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TOPICS ON SYMBOLIC REES ALGEBRAS

FOR SPACE MONOMIAL CURVES

SHIRO GOTO, KOJI NISHIDA AND YASUHIRO SHIMODA1

§ 1. Introduction

Let A be a regular local ring of dim A = 3 and p a prime ideal in

A of άimA/p = 1. We put Rs(p) = Σm^oP{n)tn (here t denotes an indeter-

minate over A) and call it the symbolic Rees algebra of p. With this

notation the authors [5, 6] investigated the condition under which the

A-algebra Rs(p) is Cohen-Macaulay and gave a criterion for Rs(p) to be

a Gorenstein ring in terms of the elements / and g in Huneke's condition

[11, Theorem 3.1] of Rs(p) being Noetherian. They furthermore explored

the prime ideals p == p(nu n2y nz) in the formal power series ring A =

k\X, Y, Z~\ over a field k defining space monomial curves X = tni, Y = tU2

and Z = tnz with GCΌ(nu n2, nz) = 1 and proved that Rs(p) are Gorenstein

rings for certain prime ideals p = p(nu n2, rc3). In the present research,

similarly as in [5, 6], we are interested in the ring-theoretic properties of '

R$(p) mainly for p = p(nu n2) ft3) and the results of [5, 6] will play key roles

in this paper.

However, the problem whether Rs(p) is a finitely generated A-algebra

is more fundamental and as far as the authors know, it remains open

even for the general space monomial curves p = p(nu n2, n3). And the

problem was one of the motivations of J. Herzog and B. Ulrich to develop

a theory on self-linked curve singularities [9], where they gave a criterion

for Rs(p) to be generated in degree two and proved that p is self-linked

and Rs(p) is a Gorenstein ring, once Rs(p) = A[pt, p{2)t2]. In our paper

we shall succeed the research of Herzog and Ulrich [9]; of course our

target is the next step, that is, the study of the A-subalgebra A[pt, p{2)t2,

piZ)f] of R9(p). There are two purposes: one is to find the conditions

under which Rs(p) is generated in degree three and the other one is to
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see what kind of ring-theoretic properties R8(p) possesses, when R8(p) =

A[pt, piZ)t\ pvf].

Now let us explain our results. Throughout the work [9] the infor-

mation from [12] about p{2) played an important role and we will briefly

summarize the results on pi2) in Sections 2 and 4, because they are still

helpful for our purposes, too. But we furthermore need an explicit struc-

ture theorem of the third symbolic powers p{3\ which we will discuss in

Section 5. The ring-theoretic properties of Rs(p) heavily depend on wheth-

er p is self-linked or not. In fact, the ring Rs(p) is necessarily Gorenstein,

if p is self-linked and if Rs(p) = A[pt, p{Z)t\ p^f]. But Rs(p) cannot be

Cohen-Macaulay and the characteristic of the ground field has to be 2,

if p is not self-linked although Rs(p) = A[pt, p{l)i\ pmf]. These assertions

will be proved in Theorems (6.1) and (6.12), where the conditions under

which the A-algebra Rs(p) is generated in degree three shall be summarized,

too. As was proved in [9], A[pt, p{2)t2] is a Gorenstein ring if p is self-

linked. However, this assertion is no more true when p is not self-linked.

In fact, A[pty p
(i)t2] is not a Cohen-Macaulay ring for p = £>(13,14,17), while

the rings A[pty p*Ψ] are Cohen-Macaulay and of r(A[pt, p(2)t2]) = 3 for a

certain large class of prime ideals p = p(nu n2, nz) (cf. Section 3 and [9]).

Thus our main purposes will be attained to by the end of Section 6.

As a final topic we would like to include in Section 7 an answer to

a question posed by Huckaba [10, Remark 2.6 (3)]. He asked the rela-

tionship between Huneke's condition [13, Theorem 1.4] of Rs(p) being

Noetherian and his own condition for that. Our answer Theorem (7.1)

will show that they are equivalent to each other.

In what follows let A denote a 3-dimensional regular local ring with

maximal ideal m and p a prime ideal in A of άimA/p — 1. For a given

ideal I we denote by λ(I) the analytic spread of /. Let ίA(M) and μA(M)

respectively denote, for each finitely generated A-module M, the length

of M and the number of elements in a minimal system of generators for

M.

§ 2. Preliminaries

Let X, Y, Z be a regular system of parameters for A and assume that

p is generated by the maximal minors of a matrix M of the form
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where a, β, γ, a', β', γ' are positive integers. Notice that if p = p(nί9 Th, nz)

and μA(p) = 3, then the ideal p satisfies the above assumption (cf. [7]).

The purpose of this section is to summarize certain results on the

second symbolic powers p(2\ To begin with we note the following

LEMMA (2.1). (1) a Φ a\ β Φ βf or γ Φ f.

(2) 2a φ a\ 2β φ βf or γ φ f.

(3) If p == ρ(nu n2, nz) for some positive integers nu n2 and nΆ, then

a φ 2a', 2/3 φ β' or 2γ φ f.

Proof (1) See [6, Lemma (2.3)].

(2) Suppose that 2a = a', 2β = β' and γ = f. Then since (X3a - YβZr)

- (Y3β - XaZr) = (Xa - Yβ)(X2a + XaYβ + Y2β + Zr), we have Xa - Yβ e p

or X2a + XaYβ + Y2β + Zr e p. Therefore at least one of Yβ and Y2β + Z7

must be in the ideal (X) + p = (X, Z2\ YβZ\ YZβ), which is impossible.

(3) Suppose that a = 2a', 2β = β' and 2γ = f. Then Z3r - XaΎ2β e p

and X3a' - y^Z2r e p. Hence 3rn3 = a'n, + 2βn2 and Sα7^ = βn2 + 2rτi3.

These equations imply a'nx = τ̂?3 and so Xα' — Z r e p. Thus we get Zr e

(X) + p = (X, Z3r, YβZ2r, Y30, which is impossible.

After suitable permutations of the rows and columns of M, we may

assume that M is one of the following types.

( I ) a<a\ β<β' and γ < f,

(II) a> a\ β < β' and γ < γ'.

We note that p is self-linked (resp. not self-linked) if and only if M has

type (I) (resp. type (II)) (cf. [9, Corollary 1.10]). We put

a = Zγ"r - XaΎβ/, b = Xa+a> - YβZr and c = Yβ+βf - XaZ\

PROPOSITION (2.2) (cf. [6, 12, 19]). Suppose that M has type (I). Then

there exists d2 e p{2) such that p(2) = (d2) + p2 and

Xa'd2 = Zr'-γac - Yβ'~βb2,

Yβd2 = ab - Xa'-aZr'-rc2,

Zrd2 = Xa'-aYβ'-βbc -a2.

We furthermore have

d2 = -Zr+2r' mod (X) if a< a',

= -Zr+2r> mod(Y) if β< β\

= -X«+*«Ύβ'-βmoά(Z) if γ< f.
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PROPOSITION (2.3) (cf. [15]). Suppose that M has type (II). Then there

exists d2 e p(2) such that pi2) = (d2) + p2 and

Xad2 = Zr'-rac - Y*'-*b\

Yβd2 = X—'ab - Zr'-rc\

Zrd2 = Yβ'-βbc - X«-«'a\

Hence we have d2 == -Y^'Z7'-7mod(X).

COROLLARY (2.4). (1) Suppose that M has type (I). Then we have

μjp») = 4 if β = β' orγ = γ\

= 5 if β< β' and γ< f.

(2) // M has type (II), then μjp™) = 7.

Proof. See [15, (2.3)] for the proof of the assertion (2).

(1) First we assume that β = β'. Then by (2.1) a < a' or γ < f. If

a < a\ by (2.2) we have (X) + ί>(2) - (X, Z7+2r\ Y2?Zr+r\ Y3βZ7', Y4β) so that

μA((X) + p{2)l(X)) = 4. Hence μA(p™) = 4, because

{2)(X) + p^i(X) ^ p^KX) n P

Similarly we get μA(p{2)) — 4 also for the case γ < f, because (Z) + P(2) =

(Z, Y4 ,̂ XaΎ3β, Xa+aΎ2β, Xa+2a'). A similar argument works to prove the

assertion in the case where γ = γ', too.

Next assume that β < βf and γ < f. Then by (2.2) we have (Y) + £(2)

- (Y, Z r + 2 r , X«Z2r+r', X2aZ2ΐ, X2a+a'Zr, Z2«+2«') and so μA((Y) + pi2)l(Y)) = 5.

Therefore /^(p(2)) = 5.

§ 3. The Cohen-Macaulay property of the ^-algebra A[pt9 p
(2)t2]

Let us maintain the same notation as in Section 2. The purpose is
to prove the following

THEOREM (3.1). Suppose that M has type (II) and (a — 2af)(βf — 2β)

(f - 2γ) > 0. Then the A-algebra R = A[pt9 p
i2)t2] is a Cohen-Macaulay

ring with r(R) = 3, where r(R) denotes the Cohen-Macaulay type of R (cf.

[8, p. 4]).

We divide the proof of Theorem (3.1) into several steps. First assume

that M has type (II). Let Tu T2y Γ3 and T4 be indeterminates over A and
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put S = A[TU Γ2, T8, ΓJ. Let ψ: S-> i? be the homomorphism of A-alge-

bras such that ^(T,) = at, ψ(T2) = 6ί, ψ(T3) = cί and ψ(Γ4) = d2t\ where

d2 is the element of p(2) given in (2.3). Let P = Ker ψ. Then P is a

prime ideal in S of ht^P = 3 containing the following five elements

Gί =

G2 =

Yβ'T2 + ZVT%,

ZrT2 + Xa'T,,

+ yr-*Tl - Zr-rT1Ti9

Zv'rT\ - Xe-e#2\r2,

G3 = ZrT, + X—'Tl - Yβ'-βT2T3.

We put J=(Flf F2, G1? G2, G3)S. Then J e P and we have

LEMMA (3.2). S/J is a Gorenstein ring of dim S/J = 4.

Proof. Because J is generated by the Pfaffians of order 4 in the

following 5 by 5 antisymmetric matrix

0

Z
z
z
z

X"

- y

zv

τt0

-«

'-/

-r

'Ά

Z

z
-X-'

0

-zr

'Z,

i

— Ί

γr-ι

Zr

0

-X" 0

to see that S/J is a Gorenstein ring of dim S/J = 4 it is enough by [2,

Theorem 2.1] to show that grade5J = 3. We put B = A[TU T2, T3]. Then

Fu F2eB and R(p) : = Σn :>0 jj
nίn ^ B/(Fi, F2)B (cf. [21, Theorem 3.6]). Hence

(F1? F 2 )£eSpecB with htB(F1 ? F2)β = 2 and so (F1? F2)S e Spec S with

ht s(F l 5 F2)S = 2. Obviously Gx g (F l5 F2)S. Thus wa get that grades J > 3,

while ht s J < 3 as J cz mS. Hence grades J = 3 as required.

LEMMA (3.3). Ass5S/J = {P, mS}.

Proof (cf. Proof of [9, Theorem 2.1]). Obviously Ass5S/J 2 {P, mS},

so we shall prove the reverse inclusion. Since Ass5S/J = Min5S/J by

(3.2), we see that mS is the unique associated prime ideal of S/J including

(X'\ Yβ, Z Y ) A . H e n c e t h e r e e x i s t s ξe (Xa\ Yβ, Z r ) A s u c h t h a t ξeQ f o r

any Qe AsssS/J\{mS}. We write ξ = cγX
a' + c2Y

β + czZ\ where c, 6 A

for 1 < i < 3, and we put G = c1Gί + c2G2 + czG8. Then G = ξT4 - η with

η e A[T1? Γ2, Γ,]. Let Sf : = S[l/f] = A[l/f] [T^ Γ2, r3, ΓJ and let p : = 9/f.

Then since S7(F1? F2, T, - p) ^ A[llξ][Tu T2, T3]I(FU F2\ we get that (Fu
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F2, T, - p)S' e Spec S' and hts,(Fίy F2, T, - p)S' = 3 (cf. the proof of (3.2)).

Let Q e AsssS/J\{mS}. Then we get JS' = QS' because (Fu F2, T, - p)S'

c= JS" £ QS'. This means that PS' = QS' so that P = Q, which completes

the proof.

As JSP — PSP by the proof of (3.3), we know that P is the P-primary

component of J. Let C = SmS and α = JC Π S. Then we get

J=PΠa,

which implies P = [J: a]s and α = [J: P]s so that we have the following

LEMMA (3.4). PjJ - [(0): α / J ] w and a/J = [(0):

Let at = min {a7, a — a'}, βt = min (jS, /3' — /3} and Ί = {γ, f — ̂ } and

put K = (Xβs Y*, Z r i)S.

PROPOSITION (3.5). R is a Cohen-Macaulay ring of r(R) = 3, i/ JC =

KC.

Proof. As if is mS-primary, we have a = JC f] S = KC 0 S = K.

Hence as S/K is Cohen-Macaulay, we see by (3.4) and [16, Proposition

(1.3)] that R = S/P is Cohen-Macaulay, too. Let KR be the canonical

module of R. Then we get

KR s Homw(S/P, S/J) (by (3.2))

(by (3.4)).

Therefore we have

r(R) = μR{KU)

= ZR(KI(NK + J))

= UK/NK)

= 3,

where iV = mi? + (2^, T2, Γ8, Γ4)fi.

Now we are ready to prove Theorem (3.1).

Proof of Theorem (3.1).

It is enough to show that JC = KC if (a - 2a')(β' - 2β)(γ' - 2γ) > 0.

Let us respectively denote by x9 y, z and ίf the images of X, Y, Z and Ti

in C/JC. As G,, G2 and G3 are in JC, we have
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(*2) y% + zr'-rt\ - xr-Xu = 0,

(*3) z% + xa-«'t\ - y*'-%U = 0.

By the equations (*1) and (*2) we get

so that

x«ι(xa'-a%t4 - xa-«'-aHlt2) + yβι(yβ'β%tA + yβ'-β-βltlt,) = 0 .

Suppose that p' > 2 r. Then by (*1) and (*3) we have

0 = χ«'t\ + yβ'-h\U - zr'-

so that

xa>(xa'-«Hl + xa-a'-aizr-2rt%) + yβl(yβ'-β-βlt2

2t4 - yt'-t-W-^Wi) = 0.

Thus we get

£7
lyl y J ~ LoJ'

where

U

Because

~ LΛf'-^l + ^ - α ' - α i ^ ' - 2 r © 3 y - ^ ^ 4 - yβ'-β-βlz7'-2%t2tl\ '

det C/= -

if (a - 2a7) (j3' - 2j8) > 0 or f = 2?-, we see that det U is a unit of CjJC

so that 2Γl = 0 as well as xai = j ' ^ 1 = 0, which implies JC = KC.

We consider the case where / < 2 .̂ Then by (*1) and (*3) we get

o = z2r-ruzr-%t2) + *«-«'#, - y - ^ ^

= sF-rU{xr'U + yβ'-Πl) + Λ—'t% - yβ''ΠMl,

so that

^(^'-αx^r-r'^ + ^-«'-«i^3) + yi(y'-*-/vr-r'ί& - yβ'-β~β%Ul) = 0.
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Hence we have

where

yβ> - β-β^T-T'^ __ yβ

If (a - 2a!) (β; -2β) <Q or f = 2γ, we see that det U is a unit in C(JC

whence xai = y31 = 2ri = 0. Thus we have JC = ifC in this case, too.

This together with the result in the case where f > 2γ completes the

proof of Theorem (3.1).

COROLLARY (3.6). Suppose that M has type (II) and satisfies one of

the following conditions
(1) α / = = i 8 = r = = i .

(2) a = 2a\ βf = 2β or γf = 2γ.

Then R = A[pt, p{2)t2] is a Cohen-Macaulay ring of r(R) = 3.

EXAMPLE (3.7). R = A[pt, p{2)f] is a Cohen-Macaulay ring of r(R) = 3

for the following prime ideals p:

(1) p = p(n2 + 2n + 2, n2 + 2n + 1, n2 + n + 1), where 2 < n e Z.

(2) p = p(n2, n2 + 1, n2 + n + 1), where 3 <neZ.

(3) p = p(17, 10, 19).

Proof. The prime ideals p of (1), (2) and (3) are respectively generated

by the maximal minors of the matrix

x ϊ VYy z x ϊ VY z x J Lr Z

Hence we see by (3.6) that R is a Cohen-Macaulay ring of r(R) = 3.

EXAMPLE (3.8). Let p = p (13, 14, 17). Then the A-algebra J? = A [pi,

p(2)Z2] is not a Cohen-Macaulay ring.

Proof. Notice that p is generated by the maximal minors of the matrix

y z
of type (II). We put a = Z4 - XΎ, b = X" - YZ3 and c = Y4 - Z3Z.

Then by (2.3) there exists d2ep&) such that
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X2d2 = Y2b2 - Z2ac,

Yd2 = Z2c2 - Zα6 and

Zd2 = Xa2 - Y26c.

Let S = A[Tj, r2, Γg, Γ4] and P be as in the proof of (3.1). Then the

following elements

Ft = x*τx + Y3Γ2 + z8r,,
F 2 = Y^ + ZΓ. + X 2 ^ ,

GX = X2T, - Y2Tl + Z2T,T,,

G2 = YΓ4 - Z 2 Ϊ1 + X ^ Γ , and

G3 - ZT4 - XT\ + Y2T2TZ

are in P. We put J = (Fί9 Fi9 Gu G2, GZ)S, Q = mS, C = SQ and α = JC Π S.

As is shown in the proof of (3.1), we have J = P Π α. Therefore by (3.4)

and [16, Proposition 1.3] it is enough to show that S/a is not Cohen-

Macaulay. First we prove

CLAIM 1. Q2C c JC.

Proof of Claim 1. We respectively denote by x, y, z and tt the images

of X, Y, Z and Tt in C/JC. It suffices to show that (x, y, zf = (0). Since

Gi, G2 and G3 are in «/; we have

(*1) x% - y « + z%U = 0,

(*2) y** - Λ? + *Mί = 0,

(*3) 2;ί4 - x^ + y%U = 0.

By the equations (*1) and (*2) we get x%t, - yH\U + yUU + oct\t2 = 0 and

so j = MX, where u = (t\t2 + xtzQj(yt\tz — txQ. Then by (*3) we have

zU - xt\ + u2xH2ts = 0 so that 2 = i x with 1; = (ί2 - u2xt2ts)lt4. Thus the

equation (*1) yields x\U - uH\ + v%tz) = 0. Let Qf = QC/JC. Then as

1/ = -UUlU mod Q' and a s u Ξ t\\U mod Q', we get t, - w2^ + Λ ^ Ξ (^ -

î2 4̂ + t%)lt\ mod Q'. Hence ί4 - uH\ + i ̂ ίg is a unit in C/JC and so x2 = 0,

which claims that (x, y, ^)2 = 0, because y = ux and z = vx.

We put I = (/", #, Λ)S + Q2, where / = YT, + XT,T2, g = ZT4 - XT2

and Λ = YTX + ZΓ2. Then IC = JC by Claim 1. We want to show that

I is Q-primary and S/I is not Cohen-Macau] ay, which will complete the

proof of (3.8) because I = α.

Let us consider the exact sequence

(#) 0 > Q/J • S// > SIQ > 0.

https://doi.org/10.1017/S0027763000003792 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003792


108 SHIRO GOTO, KOJI N1SHIDA AND YASUHIRO SHIMODA

CLAIM 2. ranks/Q Q/I = 1.

Proof of Claim 2. We shall show that £C(QCIIC) = 1. Notice that

SC(QCIIC) < 1, because QC ^ IC ^ QZC and QC = (X, /, g)C. Hence it is

enough to show that QC Φ IC. Assume the contrary. Then QC = (f, g, h)C

by Nakayama's lemma, which is impossible because

g = U
x~
Y

_z_
where U =

and because det U = 0.

We consider the following complex

ψ2

1 1 U 1 4

0 Z T2

Z

-Tl

0

Ά

TΛ

τ<
0

T

0"

Ά
Ά.

(SIQ)2 ψl

[T, -TXT2 21]

which is exact by [1, Theorem]. Let ε: (S/Q)3->Q// be the S/Q-homomor-

phism such that ε(βt) = J m o d J, ε(e2) = YmodI and ε(e8) == Zmod J, where

et, e2 and β3 are the standard basis of (S/Q)3. Then since εoφ2 = 0, there

exists an epimorphism p: (Γ4, —T&, T\)(SIQ) -> Q/J such that poφi = ε.

Then p is an isomorphism by Claim 2. Therefore we have that Q/I is

embedded, via p, in S/Q and that proj. dim5/Q Q/I = 2. Thus we see that

Ass5 Q/I = {Q} and depth^CQ//)^ = 2, where N = mS + (2^, Γ2> Γ3, Γ4)S

(notice that S/Q is a polynomial ring with four variables over the field

k = Aim). Hence by the exact sequence (#) we get AsssS/I = {Q} and

depth5jyr(S//)^ = 2, so that S/I is not a Cohen-Macaulay ring because

dim (SII)N = 4. This completes the proof of (3.8).

§ 4. The generation of Rs(p) in degree two

Let A be a regular local ring of dim A = 3 and p a prime ideal in

A of dimA/p — 1. In this general situation we shall characterize prime

ideals p whose symbolic Rees algebras Rs(p) are generated by pt and p(2)t2.

The first result is

THEOREM (4.1). Suppose that A/m is infinite. Then the following

conditions are equivalent.
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(1) R,(p) = A[pt, p«Ψ].

(2) £A(AI(f, g, x)) = 4 £A(A/(x) + P) for some f,ge p<2> and x e m\|>.

(3) (/, ί ) : ί)(2) = J> /or some fge J>(2).

(4) (/, g) 3 ϊ>(3) /or some /,ge p(2).

W/ien 2/ιis is ίήe case, Rs(p) is a Gorenstein ring.

Proof. See [5, Corollaries (3.8) and (3.9)1 for the implication (2) => (1)

and the last assertion.

(1) =φ> (2) As p ( n ) = pp<n-ι) + p<*ψ»-2> (Λ > 1), we get p(2n) = [J)(2)]n and

pan+i) = jj^wjn for all ^ > i. Hence depth A/[>(2)]n = 1 for any n > 1 and

so by [3, Corollary, (i)] we may choose f,gep{2) so that [p<2)]r+1 = (/, ^)[})(2)]r

for some r > 0. Therefore we get the condition (2) by the proof of [11,

Theorem 3.1].

(2) => (4) See [5, Proposition (3.4)].

(4) => (2) Let B = Ap and n = pAp. Then n2 ^ (/, g)B 3 n3 (recall that

μA(n2) = 3). Therefore we get ^(n2/(/, g)JB) = 1 as £/(/, ̂ r)J5 is a Goren-

stein ring. Consequently SB(B/(f, g)B) — 4 and so by the additive formula

of multiplicity (cf. [18, p. 126]) we have

for any x e m\p. Thus we get the condition (2).

(4) => (3) Notice that (/, g) is a p-primary ideal and pc2) ζί (/, g). Then

we have (f,g): p(2) c ^ so that (/,^): £(2) = p, because (/,g): p(2) 3 j, by the

assumption (4).

(3) => (4) As |)(2) 3 (/, g) 3 ppw, we have that (/, g) 2 ^ and p = V(Λί).

Hence (/, g) 2 P(3), because (/, g) is a p-primary ideal of A.

For prime ideals p with μjp^lp*) < 1, we can improve Theorem (4.1)

as follows.

THEOREM (4.2). Suppose that A/m is infinite. Then the following

conditions are equivalent.

(1) Bf(p) = Aβrt, p(2)ί2] and μjpoηp*) < 1.

(2) ^(A/(/, ft x)) = 2'£A(AI(x) + p) for some fe p, g e p{2) and x e m\p.

(3) p(2) =fp + (g) for some fep and g e p{2).

(4) (f9g): P = p for some fep and g e p{2).

When this is the case, Rs(p) is a Gorenstein ring.
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Proof. (I) => (2) By (4.1) we can choose ay β e p(2) so that £A(A/(a9 β, x))

= 4'SA(A/(x) + p) for some xem\j). Then p(3) = (a, β)p by [5, Proposition

(3.4), Lemma (3.5)]. If (or, β) c mp(2) + p2, we have p(3) c nψ(3) + p3 so that

p(8) = 3̂ b y Nakayama's lemma. Then as /^(p) •= 2 by [12, (2.5) Corollary],

the assertion (2) is clear. Therefore we may assume β g mp(2) + p2. Let

g — β. Then we have p(2) = (g) + p2 as μA(p{2) Jp2) < 1 by our assumption.

We put £ = A/#A and P = p/gA. Then as P 2 = p(2)/£A, we have that

P 2 is P-primary. Because [p™]2 = (a, g)p™ (cf. The proof of [11, Theorem

3.1]), we get P 4 = aP2 whence λ(P) = 1. Choose fe p so that Pr+1 = fPr

for some r > 0. Then as v(BP) = 2 = e(J3P) (notice that ^ e p (2)\|) (3), cf.

[5, Proposition (3.7), (3)]), we see P2BP = / P £ P by [17, 3.8. Theorem] so

that P 2 = fP, because P 2 and fP are P-primary ideals of B. Hence p(2) c

(/, ^) ^ ί and we have p(2) + (/) = (/, g). Thus (/, g) is a p-primary ideal

and fep{2\ whence

for any x e m\t>.

(2) => (1) See [5, Propositions (3.4) and (3.7)].

(2) =φ (3) As p<2> c (/, ^) by [5, Proposition (3.4)], we get p<2> = fp + (^)

by [5, Lemma (3.5)].

(3)=»(4) As (f,g) 2i? ( 2 ), (/,g) is ^-primary and (f, g): p 3 p . There-

fore (/, g): j) = p, because p ^ (/, ̂ ) .

(4) =^ (2) As p2 c (/, g) c p, we see that (/, g) is p-primary. Therefore

ί>(2) £ (/,g) so that p(2) + (/) = (/,£), which implies /gp ( 2 ) . Hence we

have £Λp(AJfA9 + p2Ap) = 2 and so £Λ(AI(f,g, x)) = 2 ^(A/(x) + p) for any

xem\p. Thus we get the assertion (2).

In the rest of this section let A, p and M be as in Section 2. Then

by (4.2) we get the following

COROLLARY (4.3) (cf. [9, Corollary 2.12]). The following conditions are

equivalent.

(1) Rs(p) = A[pt, p^t2].

(2) M has type (I) and (i) β = β' or (ii) a = α ; and 7- = T-7.

W/ien ί/iis is ί/ie case, ί?5(p) is a Gorenstein ring.

Proof (1) =» (2) Since //^(p(2)/p2) < 1 by (2.2) and (2.3), we get μA(p{%))
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< 4 by (3) of (4.2) so that M has type (I) and β = βf or γ = f by (2.4).

Suppose that β < β' and γ = y'. We shall prove that a = a'. Since we

get

(Y) + jφo == (Y) + (Z5^ X«Z4r, X3«Z3r, X3«+«'Z2r, X3«+2α'Zr, X3«+3«')

if 2a < a',

= (Y) + (Z 5 r, X*Z 4 r, Z α + «'Z 3 r , X3«+ α 'Z2 r, X 3 α + 2 α 'Z r , X3«+3«')

if 2α > af

by (2.2), we obtain

SA(AI(Y) + ppv) = 13αγ + βα7/- if 2α < a',

= Way + Ίafγ if 2a > af.

On the other hand the condition (1) implies ppi2) — p(3) so that

£Λ(AI(Y) + W(2)) =

= 6(2aγ + a'γ) .

Thus we have

I2aγ + βαY = 13αγ + βα7^ if 2α < a',

= llaγ + Ίa'y if 2a > a\

Hence 2a > af and ay — a'y so that a = α7, as required.

(2) =φ (1) First we assume β = ^7. Then α < α7 or 7- < yf by (2.1). Let

d2 be the element obtained by (2.2). If a < ar (resp. 7 < / ) , then d2 =

- Z r + 2 r ' m o d ( Z ) (resp. d2 = -Z Λ + 2 α 'mod(Z)) so that

= £Λ(AI(Y*β, Z'w, X))

= 2βγ + 4βγ>

(resp. ^(A/(c, rf2, Z)) = ^(A/(P^, X«+2α', Z))

= 2aβ + Aa'β

whence Rs(p) = Λfrί, J)(2)ί2] by (4.2).

Next assume that a = α7 and 7- = / . Then β <. β' by (2.1). Hence

by (2.2) we get d2 == -Z 3 r mod(Y) so that
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£A(AI(b, <k, Y)) = ^(A/(Z2«, Zsr, Y))

Thus Rs(p) = A[pt, pi2)t2] by (4.2), which completes the proof of (4.3).

§ 5. The third symbolic power p{S)

The purpose of this section is to investigate the structure of p{3) for

the prime ideals p generated by the maximal minors of matrices M of

the form

IX"
xΛ'

where X, Y, Z is a regular system of parameters for A and a, β, γ, a', β', γ'
are positive integers. We put a = Zr+r - XaΎβ', b = X°+"' - Y?Zr and

c = γβ+β _ χ°zr.

We begin with the case where M has type (I). By the equation

Yβa + Zτb + Xa'c = 0 and those given in (2.2), we have

b(X"dt + y'-ofc2) = Zτ'-γabc = Zr

ac(- Y'o - X°'c) = Z'abc = Zϊr-rb(X°d2 + Y^'^b1) if 2 r > f,

Zr-"ac(- Yβa - X"c) = Zr'-rabc = b(X*d2 + Y"'-^2) if 2γ < f

so that

(5.1) X'bd, - X"'-°Zzr-2rc3 = YW-rcdt - Y^-^b3,

(5.2) X°Z2r-rbdι + X"'acι = - YVe - γr-fZn-rV if 2r > f,

(5.3) X"bd1 + X"'Zr'-zrac* = - YW-vrfc - Y^'-^b3 if 2 r < r ' .

THEOREM (5.4). Suppose that M has type (I).

(1) Assume 2a < α' or 2γ < ?-'. T/ien ί/iere exists d3 e |>t3) suc/i that

pm = (d3) + |Jί)(2) and

d3 Ξ Z r + 3 r ' mod (X) if 2a < a' and 2β < β',

d, = Y^-f>-Zr+sr' mod (X) if 2a < a' and 2β ^ β',

d, Ξ -χ^« yί'-«ί mod (Z) if 2β < β' and 2r < f,

d3 = _X2»+ 3«' mod (Z) if 2β ^ β' and 2γ < f.

(2) Assume 2a > a' and 2γ > f, Then there exist d3 e pm and d's e pn'

such that £(3> = (d3, d0 + £ψ'2) and
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d3 = χ*—>zr+w' mod (Y) and d'3 = Z3r+2r mod (Y) if 2β < β',

d3 = - γv**rzίr-tτ mod (X) and d'3 = γv-rz*>+" mod (X)

if 2a > a' > a and 2β > β',

d3 ΞΞ -X*-*" mod (Y) and <% = -Jf»«+ «'Z t r- r' mod (Y)

if2β>β'>β,

d3 = _Z4«+ 2«' mod (Z) αred d3' == _ χ * « ' - y ί+*ί' mod (Z)

j / 2β ̂  |9' α«d 2 r > γ' > r,

d3 = -χ^° mod (Z) αred d, 6 pp® i/ 2α = a' and 2β = β',

d3 e p)5(2) and <% = Zπ - X5" mod (Y)

i/ a = a', 2^ = β' and 2γ = / .

Remark (5.5). When M is not of any case stated in (5.4). M satisfies

the condition (2) of (4.3) so that p(3) = pp(2).

Proof of Theorem (5.4).

(1) First we assume 2a < a'. By (5.1) we have

X'(bdι - X"'-*°Z2r'-2rc3) = Yt(Zr'-'cd2 - Y"'-2^3) if 2β < β',

= Y»'-\Y^^'Zr'-rcd2 - b3) if 2β > β'.

Hence there exists d3 e pl3) such that

bdz - X''-i«zw-vc% = Yt>d3 if 2β < β',

= y - ' d , if 2β > β'.

As a < a', by (2.1) d2 = _ Z r + 2 r ' mod(X) and so

d3 = Z r + 3 r mod( X) if 2β < β\

= Y*β-ι> Zr+3r' mod (X) if 2β > β'.

We put 7 : = (d,) + *ψ<2) ( 3 ϊ>3) Then if 2β < β', we have

(X) + I=(X, Zr+3r', Ys?Z3r\ Y^'Zr*"\ γ^f'Z2r',
γ2β+2β' r?ΐ + ΐ' γ3β + 2β' >7ΐ' y3j9 + 3jS'\

Hence £A(A/(X) + I) = 6βγ + 6βγ' + Gβ'f O n t h e o t h e r h a n d w e h a v e

by the additive formula [18, p. 126] of multiplicity that

pm) = eXA(A/Pm)

= 6 eΛ(AI(X)

= 6βγ + 6βγ'
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Thus we get £A(A/(X) + I) = SA(A/(X) + £>(3)) and consequently (X) + I =

(X) + p(3>. Hence pis) = / + (X) Π f)(3\ so we have p(3> = I by Nakayama's

lemma. Similarly we get J)(3) = I for the case 2β > β', too.

Secondly, assume 2γ < / . Then by (5.3) we have

Xa(bdz + X«'-«Zγ'-2ra&) = Yt(-Zr'-2ra2c - γr-*W) if 2/3 < β\

= y^-/ί(- γw-rzr'-*ra*c - b3) if 2/3 > ^

Hence there exists d3 6 p{z) satisfying

bd2 + Xa'-aZr'-2ΐac2 = Y H if 2β < βf,

= Y^-^B if 2/3>/3/

so that

d3 = -X2«+s«' Y ^ mod (Z) if 2/5 < β',

Ξ -X2«+3«' mod (Z) if 2/3 > ^ .

Let / = (d3) + £ψ(2). Then similarly as in the proof for the case where

2a < a\ we get

eA(Al(Z) + I) = 6a* β + 6tf'/3'

whence / = p(3> by Nakayama's lemma.

(2) Since 2« > α', we have by (5.1) that

X°'-«(Xi"-°'bd2 - Z2r'-"cs) = Yf>(Zr'-'cd2 - Yt -^b3) if 2/S < /3',

= Yf'-^Y%^lZr'-1cdt - b3) if 2/3 > /3'.

On the other hand since 2γ > f, we get by (5.2) that

X'(Zn-rbd, + X"'~"ac2) = Y^-rfc - yi'-^Z"-r'63) if 2/3 < β'.

= γβ'-ι>(- γ*β-ί>Ό?c - Z2r'r'b") if 2β > β'.

Hence there exist d% e ί>(3> and d'3 e β(3) such that

Z" ' -d 3 = Zr'-γcdϊ - y/ '-vft' if 2/3 < iS',

= Ytf->'Zr-rcdi -b3 if 2β> ff,

Xu-"'bd, - Z"'-2rc3 = y ^ 3 if 2/9 < β',

= y-'d, if 2j9 > ^',

and
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X«dί = -a2c - γβ'-^Zιr-r'bz if 2/3 < β',

= - γ*β-β'a
2c - Z2r~r'b3 if 2/3 > β',

Z2r-rbd2 + X«'"ααc2 = Yβdi if 2/3 < βf,

= y - ' d £ if 2/3 > /3'.

Then putting / = (d3, cφ + pp(2), we will get, similarly as in the proof of

the assertion (1), that I = p(3) for each case in the statement (2). The

detail shall be left to the readers.

COROLLARY (5.6). Suppose that M has type (I). Then

μA(pi3)lpp{2)) < 1 if 2a < a' or 2γ < f9

< 2 if 2a > a' and 2γ > f.

Let us now assume that M has type (II). Then since Yβa + Z7b +

Xa'c = 0, we get by the equations given in (2.3) that

c(Zr~rac - Yt'-tb2) = Xacd2 = d2(-Yβa - Zrb),

a(Xa~a'ab - Zr'~rc2) = Yβad2 = d2(-Zrb - Xa'c) and

b(Yβ'-βbc - X*-*'α2) = Zrbd2 = d2(-Yβa - X«'c).

Hence we have

(5.7) Yβ~βb2c - Yβad2 = Zr'~rac2 + Zrbd2,

(5.8) Zr'-rac2 - Zγbd2 = Z«-β/α26 + X«'cd2 and

(5.9) Xa~a'a2b - Xα'cd2 = Yβ'-βb2c + Yβad2.

We furthermore assume that

(#) α ^ ^ , 2βφβ' or 2 r ^ /

(cf. (2.1), (3)). Then after suitable permutations of columns, M is assumed

to satisfy one of the followings:

( i ) 2a' <a, 2β< β' and 2γ < f;

(ii) 2a' <a, 2β< βf and 2γ > f;

(iii) 2af < a, 2/3 > βf and 2 r > f;

(iv) 2α; > a, 2β > β' and 2γ > f.

THEOREM (5.10). Suppose that M has type (II) and satisfies one of the

above conditions (i), (ii)? (iii) and (iv). Then we have the following asser-

tions.

(1) If \ e A, then there exist c?3, c?3 and d" in p(3) such that
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d3 = 2YWZ2r'-r mod (X), d3 = - γ*f**rzr-» mod (X) and

d'/ = γwzr'~r mod (X), if M is of case (i);

d3 = 2Y^'Zr*r mod (X), d's = - Y*^' mod (X) and

rf, = 2Y^+^Z"r' mod (X), dί = - Y^^' mod (X) and

dn Ξ y»+trZr-τ m o d ( χ ) ; ^ M ί s o / c a s e ( i i i ) ;

d3 Ξ 2Y3^ι8'Zr+r' mod (X), d'3 = - y^ 3 r + 2 r ' mod (Z)

d3" = - γ^-f'Z"^' mod (Z), if M is of case (iv).

We furthermore have pm = (rf3, d'3, di') + pp(2).

(2) 7/ ch A = 2, ί/iera there exist e3 e p(3> such that p™ = (e,) + pp(2) and

e3 = γf**β'zrl-» mod (Z) i/ Λί is of case (i);

e3 Ξ Y ί+3ί' mod (X) i/ M is of case (ii);

e> = _ y3ί+2ί' mod (X) i/ Af is o/ case (iii);

e3 = - y ^ ' Z 8 " " ' mod(X) i/ Λί iβ of case (iv).

Proo/. (1) Let us assume the case (i). Then by (5.7), (5.8) and (5.9)

we have

i/>62c _ adΐ) = zr(zr'-"ac2 + bd2),

*rac2 - bd2) = X«'(X-« Ό*6 + cd2) and

-^a'b - cd2) = Y'iYr-'Wc + ad,).

Hence there exist d3) d'3 and d" in pm such that

Z'd'3 = X°-2°'α26 + cd2 and

Thus

d3' = - y^*^'Z r '- 2 r mod (X) and

d'/= Y^'Zr'-r

Let I = (d3, d'%, d'%') + ppm. Then we have

(X) + I = (X) + (Z3r*ir\ γι>Zir+3r', γv>Zr+3r,

β + ?>β' n?r-Ή
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Hence £A(AI(X) + I) = 6(/3r + βf + β'f) = ^(A/(X) + pm), which implies

(X) + I = (X) + p(3) so that p(3) = / by Nakayama's lemma. The same

proof works for the other case, too. For instance, in the case (ii), we

get by (5.7), (5.8) and (5.9) that

Z2r-r'bdz),

Zr'-r(ac2 - Z2r-r"bd2) = X^iX'-^cfb + cd2) and

X«\X'-*«'tfb - cd2) = Y^Y^'-^b'c + ad,).

Hence there exist d3, d'3 and d" in p<3) satisfying

= ad + Zv-Vbdι,

Z''-rdί = Xa-U'a2b + cd2 and

Y'd? = X"-2"'a2b - cd,

so that

<ϋ = - Y2β+Sf' mod (X) and

dί' = Yl>+3ί>'Zr'-rmod(X).

And therefore we can prove pm = (d3, d'3, d") + pp(2) by showing that

£A(AI(X) + p<3)) = £Λ(AI(X, <k, <%, &/) + ppm) similarly as above. We would

like to leave to the readers the rest of Proof of Theorem (5.10), (1).

(2) Notice that

(5.11) X"a + Yβ'b + Zr'c = 0 and

(5.12) Yβa + Zrb + X"'c = 0.

Then since chA = 2, by (5.12) we get

(5.13) Y2V + Z"b* + Xu'c" = 0.

Suppose the case (i). Then by (5.11) and (5.13) we have

(Y'βa2 + Xu'c*)Zr'-2rc = -Zr'b*c

= (X'a + Y?'b)b2,

whence

X2"'Zr'-ϊrc* - X'ab2 = Yβ'b3 - Y^Zr'-2ra2c.

Since 2a' < a and 2β < β' by our assumption, we get

Xu'(Zr'-ΐrc3 - X°-U'ab2) = γ*f(γr-*W - Zr'2ra2c),
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from which we find e3 e p{3) satisfying

72%3 = Z r '"2 rc3 - Xa~2a'ab2.

Notice that β3 = Y*+*rzr'-*r mod(Z). Then because

, e%) + WΛ>) = 6(βγ + βf + β'f)

we see (X, ez) + ppi2) = (X) + P(s) so that (e8) + ίψ(2) = £>(3). A similar proof

works for the other cases (ii), (jii) and (iv), whose detail shall be left to

the readers.

§ 6. The generation of Rs(p) in degree three

The purpose of this section is to characterize the prime ideals p

whose symbolic Rees algebras Rs(p) are generated in degree three. Let

us maintain the same assumption as in Section 5.

First we shall discuss the case where M has type (I) and the results

of this case are summarized into the next

THEOREM (6.1). Suppose that M has type (I). Then the following

assertions are equivalent.

(1) Rs(p) = A[pt, p«Π\ p<»f].

(2) M satisfies one of the following conditions.

( i ) 2a < a' and 2/3 = β'.

(ii) 2β = βf and 2γ <f.

(iii) 2a = a' and 7 = V>

(iv) 2a > a', 2/3 > β' and ϊ = V.

(v) β = β>.

(vi) a = a' and ΐ == γf.

When this is the case, Rs(p) is a Gorenstein ring.

We divide the proof of (6.1) according to the cases stated in (5.4).

The proof will be finished by the end of Proposition (6.11).

PROPOSITION (6.2). Suppose that M is of type (I) and satisfies 2a < a1

and 2/3 < βf. Then Rs(p) Φ A[pt, p^t\ p{S)f].

Proof. It is enough to show that p(i) Φ [p(2)f + ίψ<3). Assume the

contrary and we have SA(A/(X) + p^) = £A(AI(X) + lP{2)Y + ΪΨ(3)). On the

other hand by (2.2) and (5.4) we get
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(X) + [p™Y + w(3) = (X) + (Z"+ir~, Y»Zr+ir, Y^Zir', γt>+rzr+3r',

γ4β + β'2?3r' γ2β + 2β' £r + 2r' γiβ + 2β' gZΐ' γtβ + 3β' gϊ+ϊ'

γ4β + Zβ'£ϊ'^ γiβ + 4β'^

Hence if 3β > β\ we have

(X) + [p^Y + pp™ = (X) + ( Z 2 r + 4 r , γtZΐ+Ar>, γβ+β'Zr+*7', γ*β+β'Z*r,

because Y^Z4r> e(Yβ+β'Zr+zr). Therefore, counting the number of mono-

mials of Y and Z that are not in (X) + [p(2)]2 + pjD(3\ we find

[pC2)]2 + w(3)) = iij8r + Wβr' + lOβ'r' if 3β < β\

= 8βγ + lOfr' + 10/3Y + β'γ if 3/3 > β\

while

£Λ(AI(X) + Pw) = £ΛJiAJp<AJ.UAI(X) + p)

= KKft- + βγ' + β'γ')

by the additive formula [18, p. 126] of multiplicity. Thus we have

iθ(βr + βf + β'r') = lift + io^r' + Wr' i f 3^ < ^',

= 8βγ + 10/3r' + 10βy + ^ if 3/3 > β',

from which we conclude that βγ = 0 or 2β = β'. This contradicts our

assumption that 2β < j3'. Hence pm φ [p(2)]2 + pp(3).

PROPOSITION (6.3). Suppose that M is of type (I) and satisfies 2a < α'

and 2/3 > 0'. TTien pm = [p(2)]2 + W(3) and the following conditions are

equivalent.

(1) R.(p) = A[pt, p&Ψ, pvf].

(2) t»« = p ( 2y3>.
(3) 2β = β' or β = β'.

When this is the case, Rs(p) is a Gorensteίn ring.

Proof. By (2.2) and (5.4) we have

(X) + [pmf + ίψ(3> = (X) + (Z 2 r + 4 r \ γ*ι>-β-Zτ+ir, γe+β-Z2I+3' , γ^zr+3r',
γ2β + 2βf 'vr+2rf γtβ + 2β' 72r γ3β + zβ' ryr+r1 γiβ + zβ' yr'

whence
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eΛ(Al(X) + [pi2)Y + w(3)) = iO0r + 100/ + 100'/.

Because £A(A/(X) + pw) = lO0r + 100/ + 100'/ (cf. Proof of (6.2)), we get

(X) + [p(2)]2 + tφ<8> = (X) + pw so that [p(2>]2 + ίψ(8) = P(4) as required.

(1) =φ (2) This is obvious.

(2) =φ> (3) Since by (2.2) and (5.4) we explicitly have a system of

generators for the ideal (X) + p{i)p{i), we get

- Fr i f ^ < W>

if 3/3 > 20'.

As £Λ(AI(X) + p{b)) = eA(A/(X) + p«ψ3)) by our assumption and as

P)

we have

lδ(βγ + jS/ + βY) = llβγ + lδβf + 15βY - βfr if 3β < 2β\

15/3/

r

/ + βf

r if 30 > 2/3'.

Hence 20 = 0' or β = β' by these equations.

(3) φ (1) By (4.3) we have only to consider the case where 20 = 0'.

Let d3 be the element in (1) of (5.4). Then by [11, Theorem 3.1] Rs(p) is

a Noetherian ring, because

eΛ(A/(X, c, cQ) = SΛ(AI(X, T>, Zr«'')

= 3(βγ + 3βf)

We want to check that Re(p) is a Gorenstein ring. Let / = (c) 4-

Then since

1= (X) + (Zr+2r\ Y^Z"', Y") ,

we have £Λ(A/(X) + I) = 2ft- + 6ft-', while

p)

Consequently we get tA(AftX) + I) = eXA(AjI), whence the ring A/I is

Cohen-Macaulay. Thus JB,(|J) is a Gorenstein ring (cf. [5, Theorem 1.1]),

which completes the proof of (6.3).
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PROPOSITION (6.4). Suppose that M is of type (I) and satisfies 2/3 < βf

and 2γ < f. Then Rs(p) Φ A[pt, p^t2, p™t*].

Proof. We will show that jD(4) Φ [p(2)]2 + pp{3). Assume the contrary

and we have £Λ(AI(Z) + p^) = £A(A/(Z) + [p(2)]2 + ϊψ(3)). Notice that

£Λ(A/(Z) + [*>(2)]2 + *ψ(3)) = lOa'β + IQafβf + Uaβf - 2aβ if βf < 3/3,

= 10a'β + 10aβ' + lQa'β' - aβ if βf > 3/3

by (2.2) and (5.4). Then since SA(A/(Z) + pw) = lOa'β + Wat*? + 10aβ\

we get

lOa'β + lOa'β' + 10aβ' = lOαr'jS + 10α//3/ + llaβ' - 2aβ if βf < 3/3,

= 10α']8 + lOαjS' + lOα'jS' - aβ if /3r > 3)8.

Hence 2/3 = /3', which contradicts our assumption that 2/3 < β'.

The proof of the next proposition is quite similar as that of (6.3) so

that we would like to leave it to the readers.

PROPOSITION (6.5). Suppose that M is of type (I) and satisfies 2β > βf

and 2γ < f. Then p{4) = [p(2)]2 + £ψ(3) and the following conditions are

equivalent.

(1) Rs(p) = A[pt, p*Ψ, p^fl.

(2) p(5) = p(2)J)(3).

(3) 2β = βf or β = /3y.

this is the case, Rs(p) is a Gorenstein ring.

PROPOSITION (6.6). Suppose that M is of type (I) and satisfies 2a > a',

2/3 < β' and 2γ > γ\ Then the following conditions are equivalent.

(1) Rs(p) = A[pt, p«H\ p<»f].

(2) p ( 4 ) = [p<2)]2 + ^p ( 3 ) and p™ = jD(2)p(3) + p ^ ( 4 ) .

(3) M satisfies one of the following conditions:

(i) a = af and γ = / .

(ii) 2a = α' and γ = γ'.

When this is the case, Rs(p) is a Gorenstein ring.

Proof. (1) => (2) This is obvious.

(2) ^ (3) Since £(4) = [p(2)]2 + ϊψ(3), we get by (2.2) and (5.4) that

Via + a' Γ7SΪ V4a + 2af V2r V4α + 3α' 7Γ V"4α + 4«'\
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where we can delete

Xs«Zr+zr and χ*«+*«'Zr+2r if 3γ < 2f,

X3"Zi7+r if 3γ > 2/,

out of the system of generators for the ideal (Y) + p{i). Hence

iA(A/(Y) + pa)) = llaγ + 10aγ' + lOa'γ if 3γ < 2γ\

= 8aγ + 12aγ' + Wa'γ if 3γ > 2γ'.

On the other hand, as SA(A/(Y) + p^) = βFil(A/pw) = 10(aγ + ay' +

we get

1Oar' + 10<χ'r i f 3r < 2r'^
= 8^ + 12a/ + lOa'γ if 3γ > 2f.

Hence r = f. Thus by (2.2), (5.4) and (#) we have

(Y) + p(2)p(3) + ^ ( 4 ) = (Y) + (Z8r, Z 2 α"β /Z 7 r, Z4α-«'Z6r, Xα + a 'Z6 r,

^•5a + 4 a ' ^ r ^ S a + δa'N

where we can delete

Za +«'Z6 r if 3a < 2af,

out of the system of generators for the idea] (Y) + :p(2);f)(3) + pp(4). Therefore

we find

£A(AI(Y) + p(2V3) + W<4)) = 29aγ + lβa'γ if 3α > 2a',

if 3αr < 2α7.

Since p(5) = i)(2)p(3) + pp(4) by our assumption and since £A(A/(Y) + J)(50 =

30aγ + 15^γ, we see

30αγ + lδa'γ = 29α^ + lβα^ if 3α > 2a',

if 3# < 2a'.

The first (resp. second) equation implies a — a' (resp. 2a = a').

(3) φ (1) We may assume the case (ii) (cf, (4.3)). Let d3 be the ele-

ment in (5.4), (2). Then since £A(AI(Y, d3, &)) = 1 3 ^(A/(Y) + p) and since

Aj{b) + pi2) is a Cohen-Macaulay ring, we have by [5, Theorem (1.1)] that

the A-algebra Rs(p) is a Gorenstein ring generated in degree three.
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PROPOSITION (6.7). Suppose that M is of type (I) and satisfies 2a >

af > a, 2β > 0' and 2γ > f. Then the following conditions are equivalent.

(1) Rt(p) = A[pt, p«H\ p«>1*\.

(2) *)(4) = [p(2)]2 + W ( 3 ) and p™ = p«Y3) + ϊψ<4).

(3) M satisfies one of the following conditions.

( i ) β = β'.

(ii) γ = f.

(iii) 2β = 0' ami 2 r = r ' .

ίΛis is the case, Rs(p) is a Gorensteίn ring.

Proof (1) => (2) This is obvious.

(2) => (3) Since ^(A/(X) + ^4>) = ^(A/(Z) + [p«ψ + ^ « ) , we get

- β'r i f 3r > V,

= Sβγ + 1 1 ^ + 9)87 + 2/3'r if 3 r < 2γ',

while £A(A/(X) + £>(4)) = βz^(A/p(4)) = 10(/3r + βf + β'γ'). Hence we have

lθ(βγ + βγ' + β'f) = Uβr + 9βγ' + Uβ'f - β'γ if 3 r > 2γ\

= Sβγ + Uβf + 9βγ + 2βfγ if Sγ < 2γ\

where the first (resp. second) equation implies that (β' — β){γf — γ) = 0

(resp. (βf - β)(2γ - f) = 0) so that β = β' or γ = γr (resp. /3 = β' or 2^ = γf).

If 2^ = ^, we have

eΛ(AI(X) + |)(2>ί)(3) + ϊ)^4)) = 47/3r + 29/3'r if 3^ < 2^,

= Uβγ + 310V if 3/3 > 2^.

Therefore since £Λ(AI(X) + ^(5)) = £A(A/(X) + £ ( 2y3 ) + p^)(4)) by our assump-

tion and since eA(A/(X) + p(5)) = βX4(A/pί5)) = 15(3/3r + 20Y), we get

15(3/3r + 20V) - 47βγ + 290V if 30 < 20/,

= 4βγ + 310V i f 3/5 > 2jSκ.

The first (resp. second) equation implies 20 = β' (resp. 0 = 00, whence the

assertion (3).

(3) => (1) We may assume the cases (ii) and (iii) (cf. (4.3)). First assume

the case (ii) and let d2 and rf3 be the elements obtained by (2.2) and (2)

of (5.4). Then we have

z, X)) = £A(AI(Z», Y^^\ X))

= 3r(40 + 200

= 2 3.£A(AI(X) + p ) .
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Hence R$(p) is Noetherian (cf. [11, Theorem (3.1)]). We put I = (d2) + p{Z).

Then since

(X) + I = (X) + (Z3r, γv+rzv, Y**+*rZ7, Y'W)

by (5.4), we get £A(A/(X) + D = lOft- + Wϊ = eZΛ(AID so that A/I is

Cohen-Macaulay. Thus Rs(p) is a Gorenstein ring generated in degree

three (cf. [5, Theorem (1.1)]).

Secondly we consider the case (iii). Let d'3 be the element in (2) of

(5.4). Then £A(AI(dί, c, X)) = 1 3 ^(A/(X) + p) and A/(c) + pi2) is Cohen-

Macaulay. Hence Rs(p) is a Gorenstein ring generated in degree three.

PROPOSITION (6.8). Suppose that M is cf type (I) and satisfies 2a > a\

2β > β' > β and 2γ > f. Then the following conditions are equivalent.

(1) Rs(p) = Aftt,

(2) pw = [p^Y

(3) r = f-
When this is the case, Rs(p) is a Gorenstein ring.

Proof. (1) => (2) This is obvious.

(2) => (3) Similarly as in Proof of (6.7) we get

£A(A,'(Y) + ft(2)]2 + ϊ)^)(3;) = Saγ + 1 2 ^ + l l ^ r - off if 3 r > 2f,

8a'γ + afyf if 3^ < 2f.

Since p(4) = [p{2)]2 + t)pί3), we have

10(aγ + ay' + ofy) =

8a'γ + afyf if Sγ < 2γ\

The first (resp. second) equation implies (2a — a'){γ — γ') = 0 (resp. (2α — a')

(2γ — γ') = 0) and so 2α = a' or p = ^r (resp. 2a — a' or 2γ — γ'). We

want to show that the equality 2γ = yf is impossible and that y — γ\ if

2a = #'. First assume that 2a = a'. Then we have

£A(A/(Y) + p*ψZ) + M>(4)) = 4 3 ^ + 1 7 ^ if 3 r > 2f,

if 3 r < 2/.

Hence by the assumption that p(5) = p(2):j3(3) + pj3(4) we get

4δay + 15^ ' = 43αγ + 17a/ if 3^ > 2γ\

if 3 r < 2 r

r,

https://doi.org/10.1017/S0027763000003792 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003792


SYMBOLIC REES ALGEBRAS 125

whence γ = f. Now assume that 2γ = f. Then

£A(AI(Y) + P(2ψ3) + JΨ(4))

and so

45αγ + lδα'f = 46aγ +

which implies ay — 0. Thus 2γ ψ f.

(3) =̂> (1) Let d2 and dz be the elements obtained by (2.2) and (2) of

(5.4). Then £A(AI(dt, d3, Y)) - 2 3.^(A/(Y) + p) and A/(d2) + p(3) is Cohen-

Macaulay. Therefore Rs(p) is a Gorenstein ring generated in degree three

by [5, Theorem (1.1)].

PROPOSITION (6.9). Suppose that M is of type (I) and satisfies 2a > a\

2β > β' and 2γ > γ; > .̂ T/ien ί/iβ following conditions are equivalent

(1) B,0>)

(2) p(4) -

(3) M satisfies one of the following conditions.

(i) β = ?.

(ii) 2a = a' and 2β = β'.

When this is the case, Rs(p) is a Gorenstein ring.

Proof. (1) z> (2) This is obvious.

(2) =-> (3) As £A(AI(Z) + p<*>) = eA(AI(Z) + [p«ψ + pp«), we get

+ ar'iS' + ar̂ O - lla'jS + θa'jS' + 12aβf -

whence (2a - af){β - βO = 0. Thus 2a = a' or β = β'. Assume 2a = a'.

Then since p(5) = p(2)^(3) + pjD(4), we have

30*0 + 45α/3/ = 2§aβ + 46αi8
/ if 3/3 > 2β\

= 32^^ + 4 4 ^ if 3/3 < 2/3'.

The first (resp. second) equation induces β = /3' (resp. 2/3 == /3') as required.

(3) => (1) We may assume the case (ii). Let dz be the element in (2)

of (5.4). Then £A(A/(d3, c, Z)) = 1-3>£A(AI(Z) + p) and A/(c) + p{2) is Cohen-

Macaulay. Hence Rs(p) is a Gorenstein ring generated in degree three

(cf. [5, Theorem (1.1)]).

The next assertion is similarly proved as the implication (3) => (1) in

(6.9).

PROPOSITION (6.10). Suppose that M is of type (I) and satisfies 2a = a'

and 2/3 = β'. Then Rs(p) = A[pt, pi2)t\ p{3)f] and it is a Gorenstein ring.
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PROPOSITION (6.11). Suppose that M is of type (I) and satisfies a = a!,

2β = β' and 2γ = f. Then Rs(p) = A[pt, p(2)t\ £>(3)f] and it is a Gorenstein

ring.

Proof. Let d3' be the element in (2) of (5.4). Then £A(A/(<H, c, Y)) =

l'S'£Λ(AI(Y) + p) and Aj{c) + p{1) is Cohen-Macaulay. Hence Rs(p) is a

Gorenstein ring generated in degree three.

For the rest of this section we assume that A contains a field k and
that M has type (II). The purpose is to prove the following

THEOREM (6.12). Suppose that M has type (II) and satisfies the condi-

tion

(#) a φ 2a', 2β ψ βf or 2γ φ f.

Then the following assertions are equivalent.

(1) R,(p) = A[pt, p*Ψ, pv?].

(2) The characteristic of k is equal to 2 and M satisfies one of the

following conditions.

( i ) 2af < a, 2β > β; and 2γ = f.

(ii) 2a! > a, 2β = βf and 2γ < f.

(iii) 2af = a, 2β < βr and 2γ > γ'.

When this is the case, R$(p) is not a Cohen-Macaulay ring.

We divide the proof of Theorem (6.12) into the cases stated in (5.10).

The proof will be completed by (6.16), summarizing the results of (6.13),

(6.14), (6.15) and (6.16).

We begin with the following

PROPOSITION (6.13). Suppose that M has type (II) and satisfies 2ar < a,

2/3 < βf and 2γ < f. Then [*>(2)]2 + WC3) Φ p«\

Proof. First assume that ch k Φ 2. Since by (2.3) and (5.10) we ex-

plicitly have a system of generators for the ideal (X) + |j)(2)]2 + !fψ(3), we

get

£A(AI(X) + Ψ2Ύ + W(3)) = 16j8r + 10/3/ + 10/3Y if 3/3 < βf and Sγ < f,

= Ίβϊ + 13βr + lO^Y7 if 3/3 < βf and Sγ > γ',

= iβr + lOjsr + iθj8'r + ψr

if 3/3 > βf and 3γ < f,

= 7βγ + 10/3/ + 11/3Y if 3/3 > βf and 3γ > f.

Therefore if pw = [p(2)]2 + pp(3), then since £A(A/(X) + p^) = 10(/3r + βyf
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+ β'γ')> we have by the above equalities that

βγ = 0 if 3^ < β' and Sγ < γ',

γ = γ' if 3/3 < /3' and 3γ > r ' ,

/3 = β' if 3β > /3' and 3 r < γ' and

3/3r = β'γ' > 4 ^ if 3/3 > βf and 3 r > γ\

all of which are impossible. Hence p(4) ^ [£(2)]2 + £ψ(3).

Secondly assume that eh& = 2 and that [p(2)]2 + £ψ(3) = :p(4). Then by

(2.3) and (5.10) we get

10(/3r + βf + β'f) = 1 % + 10/3r' + lO^V' if 3/3 < β; and 3 r < f,

= 7^r + 12/3r

r + lOjSV if 3^ < β' and 3 r > / ,

= Ίβγ + lO^ 7 + lOβy + 2j8Y if 3^ > βf and 3 r < f,

= 10βr + 9βγ' + llβY - β'γ if 3/3 > ? and 3 r > r

r ,

all of which contradict the standard assumption on β and γ. Hence

PROPOSITION (6.14). Suppose that M has type (II) and satisfies 2a! < or,

2β < β' and 2 r > f. Then [p™]2 + W(3) ^ ?(4).

Proo/. Assume that p(4) = [ί)(2)]2 + ;fψ(3). Then it chkφ 2, we have

lθ(βγ + βf + β'f) = % + 1 2 ^ + lOjSY if 3̂8 < β\

- 15/3r + 6^/ + 12/3y - 2/3V if 3/3 > /3',

which contradict the assumption on β and γ. Therefore the characteristic

of k has to be 2. But when ch k = 2, we have the equalities

10(/3r + fr' + j8Y) = Uβr + lOβf + 10/3Y if 3/3 < /3/,

= 14^r + Ίβγ' + 11/3V - β'γ if 3/3 > β',

both of which again contradict the assumption on β and γ, too. Thus

we have p(4) ^ [p(2)]2 + £ψ(3).

PROPOSITION (6.15). Suppose that M has type (II) and satisfies 2a' < or,

2/3 > /3' and 2 r > f. Then

(1) [p(2)]2 + W(8) -t pw if chkφ 2.

(2) Suppose that ch £ = 2. T&en J?#) = Afrί, ϊ>(2)ί2, ϊ)(3)ί3] // and only

if 2γ = γ'. When this is the case, Rs(p) is not a Cohen-Macaulay ring.

Proof. (1) Assume that p(4) = |>(2)]2 + *ψ(3). Then we have
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lOiβγ + βf + β'f) = 13βγ + 8βf + Uβ'f - β'γ if 3/3 < 2β',

= Iβγ + llβf + 9β'f + 3β'γ if 3β > 2β'.

Both the equations contradict the assumption on β and γ, whence p ( 4 ί Φ

[*>(2>]2 + W><3).

(2) Suppose t h a t R,(p) = A[pt, p™f, piSH% Then pw = [p™f + }ψ<3> so

that

VKβr + βf + β'r') = 12/3r + 9βf + lO^V if 3/3 < 2β'.

= 6βr + \2βγ' + 8βY + ψγ i f 3^ > 2β',

whence we have 2γ = γ'. Conversely assume that 2γ = f and let e3 be

the element in (2) of (5.10). Then since

£A(Al(es, a, X)) = £A(AI(Y*β+iβ', Zίr, X))

== 3r(3/5 + 2β')

we get R£p) = A[pt, d2t\ e,f] by [5, Corollary (3.8)]. The ring Rs(p) is not

Cohen-Macaulay (cf. [5, Theorem (1.1)] and [20, Corollary (3.4)]), because

A/(a) + pm is non-Cohen-Macaulay by [15, Proposition (2.4)].

PROPOSITION (6.16). Suppose that M has type (Π) and satisfies 2a! > a,

2β > β' and 2γ > γ'. Then the following assertions hold.

(1) If ch k φ 2, then [pm]2 + ϊψ<3> Φ pm or |)<2y3) + ϊ»p(4) Φ p™.

(2) Suppose that ch k = 2. TTiere i?s(t>) = A[pt, p&ψ, p™f] if and only

if 2β — β' and 2γ = ;-'. When this is the case, Rt(p) is not Cohen-Macaulay.

Proof. (1) Assume pm = [p&ψ + ppC3) and we will prove t h a t p&Y3)

+ ?ί)<4) Φ p«K By the equality tΛ(AI(X) + pm) = £Λ(AI(X) + [p&)f + PPm)

we get that

(#) 10(i3r + βf + β'f) = 15βγ + Iβ-f + 12β'f - 3β'r
if 3β < 2β' and 3j- > 2f,

= 6 ^ + 13/y + 8βγ + sβ'r
if (i) 3/3 > 2β' or if (ii) 3/3 < 2β' and 3 r < 2γ'.

By these equations we find 2β = β' and 2γ = ^', whence ^^(A/(Z) + p ( 2 y 3 )

+ ίϊ>(4)) = 1 0 8 ^ and £Λ(AI(X) + p<») = 105^. Thus j)(2ψ(3) + }ψ(4) ^ p ( 5 ) as

required.

(2) Suppose t h a t Rs(p) = A[pt, p*>t\ p«H% Then p™ = [p™f + p})<3>,
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which yields the same equations as (#) above so that we have 2β = /}'

and 2γ = /. Conversely assume 2β = β' and 2γ = f and let e3 be the

element obtained by (2) of (5.6). Then since

» c, X)) = ^(A/(ZW, Y", X))

we get Rs(p) = Λ[pί, cf/, e/] by [5, Corollary (3.8)]. As Λ/(c) + £(2; is

non-Cohen-Macaulay by [15, Proposition (2.4)], the A-algebra Rs(p) cannot

be Cohen-Macaulay (cf. [5, Theorem (1.1)] and [20, Corollary (3.4)]).

EXAMPLE (6.17). (1) Let p = p(10,11,13) (resp. p(ll, 16, 13)). Then p

is generated by the maximal minors of the matrix

r V2 V2 V3T / ΓV2 V2 V*

Λ Y Z (resp. A * Z

Y Z Z 3J V LY Z2 X
Hence by (6.1) Rs(p) is generated (resp. not generated) in degree three.

(2) Suppose that ch k = 2 and let p = p(17, 10, 19) (resp. £(7, 11, 12)).

Then p is generated by the maximal minors of the matrix
3 y4 ^2~| / \XZ Y2 Z '

• z x l ( r e s p Ly z x-
and so i?s0f>) is generated in degree three by (6.16) (resp. (6.17)) but not

Cohen-Macaulay.

§ 7. A note on Huckaba's theorem on the analytic spread modulo
one element

Let A be an unmixed Noetherian local ring and p a prime ideal in

A of άimAjp = 1. Then S. Huckaba [10] discussed the behavior of the

analytic spread λ(p) of p modulo one element and gave, in terms of λ(p),

a sufficient condition for Rs(p) to be Noetherian. In this section we shall

try to improve his sufficient condition in the case where A is a regular

local ring of dim A = 3, clarifying the relationship between Huckaba's

condition and Huneke's criterion [13, Theorem 1.4] of Rs(p) being Noethe-

rian. Our improvement below also provides a partial answer to the

question posed by Huckaba [10, Remark 2.6, (3)]:

THEOREM (7.1). Let A be a ^-dimensional regular local ring with

maximal ideal m and p a prime ideal in A of dim Ajp = 1. Let 0 Φ ge p
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and let £ be the largest integer with gepiέ). Assume that the field A/xn

is infinite. Then the following two conditions are equivalent

(1) λ(plgA) = l.

(2) £A(A/(f g, x)) = £ £Λ(AI(X) + p) for some fep and xe m\p.

When this is the case, Rs(p) = A[pwtn | 1 < n < £].

Proof (1) φ (2) We put B = Ap and n = pAp. Choose fep so that

pr+1 + gA = /|) r + ^A for some r > 0. Then p = JJJΓg) and n r + 1 + ^B =

fnr + gB. Hence

n r + 1 = / n r + ^JBΠn r + 1

so that /, g forms a super regular sequence in B. Since £B{Bj(f, g)B) = ^,

we get by the additive formula [18, p. 126] of multiplicity the required

equality that

= £B(BI(f,g)B)-eXA(Alp)

= £ £A(A/(x) + p)

for any x e m\J).

(2) =φ> (1) We put C = A/^A and P = p/gA. Then since A/gA + }3(n)

is a Cohen-Macaulay ring for n > 1 and since p ( n ) = fp^'^ + gpin~e) for

7i > £ (cf. [5, (3.7) (1)], we have that P ( Λ ) = pwC for Λ > 1 and that P ( n )

= PP&-» for all τι > £. Therefore RS{P) is module-finite over R(P) =

2 n ^ 0 P π P and so we get by [4, Theorem (2.10)] that

λ(PC + QIQ) < dim CIQ = 2

for any Q e Ass C, where C denotes the m/gA-adic completion of C.

Thus we have Λ(P) = 1, because

λ(P) = λ(PC)=; λ(PC + QIQ)

for some Q e Ass C (cf. [14, Lemma 4.2]). The last assertion directly fol-

lows from [5, Corollary (3.8)].
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