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Abstract. Let M be a topological spherical space form, i.e., a smooth manifold whose universal cover
is a homotopy sphere. We determine the number of path components of the space and moduli space
of Riemannian metrics with positive scalar curvature on M if the dimension of M is at least 5 and M
is not simply-connected.

1 Introduction and Main Result

Let M be a closed smooth manifold. We denote by R* (M) the space of Riemannian
metrics with positive scalar curvature on M and by M* (M) the corresponding mod-
uli space, i.e., the quotient of R* (M) by the pull-back action of the diffeomorphism
group. We equip R* (M) with the smooth topology and the moduli space with the
quotient topology. These spaces, as well as spaces and moduli spaces of Riemannian
metrics satisfying different curvature conditions, have been studied in various ways;
see, e.g., [17,18] for an outline.

This article addresses the problem of determining the number of path components
of both R*(M) and M*(M) if M is a non-simply-connected topological spherical
space form, i.e., a non-trivial quotient of a homotopy sphere by a free action of a finite
group. In the case where M is a linear spherical space form, i.e., the action is given by an
isometric action on the round sphere, this problem has been solved if the dimension
of M is at least 5.

Theorem A ([3, Theorem 0.1]) Let M be a linear spherical space form of dimension
at least 5 that is not simply-connected. Then there exists an infinite family of metrics
gi € R* (M) such that g; and g; are not concordant and lie in different path components
of M*(M) if i # .

Two metrics go, &1 € RT(M) are concordant if there exists a metric g €
R*(M x [0,1]) that is a product near the boundary and restricts to g; on M x {i}.
Metrics in the same path component of R* (M) are concordant; see, e.g., [15]. Hence,
R*(M) has an infinite number of path components. This also follows from the fact
that a lower bound on the number of path components of M* (M) is always a lower
bound on the number of path components of R* (M).
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In fact, Theorem A is the consequence of two theorems proved in [3] that can be
applied to manifolds satisfying certain properties involving dimension, fundamental
group, and Spin or Pin structures; see Theorems 3.1 and 3.2. Theorem A is then proved
by verifying that all considered spherical space forms satisfy the requirements of one
of these theorems. The Main Theorem of this article is the following, which is obtained
using the same strategy.

Main Theorem  Let M be a topological spherical space form of dimension at least 5
that is not simply-connected and admits a metric with positive scalar curvature. Then
there exists an infinite family of metrics g; € R* (M) such that g; and g; are not con-
cordant and lie in different path components of M* (M) if i # j.

This affirmatively answers the question posed in [10, p. 11], where the authors de-
termined under which conditions a topological spherical space form admits a metric
with positive scalar curvature. Their main theorem is given as follows.

Theorem B ([10, Main Theorem]) Let M be a topological spherical space form of
dimension n > 5. If n # 1,2 mod 8, then M admits a metric with positive scalar
curvature. If n = 1,2 mod 8, then M admits a metric with positive scalar curvature
if and only if |y (M)| is even or the universal cover of M admits a metric with positive
scalar curvature.

For the last case in Theorem B, note that by [16] the universal cover of the topo-
logical space form M admits a metric with positive scalar curvature if and only if its
alpha invariant vanishes.

In lower dimensions, the situation is completely different. In dimension 2, the
only (topological) spherical space form that is not simply-connected is RP*. By
(15, Theorem 3.4], the space R* (RP?) is contractible, so both R* (RP?) and M* (RP?)
are path-connected.

In dimension 3, by Perelman’s proof of Thurston’s Elliptization Conjecture (see [14]
or [5, Theorem E]), every 3-dimensional topological spherical space form M? is dif-
feomorphic to alinear spherical space form. By [13, Main Theorem], the moduli space
M*(M?) is path-connected. For recent work on the space of metrics R* (M?), we re-
fer the reader to [1]. So dimension 4 is the only remaining open case.

This article is organized as follows. In Section 2, we summarize some basic defi-
nitions and results on topological spherical space forms and prove some preliminary
group-theoretic tools. In Section 3, we use these tools to prove the Main Theorem.

2 Preliminaries

In this section, we collect some definitions and basic results and develop the tools we
will use in the proof of the Main Theorem.

Definition 2.1 A topological spherical space form is a smooth manifold whose uni-
versal cover is a homotopy sphere.

Linear spherical space forms have been classified; see [20]. This does not hold for
the much larger class of topological spherical space forms, and there are still many
open problems; see e.g., [7] for a survey.
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In the following, M denotes a topological spherical space form of dimension n.
Its universal cover M is homeomorphic to S*, and the fundamental group 7, (M) is
finite. Furthermore, it has the following properties.

Proposition 2.2 Ifn is even, then (M) is trivial or Z,. If n is odd, then every Sylow
subgroup of m; (M) is cyclic or a generalized quaternion group.

A generalized quaternion group is a group Q,x. of order 25*1, k > 1, with genera-
tors x and y and relations
(2.) P % K=, yxyt=x7h
Proof If n is even, then, by Lefschetz Fixed Point Theorem applied to the action
on the universal cover, every non-trivial element of 7;(M) reverses the orientation.
Hence, there is at most one non-trivial element in 7; (M).

If n is odd, then 7;(M) has periodic cohomology by [4, Chapter XV1.9, Applica-
tion 4], which is equivalent to the claim; see [4, Theorem XIL.11.6]. ]

The cyclic group Z, acts on $*"~' ¢ C" via

k+0Z)(z1,.. . zm) = Az, .. AR 2,),
(k+pZ)-( )= m

where A; = A9 for A a primitive p-th root of unity and ¢q; and p are coprime. The
quotient space is called a lens space.

Proposition 2.3 If my(M) is cyclic, then M is homotopy equivalent to a linear spher-
ical space form; that is, M is homotopy equivalent to S, RP" (if n is even) or to a lens

space (if n is odd).

Proof If n is even, then M is a homotopy sphere or (M) = Z,, and in the latter
case, M is homotopy equivalent to RP" as shown in [12, IV.3.1]. We refer the reader
to [19, 14E] for the case where 7 is odd. [ ]

We now consider Spin and Pin* structures on topological spherical space forms.
Recall that the group structure of the universal cover of the orthogonal group O(n)
is uniquely determined on the component that contains the identity element (this is
the Spin group), but on the other component, a preimage of a reflection can square to
£1, and we obtain the two groups Pin*. The existence of Spin and Pin™ structures can
be characterized by Stiefel-Whitney classes as follows.

Proposition 2.4 ([11, Theorem II.1.2 and Theorem II.1.7] and [8, Proposition 1.1.26])
Let M be a smooth manifold. Denote by wi,(M) € H*(M;7Z,) the k-th Stiefel-Whitney
class of its tangent bundle. Then the following hold:

(i) M is orientable if and only if wi (M) vanishes.

(ii) M admits a Spin structure if and only if both w; (M) and wy(M) vanish.
(ili) M admits a Pin* structure if and only if wa (M) vanishes.
(iv) M admits a Pin~ structure if and only if w,(M) + wy(M)? vanishes.
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Now suppose that M is oriented. We equip M with a Riemannian metric that is
invariant under the action of G = 71;( M), so the action lifts to the oriented orthonor-
mal frame bundle Pso(M). The manifold M is a homotopy sphere; hence, it admits
a unique Spin structure P — Pso (M), and every g € G has two lifts to P. Denote the
group of all such lifts by G. This leads to a group extension

(2.2) 1—Z, — G5 G—1.

Both elements of ker 7 are central in G, so the extension is central. In order to analyze
this extension, we need two group-theoretic lemmas.

Lemma 2.5 Let G be a finite group with a cyclic 2-Sylow subgroup S. Let m-2* = |G|,
where m is odd. Then G has a unique normal subgroup of order m.

Proof Ifsuch asubgroup exists, then it is unique, as it contains precisely all elements
of odd order. Now the homomorphism ¢: G - Sym(G) given by left-multiplication
followed by sign: Sym(G) — Z, is surjective, as every generator of S has non-trivial
image. Hence, its kernel H has index 2 and Hn S is a cyclic 2-Sylow subgroup of order
2k-Vin H. Suppose H has a unique normal subgroup N of order m. Every conjugate
of N is contained in H, as H is normal, and, by uniqueness, it follows that it equals N,
so N is normal in G. Thus, the claim follows by induction. ]

Lemma 2.6 Let G be a finite group and let m - 2% = |G
normal subgroup N of order m, then the following hold:

, where m is odd. If G has a

(i) The group G is the semi-direct product of N and a 2-Sylow subgroup.
(ii) The group G in the extension (2.2) has a normal subgroup of order m that maps
isomorphically to N.
(iii) The extension (2.2) splits if and only if its restriction to a 2-Sylow subgroup splits.

Proof Consider the projection G — G/N. Its restriction to a 2-Sylow subgroup S is
an isomorphism; hence, the projection splits.

Now consider the extension (2.2). The 2-Sylow subgroups of 77! (N have order 2,
so we can apply Lemma 2.5 to see that 7' (N) has a normal subgroup N of order m
that maps isomorphically to N under 7. The group N is normal in G as it contains all
elements of odd order.

It follows from (i) that G is the semi-direct product of N and 8 = 77(S). If there
is a splitting S — §, then we obtain a map

$:G=NxS§S—Nx§=§

by identifying N with N. The map ¢ clearly satisfies 7 o ¢ = id. Hence, it defines
a splitting of (2.2) if it is a group homomorphism. The image ¢(sns™') equals
@(s)p(n)¢p(s) forn € N, s € S asboth are elements of N'and map to sns~'. Hence, ¢
commutes with the action of S on N; thus, it is a homomorphism on their semi-direct
product G. [ ]

The manifold M admits a Spin structure if and only if the whole action of

G = m (M) on Pso (M) can be lifted to P. This is the case if and only if the extension
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(2.2) splits, i.e., ifand only if § = Z, ® G (as the extension is central). This leads to the
following proposition.

Proposition 2.7  The topological spherical space form M is orientable if and only if
n is odd or G is trivial. If n is odd and the 2-Sylow subgroups of G are cyclic, then M
admits a Spin structure if and only if n =3 mod 4 or |G| is odd.

We will use the following lemma in the proof of the proposition.

Lemma 2.8 ([6, Theorem 1]) If M is a lens space of dimension n = 2m — 1, then M
is spin if and only if m is even or |m (M) is odd.

Proof of Proposition 2.7 All homotopy spheres are orientable and spin, so we can
assume that G is non-trivial. If » is even, then M is homotopy equivalent to RP”
which is not orientable. Since Stiefel-Whitney classes are invariant under homotopy
equivalence, it follows that M is not orientable. If 7 is odd, then the action of G on
M preserves the orientation as it induces the identity on H, (M;Q) by the Lefschetz
Fixed Point Theorem. Hence, the quotient M is orientable.

Now let n = 2m — 1 be odd and assume that G has a cyclic 2-Sylow subgroup S.
We consider the central extension (2.2). By Lemma 2.5, there is a normal subgroup
of maximal odd order, and we can apply Lemma 2.6 to see that the extension splits if
and only if its restriction to S splits. The quotient of the action of S on M has cyclic
fundamental group, so it is homotopy equivalent to a lens space by Proposition 2.3.
Thus, by using the homotopy invariance of Stiefel-Whitney classes, it follows from
Lemma 2.8 that the extension splits if and only if m is even or § is trivial; i.e., M
admits a Spin structure if and only if m is even or |G| is odd. ]

Remark 2.9 Proposition 2.7 remains true if S is a generalized quaternion group
(cf. e.g., proof of [9, Theorem 2.1]). This result cannot be obtained by the same method,
however, as there are central extensions of Qg by Z, that do not split but every restric-
tion to a cyclic subgroup splits; these are semi-direct products of Z, and Z4. On the
other hand, there are no central extensions of Qg by Z, where every element has twice
the order of its image, as we see in the following proposition.

Proposition 2.10  The group Q,x+ cannot act smoothly and freely on a homotopy
sphere of dimension n # 3 mod 4. In particular, topological spherical space forms of
dimension n =1 mod 4 have cyclic 2-Sylow subgroups.

Proof By Proposition 2.2, we can assume that n is odd, and we again consider the
extension (2.2), where G = Q,+1i. Now let ¢ € G be non-trivial and suppose n = 1
mod 4. Then, by restricting the action to the cyclic subgroup generated by g, we ob-
tain that both elements of 77! (g) have twice the order of g, as the extension does not
split in this case. Denote by X and ¥ preimages of the generators x and y of G; in
particular, ¥ has order 25*1. By using the relations (2.1), we obtain

~2k71 ~2

¥ =+y% and yxy ' =

+5 7L

https://doi.org/10.4153/50008439520000132 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439520000132

906 P. Reiser

Hence,

okl —y k!

~_2k71 2
Ty =y =R

X o=y
2

o~ k . . . . . . .
so X~ is trivial, which is a contradiction. ]

3 Proof of the Main Theorem

Our Main Theorem will be a consequence of the following theorems.

Theorem 3.1 ([3, Theorem 0.2 and Theorem 1.1]) Let M be a closed connected mani-

fold of odd dimension n = 2m —1 > 5 with finite fundamental group G and assume that
its universal cover admits a Spin structure. Consider the central extension (2.2) given
by

1—%2,—G—G—1
and assume that the following hold.

(i) The group G contains an element g + <1 that is not conjugate to either —g or to
gV ifmis even.

(ii) The group G contains an element g that is not conjugate to either —g or to g™' if m
is odd.

Then if M admits a metric with positive scalar curvature, there exists an infinite family
gi € R" (M) such that g; and g; are not concordant and lie in different path components
of M* (M) ifi # j.

This theorem is an extension of the main theorems in [2], where M is assumed to
be spin. Then § = Z, & G, so condition (i) is satisfied if and only if G is non-trivial,
and condition (ii) is satisfied if and only if G has an element that is not conjugate to
its inverse.

Theorem 3.2 ([3, Theorem 0.3]) Let M be a closed connected manifold of even di-
mension n = 2m > 6 with fundamental group Z, and assume that M is not orientable
and admits a Pin® structure, where ¢ = sign(-1)". Then if M admits a metric with
positive scalar curvature, there exists an infinite family g; € R* (M) such that g; and g;
are not concordant and lie in different path components of M* (M) if i # j.

We now adapt, with the help of the results proved in Section 2, the proof of
[3, Theorem 0.1] in order to prove the Main Theorem.

Proof of the Main Theorem First assume that n = 2m — 1 is odd. Denote by S a
2-Sylow subgroup of G. By Proposition 2.2, there are two possibilities: S is cyclic or a
generalized quaternion group. We consider each possibility separately.

First assume that S is cyclic. We use Proposition 2.7 to determine in which cases
M is spin. If m is even, then M is spin, and we can apply Theorem 3.1. We can also
do that if m is odd and |G| is 0odd, since then every non-trivial element of G is not
conjugate to its inverse. If |G| is even and m is odd, then M is not spin. Then consider
the central extension (2.2) given by

1—>Zz—>9—ﬂ>G—>l.
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It does not split, since M is not spin, so § = 77($) is cyclic by Lemma 2.6, and hence,
§ is the semi-direct product of 8, and the unique maximal normal subgroup N of odd
order by Lemmas 2.5 and 2.6. Let g € 8. Then for n € N we have

ngn”' =g- (g 'ngn™").

1 1

As g7'ngn™' € N, it follows that ngn™" € § if and only if g"'ngn™" is trivial, and in
this case, ngn™' = g. Hence, the only element of § to which g can be conjugate is g,
and g satisfies the requirement of Theorem 3.1(ii) if g # g~'. But |8| is a multiple of 4,
so such an element exists.

Now consider the case where S = Q- is a generalized quaternion group. Then m
is even by Proposition 2.10. If G has a non-trivial element g of odd order, then both
—g and —g~! have even order, so g is not conjugate to any of them, and we can apply
Theorem 3.1. If there is no element of odd order, then G = S. Consider the generators
x and y in the presentation (2.1). In particular, we have

yx y_l =x7"
Denote by X and 7 preimages in G. Then X7 ' = +X ', so
Ryl =52
holds. This shows that the conjugacy class of X only consists of x> and ¥ 2. Hence,
X2 is conjugate to —x2 or —X * if and only if X* = -X 2. This is the case if and

only if X has order 8 and x has order 4. By restricting the action as in the proof of
Proposition 2.10, we see that the elements x and X have the same order, so X2 is not
conjugate to =X 2 or —x ~2, and we can apply Theorem 3.1.

Finally assume that n = 2m is even. Then G = Z, by Proposition 2.2; hence, M
is homotopy equivalent to RP" by Proposition 2.3. Denote by a € H'(RP";Z,) the
generator of the cohomology ring. Then

n 1
(n+1) a2,
2
This shows that w, (RP") = 0 if m is even, so M admits a Pin™ structure, and w, (RP")

+w (RP")? = a® + a® = 0if m is odd, so M admits a Pin™ structure. In both cases we
can apply Theorem 3.2. [ ]

wi(RP") = (n+1)-a=aand w,(RP") =
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