46ay + 150y’ if 3y < 2¢.

Hence by the assumption that p® = p@p® 4 pp® we get

450y + 150y’ = 43ay + 17ay’ if 3y > 2/,
= 46ay + 150y’ if 3y < 2¢,
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whence y = 7/. Now assume that 2y = y. Then

L (AI(Y) + p@p® + pp®) = 46ay + 15a'7,
and so

45ay + 15’y = 46ay + 15a'7,

which implies ey = 0. Thus 2y # ¢'.

(3)=> (1) Let d, and d, be the elements obtained by (2.2) and (2) of
(5.4). Then ¢,(A/(d,, d;, Y)) = 2-3-£,(A/(Y) 4 p) and A/(d,) + p® is Cohen-
Macaulay. Therefore R,(p) is a Gorenstein ring generated in degree three
by [56, Theorem (1.1)].

ProprosiTION (6.9). Suppose that M is of type (I) and satisfies 2a > o/,
28> @ and 2y > ¢ > y. Then the following conditions are equivalent.
(D) R,(p) = Alpt, p®¢, pOF].
(2) pm — [p(Z)P + pp(a) and p(s) — p(z)p(s) + ppu)'
(8) M satisfies one of the following conditions.
(i) p=¢.
(i) 20 =« and 28 =p.
When this is the case, R,(p) is a Gorenstein ring.
Proof. (1) = (2) This is obvious.
@ = @) As L(AIZ) + »®) = LLANZ) + [p@T + pp®), we get
10(c’f + a'f + af) = 11&/8 + 92'f + 12ap’ — 208,
whence (2a¢ — «')( — f') =0. Thus 2« =« or p=pf. Assume 20 =«
Then since p® = p®p® 4 pp®, we have
30ap -+ 45ap’ = 29ap + 46af if 38 > 28,
= 32ap + 44ap’ if 38 < 2p.
The first (resp. second) equation induces 5 = p’ (resp. 28 = f') as required.
(8) = (1) We may assume the case (i1). Let d, be the element in (2)
of (5.4). Then ¢,(A/(dy, ¢, Z)) = 1-3-£,(A(Z) + p) and A/(c) + p® is Cohen-

Macaulay. Hence R,(p) is a Gorenstein ring generated in degree three
(cf. [5, Theorem (1.1)]).

The next assertion is similarly proved as the implication (3) = (1) in
(6.9).

ProprosITION (6.10). Suppose that M is of type (I) and satisfies 20 = o
and 28 = B. Then R/(p) = Alpt, p®t, p¥F] and it is a Gorenstein ring.
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ProrosiTiON (6.11). Suppose that M is of type (I) and satisfies a = o/,
28 = p and 2y =y'. Then R/(p) = Alpt, p®¢, p®t] and it is a Gorenstein
ring.

Proof. Let d; be the element in (2) of (5.4). Then £4,A/(d} ¢, Y)) =
1.3-£,(A/(Y) 4 p) and A/(c) + p® is Cohen-Macaulay. Hence R (p) is a
Gorenstein ring generated in degree three.

For the rest of this section we assume that A contains a field k£ and
that M has type (II). The purpose is to prove the following

THEOREM (6.12). Suppose that M has type (II) and satisfies the condi-
tion

#) a+2a, 28 or 2y 7.

Then the following assertions are equivalent.

(1) R.(p) = Alpt, p@¢, pO¢].

(2) The characteristic of k is equal to 2 and M satisfies one of the
following conditions.

(1) 22/ <o, 28> F and 2y =7’
(ii) 20/ >a, 28=p and 2y <7
(i) 2« =a, 28 < B and 2y > 7.
When this is the case, R,p) is not a Cohen-Macaulay ring.

We divide the proof of Theorem (6.12) into the cases stated in (5.10).
The proof will be completed by (6.16), summarizing the results of (6.13),
(6.14), (6.15) and (6.16).

We begin with the following

ProposiTiON (6.13). Suppose that M has type (I) and satisfies 2a' < «,
28< B and 2y <y'. Then [p@F + pp® =+ p*.
Proof. First assume that ch k = 2. Since by (2.3) and (5.10) we ex-

plicitly have a system of generators for the ideal (X) + [p®]® + pp®, we
get

CAAIX) + OF + pp®) = 16fr + 105 + 1087 if 38 < & and 3y <7,
= T8y + 1387 + 10g7  if 36 < § and 31 > 7/,
= Tpr + 101" + 1087 + 3p7

if 38> f and 3y < 7/,
= Tfr + 105y + 11877 if 38> p and 3y > 7.
Therefore if p® = [p®] + pp®, then since 4,(A/(X) + p*) = 108y + B
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+ B'Y), we have by the above equalities that

Br=20 if 38< p and 3y <7/,
r=1r if 38 < f and 3y > 7,
B=p if 36> p and 3y <y’ and

3Br = By > 4pr if 38> f and 3y > 7,

all of which are impossible. Hence p® = [p®]* 4 pp®.
Secondly assume that ch 2 = 2 and that [p®] + pp® = p®. Then by
(2.3) and (5.10) we get

1008y + B’ + B7)) = 13fy + 108y + 1087 if 38 < § and 3y <7/,

= By + 128y + 108y if 38 < p and 3y > 7,

= T8y + 1087 + 10y + 28y if 38> § and 3 < 7,

= 108y + 98y + 118y — By if 38> p and 3y > 7/,

all of which contradict the standard assumption on j and y. Hence
PO £ [pOF + pp®.

ProposiTiON (6.14). Suppose that M has type (II) and satisfies 2o/ < «,
28 < B and 2y >¢'. Then [p®] + pp® £ p®.

Proof. Assume that p® = [p®]2 4 pp®. Then if ch k + 2, we have
1008y + 8" + B'7) = 9Br + 12py" + 108’y if 36 <,
= 16y + 6fy + 1287 — 28y if 38> §,

which contradict the assumption on g and y. Therefore the characteristic
of k has to be 2. But when ch k = 2, we have the equalities

108y + By’ + BY') = 118y + 108y + 108y if 36 < 8,
=148y + T8 + 1187 — By 3> F,

both of which again contradict the assumption on 8 and 7, too. Thus
we have p® £ [p@] + pp®.

ProposiTiOoN (6.15). Suppose that M has type (II) and satisfies 2o’ < «,
28> p and 2y > 1. Then

D) [P + pp® # p® if chk + 2.
(2) Suppose that chk = 2. Then R,(p) = Alpt, p®@8, p®¢] if and only
if 2y =y'. When this is the case, R(p) is not a Cohen-Macaulay ring.

Proof. (1) Assume that p® = [p®]2 4 pp®. Then we have

https://doi.org/10.1017/50027763000003792 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000003792

128 SHIRO GOTO, KOJI NISHIDA AND YASUHIRO SHIMODA

108 + B + By) = 138 + 87 + 1187 — gy if 36< 2,
=T + 1187 + 997 + 37 if 35> 28"

Both the equations contradict the assumption on 3 and y, whence p® =
[P®T + pp@®.

(2) Suppose that R,(p) = Alpt, p®¢, p@¢)]. Then p*® = [p®]* + pp® so
that

108y + By’ + B7) = 128y + 98¢ + 1087’ if 3p < 28"
= 68y + 128 + 887 + 4 if 38 > 28,

whence we have 2y =y’. Conversely assume that 2y =y’ and let e, be
the element in (2) of (5.10). Then since

£.4Al(er, 0, X)) = L(ANYH7, 27, X))
= 3/(38 + 28)
= 1-3-L,(AIX) + ),

we get R (p) = Alpt, d,t, e;t’] by [5, Corollary (3.8)]. The ring R,(p) is not
Cohen-Macaulay (cf. [5, Theorem (1.1)] and [20, Corollary (3.4)]), because
All@) + »® is non-Cohen-Macaulay by [15, Proposition (2.4)].

ProprosITION (6.16). Suppose that M has type (II) and satisfies 20’ > «,
28> B and 2y > ¢’. Then the following assertions hold.

(D) If chk 2, then [p®] + pp® £ p® or p@p© + pp® £ p©.

(2) Suppose that chk = 2. Then R/(p) = Alpt, @, p9¢] if and only
if 28 = f and 2y = y’. When this is the case, R(p) is not Cohen-Macaulay.

Proof. (1) Assume p® = [p®]* + pp® and we will prove that p®p®
+ pp® # p®. By the equality £,(A/(X) + %) = £,(A/X) + BT + pp®)
we get that

B 108 + 8 + Br) = 158y + T8 + 1287 — 3py
if 38 < 28’ and 3y > 27,
=68y + 13p" + 8fy + 387
if (1) 38 > 28 or if (ii) 38 < 2p and 3y < 2.
By these equations we find 28 = §’ and 2y = ¢/, whence ¢,(A/(X) + p®@p®
+ pp¥) = 1088y and £, (A/(X) + p®) = 1058r. Thus p®p® + pp® £ p® as

required.
(2) Suppose that R/(p) = Afpt, p@¢’, p@¢]. Then p® = [p®] + pp®,
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which yields the same equations as (#) above so that we have 28 = f§
and 2y =y. Conversely assume 28 = p and 2y =7 and let e, be the
element obtained by (2) of (5.6). Then since

ZA(A/(ea, ¢, X)) = ZA(A/(ZW’ Y:sp’ X))
= 21py
=34, (AIX) + D),

we get R,(p) = A[pt, d,t, e;t?] by [5, Corollary (3.8)]. As A/(c) + p® is
non-Cohen-Macaulay by [15, Proposition (2.4)], the A-algebra R (p) cannot
be Cohen-Macaulay (cf. [5, Theorem (1.1)] and [20, Corollary (3.4)]).

ExampLE (6.17). (1) Let p = p(10, 11, 13) (resp. p(11, 16, 13)). Then p
is generated by the maximal minors of the matrix
[X2 Y? Z”] (resp. [X2 Y? Za])-
Y 7Z Xx¢ Y 7 X®
Hence by (6.1) R,(p) is generated (resp. not generated) in degree three.
(2) Suppose that chk = 2 and let p = p(17, 10, 19) (resp. p(7, 11, 12)).
Then p is generated by the maximal minors of the matrix
X Y 7 X Y Zt
[Y3 Z X] (reSp' [Y Z X2]>

and so R,(p) is generated in degree three by (6.16) (resp. (6.17)) but not
Cohen-Macaulay.

§7. A note on Huckaba’s theorem on the analytic spread modulo
one element

Let A be an unmixed Noetherian local ring and p a prime ideal in
A of dimA/p = 1. Then S. Huckaba [10] discussed the behavior of the
analytic spread A(p) of p modulo one element and gave, in terms of A(p),
a sufficient condition for R,(p) to be Noetherian. In this section we shall
try to improve his sufficient condition in the case where A is a regular
local ring of dim A = 3, clarifying the relationship between Huckaba’s
condition and Huneke’s criterion [13, Theorem 1.4] of R,(p) being Noethe-
rian. Our improvement below also provides a partial answer to the
question posed by Huckaba [10, Remark 2.6, (3)]:

THEOREM (7.1). Let A be a 3-dimensional regular local ring with
maximal ideal m and 9 a prime ideal in A of dim Afp =1. Let 0 £ g€
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and let ¢ be the largest integer with gep®. Assume that the field Ajm
is infinite. Then the following two conditions are equivalent.

(1) p/gd) = 1.

(2 ¢.(ALf, 8 %) = £-£,(Al(X) + p) for some fep and xem\p.
When this is the case, R(p) = Alp™e* |1 < n < 4].

Proof. (1) > (2) We put B= A, and n = pA,. Choose fep so that
p*! 4 gA = fp” + gA for some r > 0. Then p = +/(f,g) and n"*' + gB =
fn” 4+ gB. Hence

ntl = fnr + gB n nr+1
— fnr + gnri—l—l
so that f, g forms a super regular sequence in B. Since £4B/(f, g)B) = ¢,

we get by the additive formula [18, p.126] of multiplicity the required
equality that

LL(A[(T, 8, x)) = ex(A[(f, &)
= 4(B/(f, g)B)-ex(Alp)
= £-4(A[(x) + p)
for any x e m\p.

2 =>(@1) We put C= A/gA and P = p/gA. Then since A/gA + p™
is a Cohen-Macaulay ring for n > 1 and since p™ = fp=- + gp®-9 for
n> ¢ (cf. [5, (3.7) (1)], we have that P™ = p™C for n > 1 and that P™
= PP"-Y for all n > 4. Therefore R,(P) is module-finite over R(P) =
> aso Pt and so we get by [4, Theorem (2.10)] that

APC + Q/Q) < dim €/Q = 2

for any Qe Ass é’, where C denotes the m/gA-adic completion of C.
Thus we have A(P) = 1, because

AP) = APC) = A(PC + QIQ)

for some @ e Ass ¢ (cf. [14, Lemma 4.2]). The last assertion directly fol-
lows from [5, Corollary (3.8)].
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