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SMOOTHING ONE-DIMENSIONAL FOLIATIONS ON 
S'xS1 

BY 

MAURICE COHEN 

Let f.SP-^S1 be an orientation preserving C^diffeomorphism. Denote by 2 if) 
the flow on S1 X S1 which is the suspension of/ (see Smale [5]). 

We consider the problem of approximating 2 if) by a smoother foliation. 

THEOREM, (a) Iff is C1 and structurally stable, or 
(b) If fis C1, has a finite (>0) number of periodic points of period p, andfp has 

derivative j£\ at the periodic points off or 
(c)IffisC\ 

then 2 if) can be C°-approximated (i.e. pointwise) by a C00 foliation C°-conjugate 
to it. 

(d) There exist examples ofC1 maps f such that no foliation on S1 X S1 of class C2 

is C°-conjugate to 2 (/)• 

For the definition of approximation of foliations see Cohen [1]. 

Proof. Since the C°-conjugacy class of 2 if) *s determined by the C°-con-
jugacy class of/, and since i f / a n d / ' are close then 2 if) and 2 if) a r e close 
(see Smale [5] and Denjoy [2]), (a) and (b) are immediate. 

In [2] Denjoy constructs a C1, orientation preserving diffeomorphism/iS1-**?1 

which has a minimal invariant closed set which is a Cantor set. The suspension 
2 (/) then has an exceptional leaf. On the other hand, Schwartz shows in [4] 
that C2 foliations of codimension one on compact two-dimensional manifolds which 
come from vector fields (as 2 if) does) have no exceptional leaves. Hence 2 (/) 
cannot be C°-conjugate to a foliation of class C2, which shows (d). 

The proof of (c) is immediate using the following: 

PROPOSITION. Letf.S1->S1 be an orientation preserving C2 diffeomorphism. Then 
fis C°-conjugate to a C00 diffeomorphism f:S1->S1

f which is C°-close (i.e. point-
wise) to f 

Proof. By [2], a minimal closed invariant set fo r / i s either S1 or a finite set of 
points. Hence either very orbit is dense or / has periodic points with common 
period p. In the first case / is conjugate to a rotation by an irrational angle 
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R.S^S1 by a homeomorphism h0:S
l->S1 (see Van Kampen [6]). Approximate 

h0 by a C°-close C00 diffeomorphism g r S 1 - ^ 1 . We have 

hjht = K, g'Xfhô'g = g" 1 ^ . 

Put/'=^_1jRg- and h—ff1^. T h e n / ' is a C00 diffeomorphism and /* is a homeo­
morphism C°-close to the identity with hfhr1^/'. In the second case, we may 
assume that the periodic points are fixed points. The only minimal invariant 
closed sets off are the fixed points. It will suffice to show that y | [x0, x±] is con­
jugate to a C°-close C00 diffeomorphismfix tX 3 of [*0, xx] with Dfix X}=DfaïxQ 

and xx and prescribed values for the higher derivatives of f[x tX ] at x0 and xl9 

where [x0, xt] <= s1 , x0 and xx fixed points of/, has one of the following properties: 

(a) x0 and xx are the only fixed points o f / i n [x0, x±], 

(b) there is a sequence { j j of fixed points of/, jo=*o> Ji<7*+i» lîmw-o> J n = ^ i 
(or y{>yi+1, limn^œyn=x0), 

(c) there is a Cantor set of fixed points o f / i n [x0, x j . 

Case (a) is considered in the lemma below. Case (b) follows by applying (a) 
successively to intervals [y{, yi+1] and case (c) follows by applying (a) simultaneously 
to closures of intervals of length greater than or equal to \k in [x0, x^\— C, where 
C is the Cantor set in question, for each k=\, 2 , . . . . 

LEMMA. Let f: [0, l]->[0, 1] be a C1 diffeomorphism, f(0)=0, f (I) = I and such 
that f has no fixed points in (0, 1). Then fis C°-conjugate to a C00 diffeomorphism f 
by a homeomorphism which is C°-close to the identity, with 

Df'\o = D/|o, D/' | i = Df\t 

and with prescribed higher derivatives at 0 and 1. 

Proof. If Df\0*l, Dfli&l, a n y / ' enclose t o / w i t h D / ' | 0 = / ) / | 0 , Df^Df^ 
and with higher derivatives equal to the prescribed values will do. If Df\0=l or 
Df\x=\, we have in addition to choose / ' such that the character of the point 
where the derivative equals one is preserved, i.e. remains an attractor or repeller. 
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