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ABSTRACT

In non-life insurance, the payment history can be predictive of the timing of a
settlement for individual claims. Ignoring the association between the payment
process and the settlement process could bias the prediction of outstanding
payments. To address this issue, we introduce into the literature of micro-
level loss reserving a joint modeling framework that incorporates longitudinal
payments of a claim into the intensity process of claim settlement. We dis-
cuss statistical inference and focus on the prediction aspects of the model.
We demonstrate applications of the proposed model in the reserving prac-
tice with a detailed empirical analysis using data from a property insurance
provider. The prediction results from an out-of-sample validation show that
the joint model framework outperforms existing reserving models that ignore
the payment–settlement association.
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1. INTRODUCTION

A loss reserve represents the insurer’s best estimate of outstanding liabilities
for claims that occurred on or before a valuation date. Inaccurate predic-
tion of unpaid claims may lead to under-reserving (inadequate reserves) or
over-reserving (excessive reserves), which influences the insurer’s key financial
metrics that further feeds into the decision making of management, investors,
and regulators (Petroni, 1992). For instance, inadequate reserves could lead
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to deficient rates and thereby increase solvency risk. Also, excessive reserves
could increase the cost of capital and regulatory scrutiny. Therefore, reserv-
ing accuracy is essential for insurers to meet regulatory requirements, remain
solvent, and stay competitive.

In claim management, it is common that small claims are settled faster than
large claims, because large and complicated claims naturally require experi-
enced adjusters, demand special expertise, involve multiple interested parties,
and are more likely to be litigated. As a result, the duration of settlement
and size of payments for individual claims are often positively correlated. See
Figure 3 for an example in property insurance.

The payment–settlement association has important implications for the loss
reserving practice. In loss reserving, actuaries predict the outstanding liabili-
ties based on the claim history that is only observed up to a valuation date.
When the settlement time and claim size are correlated, the historical claims
that actuaries use for model building will not be representative of future pay-
ments, because large claims with longer settlement times will be more likely
to be censored (not settled) by the valuation date, a type of selection bias.
Specifically, when larger claims take more time to settle, outstanding payments
would be underestimated if the selection bias in the sampling procedure is not
accounted for. Similarly, one would expect overestimation of future payments
if the claim size and settlement time are negatively correlated.

Further, the payment–settlement association suggests that payment history
may help predict settlement time, which in turn feeds back into the prediction
of unpaid losses. Then the relation between the two processes allows for the
dynamic prediction of outstanding liabilities. The prediction is dynamic in the
sense, when more information becomes available over time, an actuary could
use claim history to update the prediction for the settlement time and ultimate
claim payments.

The goal of this paper is to establish a micro-level loss reserving method that
leverages claim level granular information while accounting for the payment–
settlement association, and thus improves accuracy in claim prediction. In
doing so, we employ a joint modeling framework developed in the statis-
tical literature for longitudinal outcomes and time-to-event data. The joint
model (JM) for reserving purposes consists of two submodels, the longitudinal
submodel governs the payment process for a given claim, and the survival sub-
model concerns the settlement process of the claim. The two components are
joined via shared latent variables. The joint model has a natural interpretation
in the reserving context, where the historical payments affect the instantaneous
settlement probability, and the settlement intensity determines whether there
are further payments.

For statistical inference of the joint model, we discuss both estimation and
prediction with the focus on the latter. The properties of estimators and predic-
tions are investigated using simulation studies, and we find that the advantages
of the proposed joint model are more pronounced for long-tail lines of busi-
ness. Furthermore, we present a detailed empirical analysis of the joint model
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framework using data from a property insurance provider with the focus on the
Reported But Not Settled (RBNS) reserve prediction. We fit thejoint model to
a training data set and find significant positive relation between the payment
history and settlement time. The RBNS prediction performance of the joint
model is compared to existing reserving models using out–of–sample data,
and the results suggest that accounting for the payment–settlement association
leads to better prediction.

We contribute to the literature in the following aspects: First, we introduce
the joint model for longitudinal and time-to-event data into the micro-level loss
reserving literature, and thus provide a novel solution to the sample selection
issue that is due to the association between the size of claims and time of settle-
ment. Second, because of the predictive nature of loss reserving, we investigate
the predictive performance of the joint model, using both simulated and real-
world data, which enriches the existing statistical literature that has primarily
focused on the estimation aspect of inference. Third, the detailed analysis not
only provides empirical evidence of the payment–settlement association and its
role in the dynamic prediction but also provides guidance for practitioners to
employ the proposed method in practice.

The rest of the paper is organized as follows: Section 2 reviews the lit-
erature on current loss reserving methods and joint models for longitudinal
and time-to-event data. Section 3 introduces the joint modeling framework
for individual-level loss reserving. Section 4 discusses estimation and predic-
tion for the joint model. Section 5 evaluates the properties of the model using
simulation studies. Section 6 describes the property insurance claims data set
and its important characteristics that motivate the joint modeling framework,
provides estimation results using a training data set and prediction results
using a hold-out sample, and discusses limitations. Section 7 concludes the
paper.

2. LITERATURE REVIEW

2.1. Literature on reserving models

In the actuarial literature, there are two main classes of reserving techniques:
macro-level and micro-level. The macro-level models are based on aggregate
claims data summarized in run-off triangles, and the reserve is estimated using
the chain-ladder (CL) method and its extensions. See Wüthrich and Merz
(2008) for a comprehensive review on macro-level reserving methods. The
ease of implementation and interpretation is a major strength of macro-level
models, but they come with a risk of inaccurate predictions. For instance,
Friedland (2010) examined the effects of environmental changes on reserve
prediction and found that the chain-ladder type methods are appropriate only
in a steady-state. In case of environmental changes, some of the commonly-
used macro-models can generate a reserve estimate without material errors. In
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this context, “environmental changes” refers to changes in the insurer’s busi-
ness that can affect loss reserving, for example, underwriting practices, claims
processing, mix of products, and so forth. To handle environmental changes,
macro-level methods consider either expected claims that allow actuaries to
incorporate a priori reserve estimate, or trending techniques that treat environ-
mental change as trend to adjust the development projections. However, highly
dependent on actuaries’ judgments, both techniques could lead to problematic
reserve estimates (Jin, 2014).

Micro-level reserving techniques provide a Big Data approach to address
the limitations of macro-level models. In recent years, following the gen-
eral trend in analytics to look into detailed data, interests in micro-level
techniques have spiked mostly because of their ability to leverage individ-
ual claim development in the prediction of outstanding liabilities. Granular
covariate information allows one to account for both claim and policy spe-
cific effects, and thus naturally captures the environmental changes. Hence,
reserve predictions from micro-level models are generally more accurate than
those computed from aggregate data under non-homogeneous environmental
conditions. The most studied method is the marked Poisson process (MPP)
framework introduced by Arjas (1989), Jewell (1989), Norberg (1993) and
(1999). Antonio and Plat (2014) provided the first empirical study with data
from a personal-line general liability insurance portfolio. The MPP represents
events, such as claims or claim payments, as a collection of time points on a
timeline with some additional features (called marks) measured at each point.
The marked Cox process provides an extension to allow for overdispersion
and serial dependence (Avanzi et al., 2016; Badescu et al., 2016b and 2016a).
Another family of research using individual-level data employs generalized
linear models (GLMs) in conjunction with survival analysis to incorporate set-
tlement time as a predictor for ultimate claims (Taylor and Campbell, 2002;
Taylor and McGuire, 2004 and Taylor et al., 2008). Most recently, machine
learning algorithms have become popular in individual-level loss reserving
because they are highly flexible and can deal with structured and unstructured
information (for example, see Wüthrich, 2018a and 2018b).

2.2. Literature on joint models

The existing micro-level reserving methods do not explicitly capture the depen-
dence between the payment history and settlement process. Recently, papers
such as Lopez et al., (2019) attempted to handle the bias due to the payment–
settlement association using a weighting scheme. But their framework does not
explicitly capture the dependence between the payment history and settlement
process. We further extend the literature by introducing the joint longitudinal
survival model framework to handle such association explicitly.

The joint model has been proposed in the medical statistics literature for
modeling longitudinal and survival outcomes when the two components are
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correlated (Elashoff et al., 2017). Two general frameworks have received exten-
sive attention, the pattern mixture model and the selection model (Little,
2008). These two frameworks differ in the way the joint distribution is fac-
torized. In the former, the joint distribution is specified using the marginal
distribution of time-to-event outcome and the conditional distribution of lon-
gitudinal outcomes given the time-to-event outcome. In contrast, the joint
distribution in the latter is specified using models for the marginal distribu-
tion of longitudinal outcomes and the conditional distribution of time-to-event
outcome given longitudinal outcomes. Diggle and Kenward (1994) were
the first to apply selection models to nonrandom drop-out in longitudinal
studies by allowing the drop-out probabilities to depend on the history of
measurement process up to the drop-out time. The two model families are pri-
marily applied with discrete drop out times and cannot be easily extended to
continuous time.

The properties of the joint models have been well developed in the biomed-
ical literature in clinical studies (Ibrahim et al., 2010) and non-clinical studies
(Liu, 2009). Tsiatis and Davidian (2004), Yu et al., (2004), and Verbeke et al.,
(2010) give excellent overviews of joint models. Besides, Rizopoulos (2010) and
(2016) develop R packages for joint models.

3. JOINT MODEL FOR CLAIM PAYMENT AND SETTLEMENT

3.1. General framework

In this section, we introduce the joint model framework to the loss reserv-
ing problem, focusing on a subset of selection models called shared-parameter
models. In shared-parameter models, a latent random effects bi is used to cap-
ture the association between the longitudinal and the time-to-event outcomes
(Rizopoulos, 2012). For this application, the sequence of payments from a
reported claim forms the longitudinal outcomes, and the settlement time of the
claim is the time-to-event outcome of interest. The development of claim pay-
ments may yield early indications of impending settlement, which introduces
associations between the longitudinal and survival outcomes.

In this study, we set the time origin for a claim as its reporting time. For
the ith claim (i= 1, . . . ,N), we denote T∗

i and ci as the settlement time and
valuation time, respectively. Assuming ci is independent of T∗

i , define Ti =
min (T∗

i , ci) and�i = I(T∗
i < ci), such that I(A)= 1 whenA is true and I(A)= 0

otherwise. The pair (Ti,�i) makes up the observable time-to-settlement out-
comes for claim i, where �i indicates whether the claim has been closed by
the valuation time, if so, Ti indicates the settlement time. Let {Yi(t):0≤ t≤
T∗
i } be the payment process, and Y∗

i = {Yit, t ∈ τ ∗
i } be the vector of the real-

ized complete cumulative payments for claim i with n∗
i payments at times

τ ∗
i = {tij;j= 1, . . . , n∗

i }. Assume there are ni payments by the time of valuation,
we define τi = {tij;j= 1, . . . , ni} as the observable payment times and denote
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FIGURE 1: Graphical illustration of the cumulative payment process from the time of reporting to
settlement.

Y i = {Yit, t ∈ τi} the vector of cumulative payments at observed time of pay-
ments. Further denote Y+

i = {Yit, t ∈ τ+
i } the vector of cumulative payments at

future times τ+
i = {tij;j= ni + 1, . . . , n∗

i } after the valuation time. In the joint
model framework, the joint distribution of fY∗

i ,T
∗
i
(y∗
i , t

∗
i ) is defined by

fY∗
i ,T

∗
i
(y∗
i , t

∗
i )=

∫
f (y∗

i |bi)f (t∗i |bi)dF(bi), (3.1)

where bi denotes the vector of random effects that account for the claim-
specific unobserved heterogeneity. The formulation in (3.1) relies on a con-
ditional independence assumption. Figure 1 provides a graphical illustration
of the cumulative payment process that experiences jumps at the time of each
payment from the time of reporting to settlement. The size of the jump rep-
resents the amount of incremental payment. The left panel presents a closed
claim where the entire development process of the claim is observed before the
valuation time, that is (�i = 1, ni = n∗

i ). The right panel provides an example
of an open claim where only a part of the development process of the claim is
observed at the valuation time, that is (�i = 0, ni ≤ n∗

i ).
The rest of the section focuses on the general modeling framework for

both the longitudinal and survival submodels. Alternative model specifications
under the general framework are considered in the empirical analysis and thus
discussed in Section 6.

3.2. Longitudinal submodel of claim payments

The cumulative payments Yit are specified using generalized linear mixed
effect models (GLMM). See, for instance, Frees (2004) and Molenberghs and
Verbeke (2006) for details. Then, conditional on the random effects bi, the
cumulative payment Yit is assumed to be from the exponential family with dis-
persion parameter φ. The conditional mean of Yit, μit =E[Yit|bi], is specified
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as a linear combination of covariates via a link function g(·), that is
ηit = g(μit)= f (ti; β1)+ x′

itβ2 + z′itbi. (3.2)

Here, f (ti;β1) is a function of payment time t parameterized by β1. Examples
are linear functions, polynomial functions, and splines. Furthermore, xit and
zit are the vectors of covariates in the fixed and random effects, respectively,
and β = {β1, β2} is the regression coefficients to be estimated. In addition, bi,
i= 1, . . . ,N, are independent of each other and bi ∼N(0,D), where D is the
covariance matrix with unknown parameters ν. We emphasize that the covari-
ates are indexed by t because, in addition to time-independent covariates like
claim codes, the model allows us to include time-dependent covariates. In this
model, we assume Yit are independent across time conditional on random
effects bi and predictors xit.

3.3. Survival submodel of claim settlement

The time-to-settlement outcome of a claim is modeled using a proportional
hazards model. The hazard function of T∗

i is specified as

hi(t|ηit)= h0(t) exp{w′
it γ + αηit}, (3.3)

where h0(t) is the baseline hazard, wit is a vector of covariates, and γ is the
corresponding regression coefficients. In this model, the association between
the claim payment process and the settlement process is introduced through
the effects of ηit on the hazard of settlement that is measured by α. A positive
α indicates a negative payment–settlement relation, that is larger payments will
accelerate the settlement, and vice versa. From (3.3), the survival function of
T∗
i is

Si(t|ηit)= exp
(
− ∫ t

0 h0(s) exp{w′
is γ + αηis}ds

)
. (3.4)

For the baseline hazard in (3.3), we consider both the Weibull model and an
approximation based on splines. The Weibull baseline is given by

h0(t)= λκtκ−1, (3.5)

where λ is the scale parameter, and κ is the shape parameter. When κ = 1, h0(t)
reduces to an exponential baseline function. The Weibull model is commonly
used because of its simplicity and the easy interpretability. A more flexible
model is to approximate the baseline hazard using splines. Specifically, we
consider:

log h0(t)= λ0 +
K∑
k=1

λkBk(t, q). (3.6)

Here, Bk(·) is a B-spline basis function, q denotes the degree of the B-spline
basis function, K = q+m; where m is the number of interior knots, and λ =
(λ0, λ1, · · · , λK ) are the spline coefficients. For convenience, we denote ω to be
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the parameters in the baseline hazard model. Then, ω = {κ, λ} for the Weibull
baseline and ω = {λ0, λ1, · · · , λK} for the spline baseline.

4. STATISTICAL INFERENCE

4.1. Estimation

The parameters of the joint model are estimated using likelihood-based meth-
ods. Denote θ = (θ1, θ2), where θ1 = {β, ν, φ} summarizes the parameters of
the longitudinal submodel including both regression coefficients and variance
components, and θ2 = {ω, γ , α} summarizes the parameters of the survival sub-
model that includes baseline hazard, regression coefficients, and association
between claim payment and settlement. The likelihood function for observ-
ables (ti, δi, yi), that are based on random variables (Ti,�i,Y i), of claim i is
shown as

L(θ ;ti, δi, yi)=
∫
f (yi|bi;θ )f (ti, δi|bi;θ )dF(bi;θ ).

=
∫ [∏

t∈τi

f (yit|bi;θ)
]
f (ti, δi|bi;θ )f (bi;θ )dbi, (4.1)

where

f (ti, δi|bi;θ )= (hi(ti|bi;θ))δi Si(ti|bi;θ )

= (
h0(ti) exp{w′

iti γ + αηiti}
)δi exp

(
−

∫ ti

0
h0(s) exp{w′

is γ + αηisds}
)
.

(4.2)

Given data collected on N individual claims, the MLE of model parameters
are obtained by

θ̂ = arg max
θ

N∑
i=1

logL(θ ;ti, δi, yi). (4.3)

The variance of θ̂ is estimated using the inverse of the observed Information
matrix, that is V̂ar(θ̂ )= [I(θ̂ )]−1, where

I(θ̂ )= −
N∑
i=1

∂2 logL(θ ;ti, δi, yi)
∂θ∂θ ′

∣∣∣
θ = θ̂

′ (4.4)

and the second-order derivative is approximated by the numerical Hessian
matrix. Song et al., (2002) proposed an estimation procedure that does not
require normality assumption for random effects and showed that estima-
tion under normal assumption is robust to misspecification. In addition,
Rizopoulos et al., (2008) showed that misspecification of the random effects
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distribution has a minimal effect in parameter estimation that wanes when the
number of repeated measurements increases.

Evaluation of the likelihood function is computationally difficult because
of the integral in the likelihood function (4.1) and the integral in the survival
density function (4.2). Numerical integration techniques such as Gaussian
quadrature (Song et al., 2002), Monte Carlo (Henderson et al., 2000) and
Laplace approximations (Rizopoulos et al., 2009) have been applied in the
joint modeling framework. Maximization approaches include the EM algo-
rithm that treats the random effects as missing data (Wulfsohn and Tsiatis,
1997) and a direct maximization of the log-likelihood using a quasi-Newton
algorithm (Lange, 2004). In this paper, we employ the Gaussian quadrature
numerical techniques to evaluate the likelihood function. It is worth noting
that the computational aspect of the model is not the focus of our study. We
refer to the aforementioned literature for details.

The random-effects estimate b̂i for claim specific predictions is obtained
using Bayesian methods with posterior distribution:

f (bi|ti, δi, yi;θ̂ )=
f (ti, δi|bi;θ̂ )f (yi|bi;θ̂ )f (bi;θ̂)

f (ti, δi, yi;θ̂ )
. (4.5)

The mean b̂i of the posterior distribution is used as the empirical Bayes
estimate and is obtained by

b̂i =
∫
bif (bi|ti, δi, yi;θ̂ )dbi. (4.6)

4.2. Prediction

At the valuation time, an open claim i is characterized by the time since
reporting ci and longitudinal claim history Yi(ci)= {yit, 0≤ t≤ ci}. Since the
claim is open, it implies that the settlement time T∗

i > ci. With the fitted joint
model, we obtain the RBNS reserve prediction for the ith claim at the val-
uation time, R̂RBNSi (ci), using the following steps which are elaborated in
Algorithm 1:

(a) Predict the future time when the ith claimwill be settled, ûi, givenT∗
i > ci

and Yi(ci) using (4.11) from Section 4.2.1.

(b) Predict the ultimate payment, ŶULT
i (u), given Yi(ci) using (4.12) from

Section 4.2.2.
(c) With the cumulative payment for the ith claim at valuation time, Yi(ci),

we have:

R̂RBNSi (ci)= ŶULT
i (u)−Yi(ci). (4.7)
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Let m be the number of open claims at the valuation time, that is, m=∑N
i=1 I(δi = 0). Then the total RBNS reserve amount is given by

R̂RBNS(c)=
m∑
i=1

R̂RBNSi (ci). (4.8)

4.2.1. Prediction of time-to-settlement
To predict the time-to-settlement for a RBNS claim, given that the claim sur-
vived (not settled) up to the valuation time, we are interested in estimating the
conditional survival probability:

πi(u|ci)= Pr (T∗
i ≥ u|T∗

i > ci,Yi(ci);θ )= Si (u|ηiu,wiu;θ)

Si
(
ci|ηici ,wici ; θ

) , (4.9)

where Si(·) is given by (3.4), and u> ci.wiu andwici are covariates at times u and
ci. πi(u|ci) gives the probability that there are further payments at future time
u. Here, the probability prediction is dynamic because πi(u|ci) depends on the
expected claims amounts at valuation time ci and future time u given by ηici and
ηiu, respectively. Then the predictions can be updated as more data becomes
available. Using the MLE estimates θ̂ and the empirical Bayes estimate b̂i, an
estimate of πi(u|ci) is given by

π̂i(u|ci)=
Ŝi

(
u|η̂iu,wiu; θ̂

)
Ŝi

(
ci|η̂ici ,wici ; θ̂

) , (4.10)

where η̂iu = f (u;β̂1)+ x′
iuβ̂2 + z′iub̂i and η̂ici = f (ci;β̂1)+ x′

ici β̂2 + z′ici b̂i. The
time-to-settlement for a RBNS claim, ûi =E(T∗

i |T∗
i > ci,Yi(ci)) is given by

ûi =
∫ ∞

ci
π̂i(u|ci)du. (4.11)

4.2.2. Prediction of future claim Payments
For the future claim payments prediction of an open claim at the valua-
tion time, we are interested in the expected cumulative payments at future
time u> ci for the ith claim conditional on longitudinal claim history Yi(ci),
E

[
Yi(u)|T∗

i > ci,Yi(ci)
]
, given by

Ŷ i (u)= g−1(f (u; β̂1)+ x′
iu β̂2 + z′iu b̂i). (4.12)

Here, g−1(·) is the inverse of the link function, {xiu, ziu} are covariates, and
β̂ = {β̂1, β̂2} are the maximum likelihood estimates. The point prediction of
the ultimate amount of claim i, ŶULT

i (u), is given by the mean of all expected
cumulative payments at simulated future times u> ci.
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An algorithm for predicting the loss reserve using the joint model is given in
Algorithm 1.

Algorithm 1 Reserve prediction routine for joint model.

Input: Valuation time ci, observed data (ti, δi, yi,wici , xici , zici ), MLE θ̂ , empirical Bayes estimate
b̂i, cumulative amount paid Yi(ci), future time u, covariates at time u (wiu, xiu, ziu), and number
of draws K.

Output:
{
R̂RBNSi (ci); i= 1, ...,m

}
;

1: for i= 1, ...,m do
2: Calculate η̂ici = f (ci;β̂1)+ x′

ici β̂2 + z′ici b̂i;
3: Calculate Ŝi(ci|η̂ici )= exp

(
− ∫ ci

0 ĥ0(s) exp{w′
is γ̂ + α̂η̂is}ds

)
;

4: for k= 1, ...,K do
5: Generate π̂i(u|ci)=U ∼Uniform(0, 1);

Calculate uik = Ĥ−1
i (− log (U × Ŝi(ci|η̂ici )));

6: where Ĥi(u)=
∫ u
0 ĥ0(s) exp{w′

is γ̂ + α̂η̂is}ds;
7: end for
8: return {uik;k= 1, ...,K};
9: GenerateŶ ik(uik)= g−1(η̂iuik ); η̂iuik = f (uik;β̂1)+ x′

iuik β̂2 + z′iuik b̂i;
10: CalculateŶ

ULT
i (u)=K−1 ∑K

k=1 Ŷik(uik); For ultimate amount point prediction.
11: Calculate R̂RBNSi (ci)= ŶULT

i (u)−Yi(ci);

12: return
{
R̂
RBNS
i (ci);i= 1, ...,m

}
;

13: end for

5. ESTIMATION AND PREDICTION PERFORMANCE EVALUATION USING
SIMULATED DATA

To better understand the strength and limitations of the proposed joint model,
we investigate the performance of estimation and prediction routines described
in Section 4 using simulated data.

5.1. Simulation design

In the simulation, the longitudinal submodel is assumed to be a gamma
regression with dispersion parameter 1/σ . The conditional mean is further
specified as

ηit = g(E[Yit|bi])= f (ti;β1)+ x′
it β2 + z′it bi = β10 + tβ11 + xi1β21

+ xi2β22 + bi0, (5.1)

where f (ti;β1)= β10 + tβ11 is a linear function of the payment times, and
xit = {xi1, xi2}. The random effects are generated from a normal distribu-
tion with mean zero and variance ν, N (0, ν). The survival submodel is a
proportional hazards model with an exponential base hazard. Specifically, with
wit = {xi1, xi2}, the conditional hazard function is
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TABLE 1.

ESTIMATION RESULTS FOR JOINT MODEL FOR DIFFERENT SAMPLE SIZES (NUMBER OF CLAIMS).

S = 150 Bias SD/
√
(S) SE

Parameter N = 500 1000 1500 500 1000 1500 500 1000 1500

Longitudinal submodel(GLMM)
β10 = 1.0 0.003 0.001 −0.008 0.005 0.005 0.004 0.059 0.056 0.051
β11 = 0.3 0.001 0.002 0.001 0.001 0.001 0.001 0.011 0.010 0.010
β21 = 0.2 −0.008 −0.001 0.001 0.004 0.003 0.004 0.053 0.039 0.042
β22 = 0.4 −0.002 −0.002 0.006 0.004 0.003 0.003 0.044 0.042 0.039
ν = 0.09 0.000 −0.001 0.000 0.001 0.001 0.001 0.018 0.015 0.016
σ = 1.5 0.004 0.001 0.005 0.005 0.004 0.003 0.055 0.043 0.038
Survival submodel
γ1 = 0.5 0.000 −0.004 0.000 0.008 0.007 0.007 0.101 0.085 0.081
γ2 = 0.3 0.007 −0.001 0.000 0.009 0.007 0.006 0.106 0.079 0.078
log(λ)= −1.139 −0.036 −0.021 −0.012 0.015 0.012 0.013 0.181 0.148 0.153
α = −0.25 0.010 0.011 0.005 0.007 0.005 0.006 0.083 0.066 0.078

hi(t|ηit)= h0(t) exp{γ1xi1 + γ2xi2 + αηit} and h0(t)= λ. (5.2)

The parameters used in data generation are summarized in Table 1. The
payment times are assumed to be exogenous and are set at t= 0, 1, 2, ..., 9.
We assume x1 ∼Bernouli(0.5), representing a discrete predictor and x2 ∼
Normal(1, 0.25), corresponding to a continuous predictor. The claims are
evenly and independently distributed among ten accident years, and the cen-
soring time is the end of calender year ten. Based on the work of Sweeting
and Thompson (2011), we employ the Algorithm provided in the Online
Appendix C to construct the training and validation data in the simulation
study.

5.2. Parameter estimates

The main results on parameter estimation are summarized in Table 1. We
consider different sample sizes (number of claims) and report the results for
N = 500, 1000, and 1500. For each simulated sample, the parameter estimates
and the associated standard error are obtained using the likelihood-based
method described in Section 4. The results reported in Table 1 are based on
S = 150 replications.

We show in the table the average bias (Bias) and the average standard
error (SE) of the estimates. In addition, we calculate the nominal standard
deviation of the point estimates (SD) and report the standard deviation of
the average bias calculated as SD/

√
(S). As anticipated, both estimate and

uncertainty of the average bias decrease as sample size increase. The average
standard error are comparable to the nominal standard deviation, indicating
the accuracy of variance estimates. Lastly, the standard errors are consistent
with

√
n convergence.

https://doi.org/10.1017/asb.2021.28 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.28


JOINT MODEL PREDICTION AND APPLICATION 103

FIGURE 2: Payment times for low-frequency and high-frequency payment models.

To emphasize the importance of joint estimation, we explore two additional
estimation strategies, independent and two-stage estimations. The former
estimates the longitudinal and survival submodels separately ignoring the asso-
ciation between the two components. The latter estimates the parameters in
the longitudinal submodel in the first stage, and then estimates the parameters
in the survival submodel in the second stage holding the longitudinal model
parameters fixed. Both estimation techniques turn out to introduce significant
bias in the parameter estimates. Detailed discussions on the two alternative
strategies and the associated estimation results are provided in the Online
Appendix A.

5.3. RBNS prediction

This section focuses on the prediction performance of the proposed joint model
in different scenarios. The prediction from the joint model is compared with
the independent and two-stage estimates. Results presented in this section are
based on sample size N = 1000 and S= 150 replications.

In this scenario, we investigate the effect of payment frequency from indi-
vidual claims on the prediction accuracy. The payment frequency is defined
as the number of payments per unit time period. The high-frequency payment
case corresponds to the base model described in Section 5.1 where the max-
imum number of payments for each claim is ten, and payments are at times
t= 0, 1, 2, ..., 9. In the low-frequency payment case, the maximum number of
payments is reduced by half, and payment times are t= 0, 2, 4, 6, 8. Note that
the payment frequency does not alter the settlement process, and it only affects
the number of observations generated from the longitudinal submodel.

Figure 2 illustrates the timeline of the payment times for the low-frequency
and high-frequency payment models. It is seen that claims in the high-
frequency model are likely to have more payment transactions than those in
the low-frequency model. For instance, a claim that is to be settled at t= 1.5
will be closed with a single transaction under the low-frequency payment
model. However, a claim with the same settlement time will be closed with
two transactions under the high-frequency payment model.

One can think of the low-frequency payment scenario as a representation
of short-tail business lines such as personal automobile collision insurance,
where claims, once reported, are typically settled with a single payment within
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TABLE 2.

RBNS PREDICTION RESULTS UNDER HIGH AND LOW FREQUENCY PAYMENTS.

High-frequency Low-frequency

N = 1000, S = 150 Mean Error % SE/
√
S Mean Error % SE/

√
S

True reserve 6062 71 4412 49
Joint model error 33 0.55 74 51 1.16 55
Two-stage error 206 3.39 77 208 4.72 59
Independent error −1583 −26.12 57 −908 −20.58 45

a relatively short period of time. In contrast, the high-frequency payment sce-
nario mimics long-tail business lines such as workers’ compensation insurance,
where claim settlement is usually accompanied by more payment transactions
than the short-tail lines.

Table 2 shows the true RBNS reserve, the reserve error (estimated RBNS
reserve minus the actual unpaid losses), the error as a percentage of actual
unpaid losses, and the standard error of prediction divided by the number of
replications (SE/

√
S). For the high-frequency scenario simulation, it is seen

that joint model performs better than the independent and the two-stage
estimation techniques with the smallest percentage error of 0.55%. The perfor-
mance of the two-stage technique and independent technique in comparison
to the joint model model emphasizes the point that when the endogenous
nature of the cumulative payments and the association between cumulative
payments and settlement process are ignored, it leads to biased estimates and
consequently inaccurate predictions of unpaid losses.

For the low-frequency simulation, the joint model with the percentage error
of 1.16% again performs better than the other estimation techniques. The slight
increase in the percentage reserve error for the two-stage and the joint model
compared to the high-frequency model indicates that the reduction in payment
transactions reduces the accuracy of the individual claim random effects esti-
mate used for the reserve predictions. Also, compared to the high-frequency
model, the percentage reserve error for the independent model has reduced to
−20.58%, which implies that the advantages of the joint model are significant
for long-tail lines of business.

6. EMPIRICAL ANALYSIS USING THE JOINT MODEL

6.1. Data

The data analyzed in this paper are from the Wisconsin Local Government
Property Insurance Fund (LGPIF), which was established to make property
insurance available for local government units. The LGPIF offers three major
types of coverage for local government properties: building and contents,
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FIGURE 3: Relationship between settlement time and ultimate payment. The left panel shows the
distribution of ultimate payment by settlement time. The right panel shows the scatter plot with fitted LOESS

curve.

inland marine (construction equipment), and motor vehicles. The Fund closed
in 2017. When it was operational, on average, it wrote approximately $25 mil-
lion in premiums and $75 billion in coverage each year; and it insured over a
thousand entities.

We use data from building and coverage from January 1, 2006, to December
31, 2013, in the empirical analysis. For the purpose of reserve prediction, we
assume a valuation date of December 31, 2009, which naturally split the claims
data into two pieces. The training data contain claims that have occurred and
been reported between January 1, 2006, and December 31, 2009. There are
3393 reported claims, among which, 129 open claims have no payments by
the valuation date, and 34 claims with partial payments remain open by the
valuation date. The validation data contain claims that are reported between
January 1, 2006, and December 31, 2009, but settled between January 1, 2010,
andDecember 31, 2013. Specifically, there are 163 claims with a total outstand-
ing payment of $4, 511, 490. The training data are used to develop the joint
model, and the validation data are used to evaluate the quality of reserve pre-
diction. We emphasize that our analysis is based on ground-up losses, which
allowed us to identify and exclude claims with reported losses less than the
deductible, resulting in such claims being closed without payment. Therefore,
our 3393 reported claims do not include claims which closed without
payments.

Figure 3 visualizes the relationship between settlement time (in quarters)
and the ultimate payments (in log scale) for claims in the training data set. The
settlement time of a claim is defined as the difference between the close date and
reporting date of the claim. For reopened claims, the settlement time of a claim
is defined as the difference between the final close date after reopening and
reporting date of the claim. The left panel shows the distribution of ultimate
payment by settlement time, and the right panel shows the scatter plot of the
two outcomes. The solid curve in the right panel corresponds to the fit of the
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TABLE 3.

DESCRIPTION OF PREDICTORS IN THE JOINT MODEL.

Variable Description

Claim/Transaction level covariates
LnInitialEst Initial case estimate in log scale
ReportDelay Reporting time from occurrence in days
LossYear Year of claim occurrence
LossQtr Quarter of claim occurrence
CauseCode A categorical variable to indicate the cause of claim
TimeToPayment Payment time from reporting in days

Policy/Policyholder level covariates
EntityType A categorical variable to indicate the entity type: Village, City,

County, School, Town or Miscellaneous
CountyCode A categorical variable to indicate county of the entity
Region A categorical variable to indicate the region:

Northern, Northeastern, Southeastern, Southern, or Western
LnPolicyDed Per-occurrence deductible in log scale

TABLE 4.

DESCRIPTIVE STATISTICS OF OUTCOMES AND PREDICTORS BASED ON CLOSED CLAIMS.

Ultimate Settlement
loss time

Min. Median Mean Max. (ρS) (ρS)

Ultimate loss 25 2203 14,133 2,633,822 – 0.49
Settlement time (days) 1 38 66 861 0.49 –
Deductible 500 1000 12,297 100,000 −0.28 −0.21
Initial estimate 30 2500 9545 1,000,000 0.93 0.51
Reporting delay (days) 0 28 66 864 −0.29 −0.55

locally estimated scatter plot smoother (LOESS). Both plots suggest a strong
positive relation between ultimate payment and settlement time, that is, it takes
longer to close larger claims. In addition, the data set contains rich infor-
mation regarding the policy, policyholder, claims, and payment transactions.
Table 3 describes the variables that we select to use as predictors in the joint
model.

Table 4 provides descriptive statistics of the two outcomes of interest, that
is, the settlement time and ultimate loss amount, as well as the continuous pre-
dictors. We note that the deductible and initial case estimate are right-skewed.
To handle the skewness, we apply logarithmic transformation prior to model
fitting. In addition, the table reports the Spearman correlation between the
two outcomes, and then between each outcome and the predictors. The results
suggest a substantial correlation between the settlement time and ultimate pay-
ment, and the selected covariates are expected to be predictive in the reserving
application.
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TABLE 5.

ESTIMATION RESULTS FOR THE JOINT MODEL.

Longitudinal submodel Survival submodel

Variable Estimate Std. error Variable Estimate Std. error

(Intercept) 0.704 0.108 LnInitialEst −0.069 0.060
B1 −0.118 0.089 LnPolicyDed 0.010 0.013
B2 1.876 0.168 ReportDelay 0.351 0.019
B3 1.561 0.291
B4 2.465 0.343
LnInitialEst 0.894 0.009
LnPolicyDed 0.029 0.007
ReportDelay −0.012 0.014 α(association) −0.407 0.067
Variance components Weibull baseline hazard
shape (σ ) 5.276 λ 50.159
ν(1/2) 0.417 κ 1.459

Categorical variables
Variable LRT df (p-value) Variable LRT df (p-value)

CauseCode 93.550 9 (<0.0001) CauseCode 93.430 9 (<0.0001)
Region 24.100 4 (0.0001) Region 59.860 4 (<0.0001)
EntityType 9.720 5 (0.0837) EntityType 64.840 5 (<0.0001)
LossQtr 4.120 3 (0.2486) LossQtr 25.090 3 (0.0001)
LossYear 11.860 3 (0.0079) LossYear 23.600 3 (<0.0001)

6.2. Estimation results

The joint longitudinal-survival framework is applied to the micro-level reserv-
ing problem using the property data from the Wisconsin LGPIF. Specifically,
we use a gamma distribution with a log link and a nonlinear payment trend
using B-splines with an internal knot at payment time 5 in the longitudinal
submodel, and a Weibull baseline hazard in the survival submodel. The non-
linear payment trend is motivated by Figure 3, which suggests a nonlinear
relationship between payment size and time. Also, a random intercept longitu-
dinal submodel is assumed to follow a normal distribution, N (0, ν). With the
random intercept longitudinal submodel, only the intercept parameter in the
GLMM is random, and all slope parameters are fixed.

The estimation results are presented in Table 5. We present the parameter
estimates and standard errors for the continuous covariates. Here, B1 . . .B4
denotes the spline coefficients in the longitudinal submodel. For the categor-
ical covariates, we present the likelihood ratio test statistics, the degrees of
freedom, and the associated p-values that indicate their statistical significance
in each submodel.

In the survival submodel, the association parameter α is interpreted as the
percentage change in hazard or risk of the settlement when expected cumula-
tive payments increase by one percent. The estimated value is −0.407 and is
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FIGURE 4: Visualization of goodness-of-fit of the survival submodel.

statistically significant at a 1% significance level. The negative association in
the hazard model implies a positive relationship between the settlement time
and payment amount.

6.2.1. Evaluation of survival submodel
The correct specification of the survival submodel is necessary to obtain
accurate prediction results. In the modeling building process, we consider
two alternative specifications for the baseline hazard function. A parametric
Weibull model and a more flexible spline model. The spline baseline model was
fitted with equally spaced five internal knots in the quantiles of the observed
event times.

To examine the overall goodness-of-fit, we compare the Kaplan–Meier esti-
mate of the Cox-Snell residuals from both survival submodels to the function
of the unit exponential distribution (Rizopoulos, 2012). Figure 4 visualizes the
fit for the survival submodel with the Weibull and spline baseline hazard func-
tions in the left and right panel, respectively. The solid line is the Kaplan–Meier
estimate of the survival function of the Cox–Snell residuals, and the dashed line
is the survival function of the unit exponential distribution. It can be seen that
both theWeibull and spline baseline functions fit the data very well. We choose
the Weibull model due to easy interpretation.

6.2.2. Evaluation of longitudinal submodel
We also explore alternative specifications in the longitudinal submodel. First,
we investigate the distributional assumption for the payment amount. To
accommodate the skewness in the claim severity, we fit two joint models, one
with a lognormal and the other with a gamma longitudinal submodel. The two
methods amount to the transformation technique and generalized linear mod-
els for handing non-normal responses in regression respectively. In the former,
we transform the response to a symmetric distributed outcome and apply lin-
ear regression model to the transformed variable. In the latter, we use a link
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FIGURE 5: Evaluation of payment trend in the longitudinal submodel.

function to connect the mean of exponential family and the systematic com-
ponent of covariates. See Shi (2014) for more detailed discussion. The Akaike
Information Criterion (AIC) and the Bayesian Information Criterion (BIC) for
the joint model with the lognormal distribution are 74,117 and 74,488, respec-
tively, and that of the gamma model are 73,887 and 74,258, respectively. The
goodness-of-fit statistics suggest a better fit for the gamma model.

Second, we investigate the payment trend in the longitudinal submodel. To
be more specific, we consider a linear trend and a nonlinear trend using splines.
In Figure 5, we overlay the scatter plot of payments by time with the fitted
trend. The left panel shows the linear trend, and the right panel shows the
nonlinear trend using B-spline basis functions. The nonlinear trend shows a
better fit, which is further supported by the AIC and BIC statistics that are not
reported. As a result, we employed a gamma regression model with a nonlinear
trend in the longitudinal submodel.

6.3. Reserve prediction

This section examines the reserve prediction from the proposed joint model. To
recap, the validation data span from January 1, 2010 to December 31, 2013. All
payments that occurred during this time period are the outstanding liabilities of
the insurer as of the valuation date. Our goal in the reserving application is to
predict the outstanding payments. One advantage of individual loss reserving
models over macro-reserving methods is that we will be able to obtain not
only the prediction for the insurance portfolio but also the prediction for each
individual claim.

6.3.1. Prediction from the joint model
To obtain the RBNS reserve estimate from the fitted joint model, we follow the
prediction routine described in Section 4.2. Specifically, the joint model allows
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FIGURE 6: Comparison between actual and predicted values of unpaid payment and settlement time for
individual claims.

us to make a prediction for both the time-to-settlement and the ultimate pay-
ment for individual claims. Given that the B-splines is used in the longitudinal
submodel, prediction for the ultimate losses is based on a linear extrapolation
for the settlement time beyond the maximum observed payment time in the
training data.

Figure 6 compares the actual (or realized) and predicted outcomes in the
hold-out sample. The left panel presents the distribution of unpaid losses over
time. The consistency between the actual and predicted unpaid losses suggests
a satisfying performance of the joint model. Another advantage of the joint
model is that it can be used to predict the time to settlement for open claims,
which will be particularly useful in the run-off operation of an insurer. For
example, in a run-off situation for a workers compensation insurer, losses for
which claimants would not take an offered settlement usually involves regular
payments until death (Kahn, 2002). Therefore, accurately predicting the settle-
ment time or remaining months to live is important in the reserving exercise.
The right panel shows the scatter plot of actual and predicted settlement time.
The linear relationship is an indicator of prediction accuracy.

For reserving purposes, one is not only interested in the point prediction but
also the predictive distribution. We discuss two predictive distributions for the
insurer’s outstanding payments that are relevant to the application. The first is
the predictive distribution of the expected outstanding payments. The uncer-
tainty associated with the expected payments is from the parameter estimation.
This type of uncertainty is known as parameter uncertainty in the macro-loss
reserving literature (see, for instance, England and Verrall, 2002). The second is
the predictive distribution of the outstanding payments. In addition to param-
eter estimation, additional uncertainty arises due to the inherent randomness
of the unpaid losses, which is known as process uncertainty in the macro-loss
reserving literature.

https://doi.org/10.1017/asb.2021.28 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.28


JOINT MODEL PREDICTION AND APPLICATION 111

0.0e+00 5.0e+06 1.0e+07 1.5e+07

0e
+

00
4e

−
07

8e
−

07

Reserve

D
en

si
ty

Par+Proc
Par
True

FIGURE 7: Predictive distributions of the total RBNS reserve.

We obtain the two types of predictive distribution using simulation to incor-
porate the parameter and process uncertainty. For parameter uncertainty, we
generate model parameters from the multivariate normal distribution with
mean being the maximum likelihood estimates θ̂ and covariance matrix V̂ar(θ̂ ).
For process uncertainty, we generate the ultimate payment from the joint
model given the simulated parameters. To illustrate, we present in Figure 7 the
predictive distributions for the entire insurance portfolio. The RBNS liability
is generated for each individual claim and then aggregated for the portfolio.
As anticipated, the predictive distribution of the outstanding payment is much
wider than the predictive distribution of the expected payment because the for-
mer contains both parameter and process uncertainty, while the latter only
considers parameter uncertainty. The vertical line in the figure indicates the
actual outstanding payments in the hold-out sample. It corresponds to the 34th
percentile and 53rd percentile in the predictive distributions of expected unpaid
loss and unpaid loss, respectively.

6.3.2. Comparison with alternative methods
This section compares reserve prediction from the joint model with alternative
individual loss reserving methods. Specifically, we consider the four methods
below:

1. Independence Model: This model assumes α = 0 in the proposed joint
model. Hence, it is nested by the joint model assuming independence
between the longitudinal and survival submodels.

2. Two-stage method: This method differs from the proposed joint model
in estimation method. Specifically, the first stage estimates the param-
eters in the longitudinal submodel, and the second stage estimates the
parameters in the survival submodel holding parameter estimates from
the first stage fixed.
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3. GLM: This model contains two components. One component uses a
gamma GLM for ultimate payments of a claim, and the other compo-
nents employs a survival model for the settlement time of the claim.
The two components are assumed to be independent and are estimated
separately. The model only consider closed claims.

4. MPP: This framework considers the entire claim process, including
occurrence, reporting, and development after reporting. A counting
process is used to model the occurrence of claims. Upon occurrence, the
transaction time, the type of transaction, and the transaction’s payment
amount are considered to be the marks (features of interest). A discrete
survival model with piece-wise constant hazard rates is specified for the
transaction occurrence, a logit model is specified for the transaction
type, and a gamma regression is specified for the incremental payments.
We follow the prediction routine for the RBNS reserve in Antonio and
Plat (2014). The prediction routine simulates the transaction time, type
of the transaction (payment to a settlement, or intermediate payment),
and the corresponding payment amount. Detailed model specifications
for the MPP are provided in the Online Appendix B.

In addition, we make a comparison with the reserves determined by a claim
expert (initial estimate). Further, we provide a comparison of reserves on the
aggregate level and provide reserve estimates from the chain-ladder model. We
employ the Mack chain-ladder model (Mack, 1993) and obtain RBNS reserve
estimates from a run-off triangle that is aggregated using the reporting and
observation year instead of the occurrence year and development year. The
analysis was performed in the ChainLadder R package (Carrato et al., 2020).

The comparison is based on predictions of unpaid losses for individual
claims. Using the actual and predicted unpaid losses of individual claims,
we calculate five validation statistics, mean absolute error (MAE), root mean
squared error (RMSE), Pearson correlation, Gini correlation, and simple Gini
(see Frees et al., 2011 and Frees et al., 2014 for details on the latter two met-
rics). The results are summarized in Table 6. Higher prediction accuracy is
suggested by a smaller MAE and RMSE, and larger correlations. The valida-
tion statistics support the superior prediction from the proposed joint model
to alternative individual reserving methods. We also calculate the reserve error
on the aggregate level, which is the expected RBNS reserve minus the actual
unpaid losses, as a percentage of the actual unpaid losses. The results show the
chain-ladder method did not perform well in estimating the unpaid losses.

6.4. Limitations

Though the joint model displayed superior prediction results compared to
models that ignore the payment–settlement association; there are some limi-
tations in the current framework, which will be the subject of future research
and are highlighted below:
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TABLE 6.

COMPARISON OF PREDICTIONS OF UNPAID LOSSES FOR INDIVIDUAL CLAIMS.

Pearson r Gini Cor Total RBNS
MAE RMSE (%) (%) Gini Reserve error (%)

Joint model 24,396 77,419 74.86 29.24 18,467 −1.37
MPP 30,296 115,954 34.04 7.61 4,805 1.28
Two-stage 42,792 185,995 23.59 23.01 14,531 35.53
Independent (JM

with α = 0)
37,959 169,556 −14.05 6.96 4,397 −3.26

GLM (closed
claims)

76,230 355,144 43.31 25.54 16,131 224.81

Initial estimate (by
claim expert)

22,260 97,173 47.24 29.56 18,643 −32.41

Chain-Ladder – – – – – 27.97

1. Working with cumulative instead of incremental payments: From equa-
tion (3.3), we explicitly capture the dependence between the payment
history and settlement process. To do this, we rely on the assumption
that the cumulative payments follow a continuous growth curve. The
implicit assumption is that the trends in time, fixed-effects, and the ran-
dom effects bi together will soak up the temporal correlation among
cumulative payments. The conditional independence assumption for
cumulative payments could be too strong to result in a realistic claim
evolution. One could explicitly account for the correlation in cumula-
tive payments but at the cost of increased model complexity. We leave
this work to explore in the future.

2. Intermediate payment prediction: The model immediately predicts the
amount paid at settlement without intermediate cash flows, which may
be limiting in situations where such quantities are needed.

3. Time-dependent covariates: The proposed model only allows for exter-
nal time-varying covariates that are determined independently of the
settlement process. Internal time-varying covariates such as case esti-
mates, whose value is generated until settlement or censoring by the
individual claims, require special treatment (Kalbfleisch and Prentice,
2002). Handling internal time-varying covariates is a topic for future
research.

7. CONCLUSION

This paper concerns the claims reserving problem using an individual-
level loss reserving method. The work was primarily motivated by the
payment–settlement association. Specifically, complex claims can be both
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more expensive in terms of severity and take longer to settle, suggesting that
the payment process is correlated with the settlement process for individual
claims. In this case, knowledge of paid losses may help predict settlement time,
which in turn feeds back into the prediction of unpaid losses.

We introduced a joint model framework to the individual-level loss reserv-
ing literature to accommodate such association. The joint model consists of
a longitudinal submodel for the cumulative payment process and a survival
submodel for the settlement process, and the association between the two com-
ponents is induced via a shared parameter model. In addition, the proposed
joint model incorporates both observed and unobserved heterogeneity into the
two sub-processes, which is desired when one is interested in the prediction at
the individual claim level.

We have demonstrated that failing to incorporate the association between
the payment processes and the settlement processes could lead to signifi-
cant errors in reserving prediction. Specifically, the joint longitudinal-survival
model (JM) framework was applied to the reserving problem using data from a
property insurance provider. The prediction results from the joint model were
compared to existing reserving models, and the results showed that accounting
for the payment–settlement association leads to better prediction and lower
reserve uncertainty compared to models that ignore the association.

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit https://doi.org/
10.1017/asb.2021.28
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