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Abstract

For a class of multiplicative integer-valued functions f the distribution of the sequence f (n) in restricted
residue classes modulo N is studied. We consider a property weaker than weak uniform distribution and
study it for polynomial-like multiplicative functions, in particular for ϕ(n) and σ(n).
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1. Introduction

Let X be a set partitioned into finitely many disjoint classes, say X =
⋃N

j=1 X j, let
A : a1, a2, . . . be an infinite sequence of elements of X, and put

F j(x) = |{n ≤ x : an ∈ X j}|.

The sequence A is said to be uniformly distributed in classes X j, provided

lim
x→∞

F j(x)

x
=

1
N

holds for j = 1, 2, . . . , N. If this happens, then the ratios

F j1 (x)

F j2 (x)
(1.1)

tend to unity. We shall consider a weaker condition, requiring only that each ratio (1.1)
tends to a positive limit. If this holds, then we shall say that the sequence A is properly
distributed in classes X j.

In this paper we shall deal with the proper distribution of values of arithmetical
functions in residue classes j modulo N satisfying ( j, N) = 1 (restricted residue classes
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modulo N). This is interesting only for functions f for which the set {n : ( f (n), N) = 1}
is infinite.

A necessary and sufficient condition for uniform distribution of the sequence
f (n) mod N in restricted residue classes modulo N (weak uniform distribution) has
been given in [3] (see also [5]). It implies in particular that the values of the Euler
function ϕ(n) are weakly uniformly distributed in restricted residue classes modulo N
if and only if (N, 6) = 1. This criterion has been applied for the sum of divisors σ(n)
in [9] and for σk(n) in [4, 6, 7].

Some time ago Dence and Pomerance [2] considered the Euler function ϕ(n)
modulo 3 and showed that the ratio

|{n ≤ x : ϕ(n) ≡ 1 mod 3}|
|{n ≤ x : ϕ(n) ≡ 2 mod 3}|

tends to a positive value, thus ϕ(n) has a weak proper distribution modulo 3.
We shall show that the method used in [3, 5] can be applied to obtain criteria for

this property to hold for a large class of polynomial-like multiplicative functions and
arbitrary moduli. We shall consider integer-valued multiplicative functions f which
are polynomial-like, that is, for primes p satisfy the condition

f (pk) = Vk(p), (1.2)

where k = 1, 2, . . . , with Vk(T ) ∈ Z[T ].
For an integer N ≥ 3 and (k, N) = 1 let F f (N, k; x) denote the number of integers

n ≤ x satisfying
f (n) ≡ k mod N,

and let F f (N; x) be the number of n ≤ x with ( f (n), N) = 1. We assume that the last
condition is satisfied for infinitely many n. Moreover, let

% f (N, k) = lim
x→∞

F f (N, k; x)

F f (N; x)

be the ‘probability’ of an integer n with ( f (n), N) = 1 having f (n) in the residue class
k mod N, provided this limit exists. We shall say that the function f is weakly properly
distributed modulo N if there are infinitely many n with ( f (n), N) = 1, and for each k
prime to N the number % f (N, k) is positive. We shall establish the existence of % f (N, k)
for a large class of integer-valued multiplicative functions and give a criterion for weak
proper distribution. We shall also obtain a formula permitting one to evaluate % f (N, k).
It will turn out in particular that the Euler function ϕ(n) is weakly properly distributed
modulo N for every odd N, the sum of divisors σ(n) has this property for every N ≥ 3,
but the function µ3(n)σ(n), where µ3(n) denotes the characteristic function of cube-free
integers, is weakly properly distributed modulo N only in the case where it is weakly
uniformly distributed modulo N, which happens if and only if 6 - N.
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2. Notation

We shall utilize in the case (N, k) = 1 the function

g(N, k; s) =
∑

p ≡k mod N

1
ps
−

1
ϕ(N)

log
1

s − 1
,

which can be continued to a function regular in Re s ≥ 1. Its value at s = 1, which will
appear later in certain formulas, has the explicit form

g(N, k; 1) =
1

ϕ(N)

∑
χ,χ0

χ(k) log L(1, χ) −
α(N)
ϕ(N)

− β(N, k), (2.1)

where

α(N) = log
N

ϕ(N)

and

β(N, k) =

∞∑
j=2

1
j

∑
p j ≡k mod N

1
p j
.

For m ≥ 2 and (k, N) = 1 we shall need also the equality∑
p ≡k mod N

1
psm
−

1
ϕ(N)

log
1

s − 1/m
= g(N, k; ms) −

log m
ϕ(N)

(2.2)

valid for Re s > 1/m.
By µk(n) (k ≥ 2) we shall denote the characteristic function of the set of k-free

integers, so µ2(n) = µ2(n).
The group of restricted residue classes mod N will be denoted by G(N), by χ we

shall denote Dirichlet characters modulo N, and χ0 will be the principal character. We
shall consider integer-valued multiplicative function f satisfying the condition (1.1).
For j = 1, 2, . . . put

R j( f , N) = {V j(x) mod N : (xV j(x), N) = 1}

and denote by r f (N) the smallest value of j for which R j( f , N) is nonempty, provided
it exists. If all sets R j( f , N) are empty, then put r f (N) =∞.

If r f (N) =∞, then the condition ( f (p j), N) = 1 for some j ≥ 1 and prime p implies
that p | N, hence in this case the condition ( f (n), N) = 1 can be satisfied only if all
prime factors of n divide N, and this implies that

F f (N; x) = O(logω(n) x),

ω(n) denoting the number of distinct prime divisors of N. We shall always assume that
r = r f (N) is finite. Moreover, put

M f (N) = {x mod N : (xVr(x), N) = 1},
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and denote by m f (N) the ratio |M f (N)|/ϕ(N). By Λ f (N) we shall denote the subgroup
of G(N) generated by Rr( f ). The letter p will be restricted to prime numbers.

Note that if r = r f (N) is finite, then

F f (N; x) = (c( f , N) + o(1))
x1/r

log1−m x

with some c( f , N) > 0 and m = m f (N). This follows from Delange’s tauberian theorem
[1] and the equality

∞∑
n=1

χ0( f (n))
ns

= g f (N; s) exp
( ∑

p-N
(Vr(p),N)=1

1
prs

)
=

h f (N; s)

(s − 1/r)m
,

valid for Re s > 1/r, with g f (N; s), h f (N; s) regular for Re s ≥ 1/r and not vanishing
at s = 1/r.

3. Main result

We shall establish the following theorem.

T 3.1. Let N be a fixed integer and let f be an integral-valued multiplicative
function satisfying (1.2). Assume that r = r f (N) <∞ and denote by Ω the set of
characters modulo N which are equal to 1 on the group Λ = Λ f (N). For j ∈ R = Rr( f )
let U j be the set of solutions of the congruence

Vr(x) ≡ j mod N,

so that ⋃
j∈R

U j = M f (N),

and put m = m f (N). Finally, put

αχ(s) =
∏
p|N

(
1 +

∞∑
j=1

χ( f (p j))
p js

)
· exp

(∑
p-N

∞∑
j=2

(−1) j+1

j
χ j( f (pr))

p jrs

)
· exp

(∑
j∈R

χ( j)
∑
i∈U j

(
g(N, i, rs) −

log r
ϕ(N)

))
.

(i) If (k, N) = 1, then for Re s > 1/r one has, with some integer t,

Φk(N; s) :=
∑

n
f (n)≡k mod N

1
ns

=
1

ϕ(N)
ck(s)

(s − 1/r)m
+

t∑
j=1

λ j(s)

(s − 1)µ j
,
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where
ck(s) =

∑
χ∈Ω

χ(k)αχ(s),

λ1(s), . . . , λt(s) are regular for Re s ≥ 1/r, and µ j are complex numbers
satisfying Re µ j < m.

(ii) If ck(1/r) , 0, then

F f (N, k; x) =

( rck(1/r)
ϕ(N)Γ(m)

+ o(1)
) x1/r

log1−m x
.

If ck(1/r) = 0 but ck(s) does not vanish identically, then, with a certain u,

ck(s) = (s − 1/r)uc′k(s)

with c′k(s) regular for Re s ≥ 1/r, c′k(1/r) , 0, and

F f (N, k; x) =

( rc′k(1/r)

ϕ(N)Γ(m − u)
+ o(1)

) x1/r

log1+u−m x
.

(iii) The ratio % f (N, k) exists for each k prime to N, is equal to

% f (N, k) =
1

ϕ(N)
ck(1/r)
αχ0 (1/r)

,

and depends only on the coset kΛ.
(iv) The function f is weakly properly distributed modulo N if and only if, for each k

prime to N, one has ck(1/r) , 0.

4. Proof of Theorem 3.1

P. Our starting point is the equality

Φk(N; s) =
1

ϕ(N)

∑
χ

χ(k)Fχ(s), (4.1)

with

Fχ(s) =

∞∑
n=1

χ( f (n))
ns

=
∏

p

(
1 +

∞∑
j=1

χ( f (p j))
p js

)
,

the series and the product being absolutely convergent for Re s > 1/r in view of the
definition of r.

The behavior of Fχ(s) is determined in the following lemma.

L 4.1. For Re s > 1/r,

Fχ(s) =
αχ(s)

(s − 1/r)m(χ)
,

https://doi.org/10.1017/S144678871200064X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871200064X


178 W. Narkiewicz [6]

where

m(χ) =
1

ϕ(N)

∑
j∈R

|U j| χ( j).

The function αχ(s) is regular for Re s ≥ 1/r, and vanishes at s = 1/r if and only if
there is a prime p dividing N and satisfying p ≤ 2r with

∞∑
j=1

χ( f (p j))
p j/r

= −1.

In the case r = 1 this is possible only if, for j = 1, 2, . . . , χ( f (2 j)) = −1.
Explicitly,

αχ(s) = Bχ(s)Cχ(s) exp
(
hχ(s) +

∑
j∈R

χ( j)
∑
i∈U j

(
g(N, i, rs) −

log r
ϕ(N)

))
,

with

Bχ(s) =
∏
p|N

(
1 +

∞∑
j=1

χ( f (p j))
p js

)
, (4.2)

Cχ(s) =
∏
p-N

1 +
∑∞

j=r χ( f (p j))p− js

1 + χ( f (pr))p−rs
, (4.3)

hχ(s) =
∑
p-N

∞∑
j=2

(−1) j+1

j
χ j( f (pr))

p jrs
.

If χ ∈Ω, then neither hχ(s) nor the sum∑
j∈R

χ( j)
∑
i∈U j

(
g(N, i, rs) −

log r
ϕ(N)

)
depend on χ, hence in this case one can write

αχ(s) = D f (N; s)Bχ(s)Cχ(s),

with D f (N; s) regular for Re s ≥ 1/r and nonvanishing at s = 1/r.

P. Observe first that for j ≤ r − 1 one can have χ( f (p j)) , 0 only for p dividing
N. Therefore we can write

Fχ(s) = Aχ(s)Bχ(s)Cχ(s)

with

Aχ(s) =
∏
p-N

(
1 +

χ( f (pr))
prs

)
.
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In view of ∣∣∣∣∣1 +
χ( f (pr))

prs

∣∣∣∣∣ ≥ 1 −
1

pr Re s
≥

1
2

Aχ(s) does not vanish in Re s > 1/r, hence we can write

Aχ(s) = exp
(∑

p-N

χ( f (pr))
prs

+ hχ(s)
)
;

note that by virtue of∑
p-N

χ( f (pr))
prs

=
∑
p-N

χ(Vr(p))
prs

=
∑
j∈R

χ( j)
∑

p
Vr(p)≡ j mod N

1
prs

and (2.2) we obtain∑
p-N

χ( f (pr))
prs

= m(χ) log
1

s − 1/r
+

∑
j∈R

χ( j)
∑
i∈U j

(
g(N, i, rs) −

log r
ϕ(N)

)
.

Thus

Aχ(s) =
aχ(s)

(s − 1/r)m(χ)
,

with
aχ(s) = exp

(
hχ(s) +

∑
j∈R

χ( j)
∑
i∈U j

g(N, i, rs)
)
.

Note that if χ lies in Ω, then aχ(s) does not depend on χ. Indeed, in this case, for
p - N,

χ( f (pr)) =

1 if (Vr(p), N) = 1,

0 otherwise,

and ∑
j∈R

χ( j)
∑
i∈U j

(
g(N, i, rs) −

log r
ϕ(N)

)
=

∑
i∈M

g(N, i, rs) −
m log r
ϕ(N)

.

The functions Bχ(s) and Cχ(s) are both regular for Re s ≥ 1/r, and we have
Cχ(1/r) , 0. The function Bχ(s) may vanish at s = 1/r, and this happens if, for some
prime p,

∞∑
j=1

χ( f (p j))
p j/r

= −1,

forcing p ≤ 2r. In the case r = 1 this can happen only if, for every j ≥ 1,

χ( f (2 j)) = −1.

It would be convenient to present the product Bχ(s) in another form. If d =
∏k

j=1 p j

is a square-free divisor of N and S d is the set of integers whose prime divisors divide d,
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then

Bχ(s) =
∑
d|N

µ2(d)
∑
m∈S d

χ( f (m))
ms

.

Indeed, it suffices to observe that if Wχ(p) =
∑∞

j=1 χ( f (p j))p−s, then

Bχ(s) =
∑
d|N

µ2(d)
∏
p|d

Wχ(p).

Putting

αχ(s) = Bχ(s)Cχ(s) exp
(
hχ(s) +

∑
j∈R

χ( j)
∑
i∈U j

(
g(N, i, rs) −

log r
ϕ(N)

))
,

we get the assertion of the lemma. �

Using (4.1) and Lemma 4.1,

Φk(N; s) =
1

ϕ(N)

∑
χ

χ(k)
αχ(s)

(s − 1/r)m(χ)
. (4.4)

Observe now that we have Re(m(χ)) ≤ Re(m(χ0)) = m, with equality occurring only if
for j ∈ R one has χ( j) = 1, that is, χ ∈Ω, and therefore we may write, with some t,

Φk(N; s) =
1

ϕ(N)

∑
χ∈Ω χ(k)αχ(s)

(s − 1/r)m
+

t∑
j=1

λ j(s)

(s − 1)µ j
,

where λ j(s) are regular for Re s ≥ 1/r and µ j are complex numbers satisfying Reµ j < r.
This establishes (i), and (ii) follows immediately by the tauberian theorem of Delange.

We now prove (iii) and write %k = % f (N, k) for short. If the sum ck(s) does not vanish
at s = 1/r, then in view of∑

(k,N)=1

ck(s) =
∑
χ∈Ω

αχ(s)
∑

(k,N)=1

χ(k) = ϕ(N)αχ0 (s)

and
αχ0 (1/r) > 0

the application of Delange’s tauberian theorem gives

%k =
ck(1/r)

ϕ(N)αχ0 (1/r)
.

If ck(1/r) = 0, but ck(s) does not vanish identically, then with some t ≥ 1 we can
write

ck(s) = (s − 1/r)tH(s),

where H(s) is regular for Re s ≥ 1 and H(1/r) , 0. Delange’s theorem now gives
%k = 0.
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[9] Proper distribution of multiplicative functions 181

If ck(s) vanishes identically, then %k = 0. This is a simple corollary of Delange’s
theorem (see, for example, [3, Lemma 2]).

Because ck(s) depends only on the coset kΛ, so does %k.
The assertion (iv) follows immediately from (ii). �

R 4.2. To obtain a more explicit formula for ck(1/R) one may utilize (2.2).

C 4.3. If Λ is of index 2 in G(N), then Ω = {χ0, χ}, where χ is a real character
modulo N, and f is weakly properly distributed modulo N if and only if

αχ0 (1/r) , ±αχ(1/r). (4.5)

P. In this case

ck(s) =

αχ0 (s) + αχ(s) if k ∈ Λ,

αχ0 (s) − αχ(s) otherwise,

hence (4.5) is equivalent to ck(1/r) , 0. It remains to apply part (iv) of Theorem 3.1. �

5. Some special cases

Checking the conditions for weak proper distribution given in Theorem 3.1 may
sometimes be awkward. The next theorem gives a simpler criterion in the case of
polynomial-like multiplicative functions f with r f (N) <∞ and f (pn) = 0 for n ≥ r + 1.

T 5.1. Let N ≥ 3, let f be an integer-valued polynomial-like multiplicative
function satisfying r = r f (N) <∞ and denote by V(T ) the polynomial satisfying
f (pr) = V(p) for prime p. Assume, moreover, that for n ≥ r + 1 and all primes p one
has f (pn) = 0.

The function f is weakly properly distributed modulo N if and only if for every k
prime to N there exists an (r + 1)-free integer m all of whose prime factors divide N
and which satisfies f (m) ∈ kΛ, Λ being the subgroup of G(N) generated by the set
R = {V(x) mod N : (xV(x), N) = 1}. For k ∈ Λ this condition is satisfied with m = 1.

P. Since f (pn) vanishes for n ≥ r + 1 we use (4.2), (4.3) and (4.4) to obtain for
χ ∈Ω the equalities

Cχ(1/r) = 1

and

Bχ(1/r) =
∏
p|N

(
1 +

r∑
j=1

χ( f (p j))
p j/r

)
.

For a square-free divisor d = p1 p2 · · · pk of N denote by S d the set of all integers of
the form

∏k
j=1 p

a j

j with 0 ≤ a j ≤ r.
Lemma 4.1 shows now that we can write

αχ(1/r) = D f (N)
∏
p|N

(
1 +

r∑
j=1

χ( f (p j))
p j/r

)
,
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with a positive constant D f (N) depending only on f and N. Therefore

ck(1/r)
D f (N)

=
∑
χ∈Ω

χ(k)αχ(1/r) =
∑
d|N

µ2(d)
∑
m∈S d

χ( f (m))
m1/r

.

Since ∑
χ∈Ω

χ( f (m))χ(k) =

|Ω| if f (m) ∈ kΛ,

0 otherwise,

one obtains that ck(1/r) does not vanish if and only if there exists an (r + 1)-free integer
m all of whose prime factors divide N and which satisfies f (m) ∈ kΛ. Now apply
Theorem 3.1. �

C 5.2. Let N = qk be a prime power, and let f be a polynomial-like
multiplicative function with r = r f (N) <∞. Moreover, denote by qn the sequence of
(r + 1)-free integers.

(i) If the index of Λ in G(N) exceeds 2, then the sequence f (qn) is not weakly
properly distributed modulo N.

(ii) If the index of Λ is equal to 2, then the sequence will be weakly properly
distributed modulo N if and only if for some j ≤ r one has ( f (q j), N) = 1 and
f (q j) < Λ.

P. (i) Apply Theorem 5.1 to the function g(n) = µr+1(n) f (n), note that r f (N) =

rg(N) and observe that the only (r + 1)-free divisors of N are 1, q, . . . , qr, hence the
condition of the theorem can be satisfied only by k lying in at most two different cosets
with respect to Λ.

(ii) Immediate by Theorem 5.1. �

The following corollary can sometimes be used to simplify the proof that a
particular function is weakly properly distributed modulo N.

C 5.3. Let N ≥ 3, let f be an integer-valued polynomial-like multiplicative
function with r = r f (N) <∞ and f (pr) = V(p) for a polynomial V(T ) and put g(n) =

µr+1(n) f (n). If g(n) is weakly properly distributed modulo N, so is f (n).

P. The function g is polynomial-like, and since for i ≤ r one has g(pi) = f (pi) the
equality g(pr) = V(p) follows, hence the sets Rr( f ) and Rr(g) coincide, thus rg(N) = r
and m f (N) = mg(N) = m, say. Equality (2.1) leads to

F f (N; x) = (c1 + o(1))
x1/r

log1−m x
, Fg(N; x) = (c2 + o(1))

x1/r

log1−m x

with positive c1, c2. If g is weakly properly distributed modulo N, then, for (k, N) = 1,

Fg(N, k; x) = (c(k) + o(1))
x1/r

log1−m x
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with c(k) > 0, and in view of

Fg(N, k; x) ≤ F f (N, k; x)

and part (iii) of Theorem 3.1 we obtain that f is weakly properly distributed mod N. �

Note that the converse implication may fail. Indeed, we shall see in Theorem 6.2
that although σ(n) is for every N weakly properly distributed modulo N, the function
µ3(n)σ(n) does not share this property.

6. Applications

6.1. Euler function. We now utilize Corollary 5.3 to deal with the Euler function.
It suffices to consider only odd moduli, because if N is even, then (ϕ(n), N) = 1 holds
only for n = 1.

T 6.1. Euler’s function ϕ(n) is weakly properly distributed modulo N for every
odd integer N.

P. Let N ≥ 3 be an odd integer. If 3 - N, then ϕ(n) is weakly uniformly distributed
modulo N by [9], hence we may henceforth assume that 3 | N. In this case 1 ∈ R1 , ∅
holds, hence rϕ(N) = 1, and the set R1(N) consists of all a modulo N satisfying
(a, N) = 1 and a . −1 mod p for every prime divisor of N, thus

m = mϕ(N) =
∏
p|N

(
1 +

1
p − 1

)
.

Lemma 5.3 shows that it suffices to prove weak proper distribution modulo N for the
function f (n) = µ2(n)ϕ(n).

Let Λ denote the subgroup of G(N) generated by R, and let Ω be the family of
characters attaining the value 1 in Λ. Denote by H the subgroup {a mod N : a ≡
1 mod 3} of G(N). Since 3 | N every element of a ∈ R lies in H, thus Λ ⊂ H. We will
show that Λ = H. Write N =

∏k
i=1 pai

i with p1 = 3 and note that every element x ∈ Λ

can be considered as a vector

x = [x1, x2, . . . , xk]

with xi ∈G(pai
i ), x ≡ xi mod pai

i and x1 ≡ 1 mod 3. Given x ∈ Λ in this form choose for
i = 2, 3, . . . , k an element ci ∈G(pai

i ) with

ci . −1 mod pi, ci . −xi mod pi,

and put

yi =

ci if xi ≡ −1 mod pi,

xi otherwise,

zi =

c−1
i if xi ≡ −1 mod pi,

1 otherwise,
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and
y = [1, y2, . . . , yk], z = [x1, z2, . . . , zk].

Since y, z ∈ R and x = yz, we obtain x ∈ Λ. Since Λ is of index 2 in G(N) and 2 < Λ,
the cosets of G(N) with respect to Λ are Λ and 2Λ. Since 3 | N and ϕ(3) = 2 ∈ 2Λ, the
assertion follows from Theorem 5.1. �

6.2. Sum of divisors. We now consider σ(n), the sum of divisors.

T 6.2.

(i) The function σ(n) is weakly properly distributed modulo N for every N ≥ 3.
(ii) The function f (n) = µ3(n)σ(n) is weakly properly distributed modulo N if and

only if it is weakly uniformly distributed modulo N, that is, 6 - N.

P. (i) If 6 - N, then σ(n) is weakly uniformly distributed modulo 6 by [9], so
we may assume that 6 | N. Let N =

∏
p|N pap with a2, a3 ≥ 1. In this case we have

V1(T ) = T + 1, V2(T ) = T 2 + T + 1, hence R1 = ∅, and 1 ∈ R2 , ∅. We have

R2 = {1 + x + x2 mod N : (x(1 + x + x2), N) = 1},

and since the congruence

1 + X + X2 ≡ 0 mod p (6.1)

has one solution for p = 3, two solutions for p ≡ 1, 7 mod 12, and no solutions for
other primes,

m =
1
2

∏
p ≡1,7 mod 12

(
1 −

1
p − 1

)
.

Since all elements of R2 are congruent to 1 mod 6,

Λ ⊂ H = {x mod N : x ≡ 1 mod 6}.

Observe now that in fact there is equality here. Indeed, let x = 〈xp〉p ∈ H, with p
ranging over prime divisors of N, and xp ∈G(pap ), xp ≡ x mod pap . For primes p | N
congruent to 1 or 7 modulo 12 denote by up, vp the solutions of the congruence (6.1)
and choose cp ∈G(pap ) with cp . up, vp, −xp mod p. For these primes put

yp =

cp if xp ≡ up, vp mod p,

xp otherwise,

zp =

xpc−1
p if xp ≡ up, vp mod p,

1 otherwise,

and for the remaining p | N put

yp =

xp if p - 6,

1 if p | 6,

and zp = 1. Then y = 〈yp〉p and z = 〈zp〉p lie in R2, hence x = yz ∈ Λ. This shows that
Λ = H and it follows that the index of Λ in G(N) is equal to 2. Thus Ω = {χ0, χ3},
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where χ3 is the character mod N induced by the quadratic character modulo 3. If
p ≡ 1 mod 3 and (σ(p j), N) = 1, then

χ0(σ(p j)) =

1 if j ≡ 0, 1 mod 3,

0 if j ≡ 2 mod 3,

and

χ3(σ(p j)) =


1 if j ≡ 0 mod 3,

−1 if j ≡ 1 mod 3,

0 if j ≡ 2 mod 3.

If p ≡ 2 mod 3 and (σ(p j), N) = 1, then

χ0(σ(p j)) = χ3(σ(p j)) =

1 if 2 | j,

0 if 2 - j.

Since moreover, χ0(3 j) = χ1(3 j) = 1, we get, utilizing the notation used in
Lemma 4.1,

Aχ0 (s) = Aχ3 (s) =
∏

p-N,p≡2 mod 3
(1+p+p2,N)=1

(
1 +

1
p2s

)
,

Bχ0(s) = B(N; s)
∏
p|N

p≡1 mod 3

(
1 +

∑
3≤ j ≡0,1 mod 3

(σ(p j),N)=1

1
p js

)
,

Bχ3(s) = B(N; s)
∏
p|N

p≡1 mod 3

(
1 +

∑
3≤ j ≡0 mod 3
(σ(p j),N)=1

1
p js
−

∑
3≤ j ≡1 mod 3
(σ(p j),N)=1

1
p js

)
,

where B(N; s) is a function regular for Re ≥ 1/2 and not vanishing at 1/2.
Finally,

Cχ0 (s) = C(N; s)
∏
p-N

p≡1 mod 3

(
1 +

∑
2≤ j ≡0,1 mod 3

(σ(p j),N)=1

1
p js

)
and

Cχ3 (s) = C(N; s)
∏
p-N

p≡1 mod 3

(
1 +

∑
3≤ j ≡0 mod 3
(σ(p j),N)=1

1
p js
−

∑
3≤ j ≡1 mod 3
(σ(p j),N)=1

1
p js

)
,

with C(N; s) regular for Re ≥ 1/2 and not vanishing at 1/2.
Since Aχ0 (s) = Aχ3 (s) = g(s)(s − 1/2)−m with g(s) regular for Re s ≥ 1/r and

nonvanishing at s = 1/r, we obtain

αχ0 (1) , ±αχ3 (1),

and by Corollary 4.3 assertion (i) follows.
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(ii) Since, for 3-free n, f (n) coincides with σ(n),

r f (N) = rσ(N) =

1 if 6 - N,

2 if 6 | N.

If 6 - N, then

R = R1( f , N) = {x mod N : p - x(x − 1) for p | N}

and the argument used in the proof of (i) leads to Λ = G(N), hence f is weakly
uniformly distributed modulo N.

Now assume that 6 | N. From the proof of (i) one infers the equality

Λ = {a ∈G(N) : x ≡ 1 mod 6},

hence the index of Λ is equal to 2. Were f weakly properly distributed modulo N, then
according to Theorem 5.1 there would exist an integer

d = p1 · · · pk(q1 · · · ql)2

with primes pi, q j dividing N, satisfying (σ(d2), N) = 1 and

σ(d2) = f (d2) ≡ 5 mod N.

Since for every prime p one has (1 + p, N) > 1, as N is divisible by 6, therefore
k = 0, and there exists a prime q dividing d with (1 + q + q2, N) = 1 and 1 + q + q2 ≡

5 mod 6, thus q2 + q ≡ 4 mod 6. This is obviously impossible, hence f (n) is not
properly weakly distributed modulo N. �

6.3. Ramanujan τ-function. Our last example deals with the Ramanujan τ-
function, defined by

∞∑
n=1

τ(n)Xn = X
∞∏
j=1

(1 − X j)24.

It has been shown by Serre [8] (see also [5, Theorem 5.18]) that τ(n) is weakly
uniformly distributed modulo N if and only if either N is odd and not divisible by 7,
or N is even and (N, 7 · 23) = 1. In particular, τ(n) is weakly uniformly distributed
modulo p for every prime p , 7. Nevertheless, it turns out that its distribution modulo
7 is not too bad.

T 6.3. The function τ(n) is weakly properly distributed modulo 7.

P. In 1931, Wilton [10] established the congruence

τ(n) ≡ nσ3(n) mod 7,

where
σ3(n) =

∑
d|n

d3,
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hence it suffices to show that the function f (n) = nσ3(n) is weakly properly distributed
modulo 7.

For this function we obtain V1(X) = X4 + X, thus R1 = {1, 2, 4}, hence r = 1 and
Λ = R1 is of index 2. Thus Ω = {χ0, χ7}, χ7 being the quadratic character modulo 7.
Denote by P the set of primes p with p mod 7 ∈ Λ.

In view of 7 | f (7 j) for j ≥ 1 we get Bχ0 = Bχ7 = 1. Moreover, for both characters
χ ∈Ω,

1 +
χ( f (p))

p
=

1 + 1/p if p ∈ P,

1 otherwise,

hence

Cχ0 (1) =
∏
p<P

(
1 +

∑
j≥2

7- f (p j)

1
p j

) ∏
p∈P

((
1 +

∑
j≥2

7- f (p j)

1
p j

) p
p + 1

)
,

and

Cχ7 (1) =
∏
p<P

(
1 +

∑
j≥2

7- f (p j)

χ7( f (p j))
p j

) ∏
p∈P

((
1 +

∑
j≥2

7- f (p j)

χ7( f (p j))
p j

) p
p + 1

)
.

Since the character χ7 is real and χ7( f (292)) = χ7(3) = −1,

Cχ7 (1) <Cχ0 (1), (6.2)

and the observation that 7 - f (p) implies χ7( f (p)) = 1 leads to the equality

hχ0)(1) = hχ7)(1). (6.3)

Noting, finally, that the sum ∑
j∈R

χ( j)
∑
i∈Λ j

g(N, i, 1)

does not depend on χ, as for j ∈ R we have χ0( j) = χ7( j) = 1, and using (6.2) and (6.3)
we arrive at

αχ0 > αχ7 (1),

and the assertion follows from Corollary 4.3. �
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