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Abstract

The first example of a torsion-free abelian group (A,+, 0) such that the quotient group of A modulo the
square subgroup is not a nil-group is indicated (for both associative and general rings). In particular, the
answer to the question posed by Stratton and Webb [‘Abelian groups, nil modulo a subgroup, need not
have nil quotient group’, Publ. Math. Debrecen 27 (1980), 127–130] is given for torsion-free groups.
A new method of constructing indecomposable nil-groups of any rank from 2 to 2ℵ0 is presented. Ring
multiplications on p-pure subgroups of the additive group of the ring of p-adic integers are investigated
using only elementary methods.

2010 Mathematics subject classification: primary 20K99; secondary 13A99.
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1. Introduction

In this paper, we continue the research on the square subgroup of an abelian group. It
can be understood as follows. Given an abelian group (A,+, 0), the square subgroup
�A of A is the smallest subgroup B of A satisfying the condition that if R is any ring
(not necessarily associative) with the additive group A, then R2 ⊆ B. The notion was
partially investigated by Aghdam in [1] and it is closely connected with the paper [16]
by Stratton and Webb. Aghdam continued his research on the square subgroup
together with Najafizadeh in [2–4]. Nevertheless, the basic question related to the
topic remained unanswered. Namely, it was not known whether the quotient group
of any abelian group A modulo the square subgroup �A is a nil-group (see [1, 16]).
The first (negative) answer with an example of a mixed abelian group was given
recently by Najafizadeh in [15]. Previously, it was known that the answer is positive
for torsion abelian groups (see [16, Theorem 2.4]). In his proof, Najafizadeh used
advanced tools such as the tensor product of abelian groups and theorems for splitting
modules. Therefore he could not assume the associativity of rings, which is important
for many algebraists. Our much more elementary proof in [6] allows the conclusion
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that Najafizadeh’s result remains true also for the case of associative rings. It is a well-
known fact that there exists a torsion-free nil-group A such that A/nA is not a nil-
group for some positive integer n and, consequently, any ring R defined on A satisfies
R2 ⊆ nA (see [16]). However, the square subgroup of a torsion-free abelian group was
investigated only in some special cases: for example, Aghdam and Najafizadeh have
indicated some classes of torsion-free abelian groups A of rank two for which A/�A is
a nil-group (see [4]).

The main result of this paper is a construction of a torsion-free abelian group A such
that A/�A is not a nil-group in both cases of associative and general rings. Moreover,
we give a new method of constructing indecomposable nil-groups of any rank from
2 to 2ℵ0 . We also present various effects concerning ring multiplications on p-pure
subgroups of the additive group of the ring of p-adic integers. In particular, we show,
using only elementary methods, that any ring multiplication on a p-pure subgroup
of the additive group of the ring of p-adic integers is associative and commutative.
Furthermore, we characterise, in an elementary way, subgroups of the additive group
of that ring which are not nil.

This topic has a long history in algebra and is generating renewed interest.
In addition to the work cited above, there are developments in recent papers of
Feigelstock [9], Pham Thi Thu Thuy [17, 18] and Kompantseva [13, 14].

2. Preliminaries

Throughout the paper, the letter p stands for an arbitrary fixed prime. Symbols Q,
Qp, Zp, Z, Zp, P, N, N0 stand for the fields of rationals, p-adic numbers and integers
modulo p, the rings of integers and p-adic integers, and the sets of all prime numbers,
positive integers and nonnegative integers, respectively. In this paper, only abelian
groups with the traditional additive notation will be considered. Every abelian group
(A,+, 0) can be provided with a ring structure in a trivial way by defining a · b = 0 for
all a, b ∈ A. An abelian group A is called a nil-group (nila-group) if, on A, there does
not exist any nonzero (associative) ring multiplication. It follows, from [5, Remark
2.6] and [8, Conjecture 2.1.4], that if the concepts of nila-group and nil-group are not
equivalent, then there exists a torsion-free nila-group of rank more than one which
is not a nil-group. Obviously, A is a nil-group exactly if �A = {0}, so the notion of
square subgroup generalises the concept of nil-group. The following formula greatly
simplifies the considerations related to the topic: that is,

�A =
∑

∗∈Mult(A)

A ∗ A,

where Mult(A) means the set of all ring multiplications on the group A. If we restrict
our consideration to associative rings R with the additive group A, then the square
subgroup of A is denoted by �aA. It follows, from [6, Corollary 2.6], that if there
exists an abelian group A which satisfies �aA ( �A, then A is reduced and nontorsion.
More basic information about square subgroups and their generalisations is available
in [1, 3, 6].
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The additive group of a ring R is denoted by R+. The notation I C R means that I is
an ideal of R. If R is a unital ring, then its group of units is denoted by R∗.

It is a well-known fact that any p-adic integer α is determined by a sequence (xn)∞n=0
of integers satisfying xn ≡ xn−1 (mod pn) for each n ∈ N. We shall write the above
expression as (xn)∞n=0 → α. Moreover, (xn)∞n=0 → α and (yn)∞n=0 → α if and only if
xn ≡ yn (mod pn+1) for each n ∈ N0. For more preliminary knowledge of p-adic integers
we refer the reader to [7].

All other designations are consistent with generally accepted standards (see, for
example, [11]).

3. A simple characterisation of ring multiplications on p-pure subgroups of Z+p
Lemma 3.1. For every nontrivial subgroup A of Z+

p the following conditions are
equivalent:

(i) A = M ∩ Zp for some nontrivial Z[p−1]-submodule M of the field Qp;
(ii) A is p-pure in Z+

p ; and
(iiii) A = 〈ε〉 + pA for some ε ∈ A ∩ Z∗p.

Proof. (i) ⇒ (ii). Take any x ∈ Zp. If px ∈ A, then px ∈ M and, consequently,
x = p−1 ◦ (px) ∈ M. Thus x ∈ M ∩ Zp, that is, x ∈ A. Moreover, Z+

p is a torsion-free
group, so A is a p-pure subgroup of Z+

p .
(ii)⇒ (iii). Take any a ∈ A\{0}. Then a = pmε for some uniquely determined m ∈ N0

and ε ∈ Z∗p (compare with [7, Theorem 2]). Hence, by the p-purity of A in Z+
p , we

obtain ε ∈ A. Moreover, ε < pZp, so ε ∈ A\pA. Next, (A + pZp) · Zp = A · Zp + pZp =

A · (Z + pZp) + pZp = A · Z + pZp = A + pZp, and hence A + pZp C Zp. But ε ∈ A ∩ Z∗p,
so 1 ∈ A + pZp and, consequently, A + pZp = Zp. As A is a p-pure subgroup of
Z+

p , A ∩ pZ+
p = pA. Thus A/pA = A/(A ∩ pZ+

p ) � (A + pZ+
p )/pZ+

p = (Zp/pZp)+ � Z+
p .

Furthermore, ε + pA , pA in A/pA, so A = 〈ε〉 + pA.
(iii) ⇒ (i). An easy computation shows that M = {ap−n : a ∈ A, n ∈ N0} is

a nontrivial Z[p−1]-submodule of Qp. Directly from the definition of M, it follows that
A ⊆ M ∩ Zp. To prove the opposite inclusion, take any x ∈ M ∩ Zp. Then x = ap−s for
some a ∈ A and s ∈ N0. Moreover, by a simple induction argument, a = kε + ps+1c
for some k ∈ Z and c ∈ A. Thus psx = kε + ps+1c, and hence kε = ps(x − pc). It
follows, from [7, Theorem 2], that k = psks for some ks ∈ Z, so ksε = x − pc. Hence
x = ksε + pc ∈ A. Thus M ∩ Zp ⊆ A and, finally, A = M ∩ Zp. �

We get the following result directly from the proof of Lemma 3.1.

Corollary 3.2. For every nontrivial p-pure subgroup A of Z+
p , A/pA � Z+

p . In
particular, A = 〈a〉 + pnA for all a ∈ A\pA and n ∈ N.

Lemma 3.3. If A and B are nontrivial p-pure subgroups of Z+
p , then so is AB.

Proof. Take any x ∈ Zp. If px ∈ AB, then px =
∑n

i=1 aibi for some n ∈ N, a1, . . . , an ∈ A
and b1, . . . , bn ∈ B. First, suppose that a1, . . . , an ∈ pA. Then, for each ai, there
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exists xi ∈ A such that ai = pxi. Hence p(x −
∑n

i=1 xibi) = 0 and, consequently, x =∑n
i=1 xibi ∈ AB. If b1, . . . , bn ∈ pB, then we proceed analogously. Now suppose that

a j < pA and bs < pB for some j, s ∈ {1, . . . , n}. The p-purity of A and B in Z+
p ,

together with [7, Theorem 2], implies that a j, bs ∈ Z∗p. Moreover, it follows, from
Lemma 3.1, that A = 〈a j〉 + pA and B = 〈bs〉 + pB. Thus, for each i ∈ {1,2, . . . ,n}, there
exist a′i ∈ A, b′i ∈ B and ki, li ∈ Z such that ai = kia j + pa′i and bi = libs + pb′i . Hence
px = (

∑n
i=1 kili)a jbs + p

∑n
i=1 kia jb′i + p

∑n
i=1 lia′ibs + p2 ∑n

i=1 a′ib
′
i and, consequently,

we get p | (
∑n

i=1 kili)a jbs. Since a j, bs ∈ Z∗p, it follows, from [7, Theorem 2], that∑n
i=1 kili = ph for some h ∈ Z. Thus x = ha jbs +

∑n
i=1 kia jb′i +

∑n
i=1 lia′ibs + p

∑n
i=1 a′ib

′
i .

Hence x ∈ AB and, finally, AB is a p-pure subgroup of Z+
p . �

Lemma 3.4. If ∗ is a ring multiplication on a nontrivial p-pure subgroup A of Z+
p , then

there exists c ∈ Zp such that a ∗ b = a · c · b for all a, b ∈ A. In particular, every ring R
with R+ = A is associative and commutative.

Proof. It follows, from Lemma 3.1 and Corollary 3.2, that there exists ε ∈ A ∩ Z∗p such
that, for every n ∈ N, A = 〈ε〉 + pnA. Take any a, b ∈ A, n ∈ N and define e = ε ∗ ε.
Then a = knε + pnan, b = lnε + pnbn and a ∗ b = (knln)e + pnxn for some kn, ln ∈ Z,
an, bn, xn ∈ A. Thus, for c = ε−2 · e, we get a · c · b = (knln)e + pnyn, where yn is some
element of A. Hence a ∗ b − a · c · b ∈ pnZp. Since

⋂∞
i=1 piZp = {0} (see [7, Theorem

2]), the arbitrary choice of n implies that a ∗ b = a · c · b. Thus the multiplication ∗ is
associative and commutative. �

Proposition 3.5. Let A be a nontrivial p-pure subgroup of Z+
p . Then A is not a nil-

group if and only if A is isomorphic to the additive group of some subring of Zp.

Proof. Suppose that �A , {0}. It follows, from Lemma 3.1, that A = 〈ε〉 + pA for some
ε ∈ A ∩ Z∗p. Since Zp is an integral domain, the function x 7→ x · ε−1 is an automorphism
of Z+

p . Hence B = A · ε−1 is a subgroup of Z+
p such that B � A and 1 ∈ B. Thus B is

a p-pure subgroup of Z+
p with �B , {0}. Hence, by Lemma 3.1 and Corollary 3.2, we

get B = 〈1〉 + pB. Moreover, Lemma 3.4 implies the existence of a nonzero element c
of Zp such that a · c · b ∈ B for all a, b ∈ B. Therefore c = 1 · c · 1 ∈ B. Furthermore,
c = pαη for some uniquely determined α ∈ N0 and η ∈ Z∗p (compare with [7, Theorem
2]). Thus pα(a · η · b) ∈ B for all a, b ∈ B. Hence, by the p-purity of B in Z+

p , we obtain
η ∈ B and a · η · b ∈ B for all a, b ∈ B. Define S = B · η. Then S is a subgroup of Z+

p
satisfying S � B and S · S = (B · η · B) · η ⊆ S . Consequently, S is a subring of Zp with
S + � A. The opposite implication is obvious. �

The next result follows directly from the proof of the above proposition.

Corollary 3.6. Let A be a nontrivial p-pure subgroup of Z+
p . Then A is not a nil-group

exactly if A = S · ω for some subring S of Zp and ω ∈ Z∗p.

Proposition 3.7. For every subgroup A of Z+
p , the following conditions are equivalent:

(i) A = 〈a0〉 + pA for some a0 ∈ A\pA; and
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(ii) A = pαB for some nonnegative integer α and nontrivial p-pure subgroup B of
Z+

p .

Proof. (i) ⇒ (ii). Since a0 , 0, it follows, from [7, Theorem 2], that a0 = pmε for
some uniquely determined m ∈ N0 and ε ∈ Z∗p. If m = 0, then Lemma 3.1 implies
that A is a p-pure subgroup of Z+

p and it is sufficient to put α = 0. Now suppose that
m > 0 and define B = 〈ε〉 + pA. Then A = 〈a0〉 + pm+1A = 〈pmε〉 + pm+1A = pmB. Thus
B = 〈ε〉 + pB. We apply Lemma 3.1 again to infer that B is a p-pure subgroup of Z+

p .
(ii) ⇒ (i). It follows, from Lemma 3.1, that there exists ε ∈ B ∩ Z∗p such that

B = 〈ε〉 + pB. Hence A = pαB = 〈pαε〉 + pα+1B = 〈pαε〉 + pA. Notice that pA =

〈pα+1ε〉 + p2A = 〈pα+1ε〉 + pα+2B ⊆ pα+1Zp. Therefore, if pαε ∈ pA, then ε ∈ pZp and,
consequently, ε < Z∗p, which is a contradiction. Thus it suffices to put a0 = pαε. �

Remark 3.8. It is a well-known fact that there exist indecomposable nil-groups of
any rank up to 2ℵ0 (see [10, page 292, Exercise 25]). For groups of rank one, the
result is obvious. Notice that Lemmas 3.1 and 3.4 are useful for constructing an
indecomposable nil-group of any rank r satisfying 1 < r ≤ 2ℵ0 . There exists a subset Y
of Zp of cardinality 2ℵ0 that is algebraically independent over Q. Let X be a nonempty
subset of Y . An easy computation shows that M = Z[p−1] +

∑
x∈X Z[p−1]x is a Z[p−1]-

submodule of Qp. Hence, by Lemma 3.1, we infer that A = M ∩ Zp is a p-pure
subgroup of Z+

p . Suppose, contrary to our claim, that �A , {0}. It follows, from
Lemma 3.4, that there exists c ∈ Zp\{0} such that, for all a,b ∈ A, a · c · b ∈ A. As 1 ∈ A,
we obtain c = 1 · c · 1 ∈ A. Hence there exist s ∈ N, α0, α1, α2, . . . , αs ∈ Z[p−1], not all
equal to zero, and pairwise distinct x1, x2, . . . , xs ∈ X such that c = α0 +

∑s
i=1 αixi. Thus

x2
1 · c ∈ A and, consequently, x2

1 · (α0 +
∑s

i=1 αixi) ∈ M, which contradicts the algebraic
independence of X over Q. Therefore A is a nil-group. The indecomposability of A
follows from [12, Theorem 88.1]. If 1 < |X| < ℵ0, then A is a group of rank |X| + 1. If
ℵ0 ≤ |X| ≤ 2ℵ0 , then A is a group of rank |X|.

4. Main results

Proposition 4.1. If M and N are nontrivial Z[p−1]-submodules of the field Qp, then
(M ∩ Zp) · (N ∩ Zp) = (MN) ∩ Zp.

Proof. Since M ∩ Zp ⊆ M and N ∩ Zp ⊆ N, we see that (M ∩ Zp) · (N ∩ Zp) ⊆ MN.
Moreover, M ∩ Zp, N ∩ Zp ⊆ Zp, so (M ∩ Zp) · (N ∩ Zp) ⊆ (MN) ∩ Zp. To prove the
opposite inclusion, take any x ∈ (MN) ∩ Zp. Then x =

∑n
i=1 aibi for some n ∈ N,

a1, a2, . . . , an ∈ M and b1, b2, . . . , bn ∈ N. Furthermore, it follows, from [7, Theorem
4], that there exists s ∈ N such that, for each i ∈ {1, 2, . . . , n}, psai, psbi ∈ Zp. Thus
p2sx ∈ (M ∩ Zp) · (N ∩ Zp). Hence, by Lemmas 3.1 and 3.3, x ∈ (M ∩ Zp) · (N ∩ Zp). �

Remark 4.2. Let α, β be elements of Zp that are algebraically independent over Q.
Let R be the subring of Qp generated by p−1, α, β and let S be the subring of Zp

generated by α, β. The polynomial ring (Z[p−1])[x, y] can be treated as a subring of
the polynomial ring Qp[x, y]. Similarly, the polynomial ring Z[x, y] can be treated
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as a subring of the polynomial ring Zp[x, y]. Moreover, the algebraic independence
implies that R � (Z[p−1])[x, y], S � Z[x, y] and

R =
{
f (α, β) : f ∈ (Z[p−1])[x, y]

}
, S =

{
g(α, β) : g ∈ Z[x, y]

}
. (4.1)

Let (an)∞n=0 → α and (bn)∞n=0 → β. From the basic properties of p-adic integers
(see [7]) it follows that, for all γ, δ ∈ Zp and g ∈ Z[x, y],(

(cn)∞n=0 → γ, (dn)∞n=0 → δ
)
⇒

(
g(cn, dn)

)∞
n=0 → g(γ, δ). (4.2)

Furthermore, if (cn)∞n=0 → γ and k ∈ N, then it follows, from [7, Corollary 1 and
(3.4)], that pk divides γ in Zp exactly if pk divides ck−1 in Z. Moreover, Zp ∩ R =

{ωp−k : ω ∈ S , k ∈ N, pk | ω}, so (4.2) implies that

Zp ∩ R =
{
f (α, β)p−k : f ∈ Z[x, y], k ∈ N, pk | f (ak−1, bk−1)

}
. (4.3)

Theorem 4.3. There exists a torsion-free abelian group A such that A/�A is not a nila-
group and �A = �aA = A ~ A for some ~ ∈Mult(A).

Proof. We retain all designations of Remark 4.2 under the additional assumption that
α, β ∈ Z∗p. Define I = α · R + β · R and A = Zp ∩ I. Then I C R and I is a Z[p−1]-
submodule of Qp. Hence A is a subring of Zp and Lemma 3.1 implies that A is a p-pure
subgroup of Z+

p .
Take any ∗ ∈Mult(A). It follows, from Lemma 3.4, that there exists c ∈ Zp such

that a ∗ b = a · c · b for all a, b ∈ A. Define s1 = α ∗ α and s2 = β ∗ β. Then s1 = c · α2

and s2 = c · β2, and hence s1/α
2 = s2/β

2. Thus s1β
2 = s2α

2. Moreover, Z[p−1] is
a unique factorisation domain, and so is R, by Gauss’s lemma and Remark 4.2.
Furthermore, α and β are nonassociate prime elements of R, so α2 | s1 in R. Hence
c = s1/α

2 ∈ R and, consequently, c ∈ R ∩ Zp. Since A ⊆ I, c ∈ R and I C R, we obtain
A · c ⊆ I. Moreover, A · c ⊆ Zp because A ⊆ Zp and c ∈ Zp. Thus A · c ⊆ A, and hence
A ∗ A = A · c · A ⊆ A · A = A2. As ∗ has been chosen arbitrarily, we get �A ⊆ A2.
Obviously, A2 ⊆ �aA ⊆ �A so �A = �aA = A2.

Notice that I2 = α2 · R + (α · β) · R + β2 · R. Moreover, it follows, from
Proposition 4.1, that A2 = Zp ∩ I2. Take any Ψ ∈ A/A2. Then Ψ = α · ξ + β · ζ + A2 for
some ξ, ζ ∈ R. Moreover, (4.1) implies the existence of g, h ∈ Z[x, y] and k ∈ N such
that α · ξ + β · ζ = (α · g(α, β) + β · h(α, β))p−k. As α · ξ + β · ζ ∈ Zp, pk | α · g(α, β) +

β · h(α, β). Let a and b denote the constant terms of polynomials g and h, respectively.
We will show that there exists c ∈ Z for which Ψ = (aα + bβ + cα2)p−k + A2. This
equation holds if and only if

(
(g(α, β) − a)α + (h(α, β) − b)β − cα2)p−k ∈ A2, which

is equivalent to
(
(g(α, β) − a)α + (h(α, β) − b)β − cα2)p−k ∈ Zp. It is true exactly if

pk |
(
g(α, β) − a

)
α +

(
h(α, β) − b

)
β − cα2. It follows, from (4.3), that it holds if and

only if pk |
(
g(ak−1,bk−1) − a

)
ak−1 +

(
h(ak−1,bk−1) − b

)
bk−1 − ca2

k−1, which is equivalent
to ca2

k−1 ≡
(
g(ak−1, bk−1) − a

)
ak−1 +

(
h(ak−1, bk−1) − b

)
bk−1 (mod pk). Since α ∈ Z∗p,

it follows, from [7, Theorem 1 and (3.4)], that p - ak−1. Thus the claimed element
c exists. Obviously, for any a, b, c ∈ Z and k ∈ N satisfying pk | aα + bβ + cα2,
(aα + bβ + cα2)p−k ∈ A, so

A/A2 =
{
(aα + bβ + cα2)p−k + A2 : k ∈ N, a, b, c ∈ Z, pk | aak−1 + bbk−1 + ca2

k−1
}
.
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Consider the function ϕ : (A/A2)+ → (Z[p−1] × Z[p−1])+ given by

ϕ((aα + bβ + cα2)p−k + A2) = (ap−k, bp−k).

Take any a, b, c, d, e, f ∈ Z, k, l ∈ N such that pk | aα + bβ + cα2, pl | dα + eβ + fα2 and
(aα + bβ + cα2)p−k + A2 = (dα + eβ + fα2)p−l + A2. Then(

(pla − pkd)α + (plb − pke)β + (plc − pk f )α2)p−(k+l)

= (aα + bβ + cα2)p−k − (dα + eβ + fα2)p−l

is in A2, so (pla − pkd)α + (plb − pke)β + (plc − pk f )α2 ∈ A2. Hence (pla − pkd)α +

(plb − pke)β ∈ A2. For abbreviation, define U = pla − pkd and V = plb − pke. Since
Uα + Vβ ∈ I2, (4.1) implies that there exist f1, f2, f3 ∈ (Z[p−1])[x, y] such that Uα +

Vβ = α2 f1(α, β) + αβ f2(α, β) + β2 f3(α, β). We apply (4.1) again to obtain Ux =

x2 f1(x, 0) and, consequently, U = 0. Similarly, V = 0, and hence pla = pkd and
plb = pke. Thus ap−k = dp−l and bp−k = ep−l. Therefore the definition of ϕ is
correct. A straightforward verification shows that ϕ is an additive homomorphism. If
(aα + bβ + cα2)p−k + A2 ∈ kerϕ, then (ap−k, bp−k) = (0, 0) and, consequently, a = b =

0. Hence (aα + bβ + cα2)p−k + A2 = cα2 p−k + A2. Moreover, pk | ca2
k−1, so cp−k ∈ Z.

Therefore pk | cα2, and hence cα2 p−k ∈ Zp ∩ I2 = A2. Thus ϕ is a monomorphism.
Take any z ∈

(
Z[p−1] × Z[p−1]

)+. Then z = (up−s, vp−s) for some u, v ∈ Z and s ∈
N. Since p - as−1, there exists r ∈ Z satisfying −ra2

s−1 ≡ uas−1 + vbs−1 (mod ps).
Hence, by Remark 4.2, we get pk | uα + vβ + rα2. Thus (uα + vβ + rα2)p−s ∈ A and
z = ϕ((uα + vβ + rα2)p−s + A2). Therefore ϕ is an isomorphism and, consequently,
A/�A �

(
Z[p−1] × Z[p−1]

)+. Finally, A/�A is not a nila-group. �
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