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Abstract
A detailed analytical and numerical study is made of the deformation of
highly elastic circular cylinders and tubes produced by steady rotation
about the axis of symmetry. Explicit results are obtained through the use of
Ogden's strain-energy function for incompressible isotropic elastic materials
which, as well as being analytically convenient, is capable of reproducing
accurately the observed isothermal behaviour of vulcanized rubber over a
wide range of deformations. The three problems of steady rotation considered
here concern (i) a tube shrink-fitted to a rigid spindle, (ii) an unconstrained
tube, and (iii) a solid cylinder. In each case a set of restrictions on the
material constants appearing in the strain-energy function is stated which
ensures that a tubular or cylindrical shape-preserving deformation exists
for all angular speeds and that, for problems (i) and (iii), there is no other
solution. In connection with problems (ii) and (iii) values of the material
constants are also given which correspond to the bifurcation or non-existence
of solutions. Energy considerations are used to determine the local stability of
the various solutions obtained.

1. Introduction

In a series of recent papers [4,5,11,12] existence-uniqueness questions have been
investigated for a number of deformations, both universal and non-universal, of
incompressible isotropic elastic materials having the general form of strain-energy
function introduced by Ogden [10]:

£ ( ? f j 3 ) . (1.1)
n=locn

Here a^a^a^ are the (strictly positive) principal stretches and /xn and a.n (n = 1,2,
...,s) are material constants, the /xn's having the physical dimensions of stress and
the an's being dimensionless. Considerations of stability and physically realistic
response lead to the constitutive inequalities

(in <xn > 0 for each n, (1.2)
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[2] Deformation of cylinders and tubes 63

and the shear modulus in infinitesimal deformations from the reference configura-
tion is given by

/* = 5 2 /*»«». (1-3)

We note that (1.1) includes as special cases both the neo-Hookean and Mooney
strain-energy functions, the former being obtained when

s=l; a1 = 2, /ii = /x. 0-4)
and the latter when

s = 2; a1 = 2, <x2 = - 2 , fi = fi1-fi2. (1.5)

In the papers cited above restrictions on the exponents an additional to those
implied in (1.2) arise as sufficient conditions for the equations determining
certain unknown deformation constants to have unique solutions. The present
paper continues this general line of enquiry by studying shape-preserving
deformations of a circular cylindrical tube and a solid circular cylinder resulting
from steady rotation about the axis of symmetry. Three such situations are con-
sidered, involving (i) a tube shrink-fitted to a rigid circular cylindrical spindle,
(ii) an unconstrained tube, and (iii) a solid cylinder. In each instance the outer
curved surface of the deformed body is traction-free and on both of the plane
end-faces, normal to the axis of rotation, the resultant force is taken to be zero.
Case (ii) may be viewed as following from (i) when the tube turns rapidly enough to
leave the spindle, and case (iii) can be regarded as a limit of either (i) or (ii) when
the internal radius of the tube approaches zero.

In Section 2 we obtain formal solutions for the problems just described which are
universal in the sense of being valid for any incompressible isotropic elastic
material. The specialization of this basic analysis to a material possessing the
strain-energy function (1.1) is then carried out in Section 3.

The simplest of the three problems, that of the steadily rotating solid cylinder, is
treated in Section 4. Here it is shown that the deformation of the cylinder and the
stress distribution are completely and uniquely determined for all angular speeds if
the exponents satisfy the additional conditions

am=% — 1 or a n ^2 for each n, (1.6)

an<—\ or a n >2 for some n. (1.7)

The neo-Hookean strain-energy function specified by equations (1.4) fails to
meet the condition (1.7), while the exponents chosen by Ogden [10] to secure an
accurate fit of experimental data of Treloar [14] for vulcanized natural rubber
violate (1.6). These and other considerations prompt us in Section 5 to examine the
possibility of adjusting the three pairs of material constants derived by Ogden so as
to achieve conformity with the restrictions (1.6) and (1.7), but without seriously
disturbing the agreement between theory and experiment. Two sets of constants

https://doi.org/10.1017/S0334270000001454 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000001454


64 P. Chadwick, C. F. M. Creasy and V. G. Hart [3]

are obtained, each providing a representation of Treloar's experimental results
which is quite close, especially at high strains, but in toto somewhat inferior to the
fit produced by Ogden.

Sections 6 and 7 are devoted to the analysis and numerical discussion of the two
problems involving a rotating tube. For the shrink-fitted tube it is proved analytic-
ally in Section 6 that (1.6) are sufficient conditions for the deformation and the
stress to be uniquely determined at all angular speeds for which contact between
tube and spindle is maintained. In contrast to the cases of the solid cylinder and the
shrink-fitted tube, where only one deformation constant has to be found to complete
the solution, the problem of the freely revolving tube involves two unknown
constants. Section 7, containing the analysis of the unconstrained tube, is accord-
ingly the most complicated part of the paper. Conditions are given which suffice at
all speeds of rotation for the existence, but not necessarily the uniqueness, of a
solution to the equations specifying the two deformation constants. These require-
ments are more restrictive than (1.6) and (1.7), and the Mooney material fails to
meet them. Separate consideration is given to this exceptional case.

In an appendix the total potential energy of the rotating body is used to determine
the local stability of the shape-preserving deformations studied in Sections 4, 6 and
7. Some discussion of the physical behaviour which spinning tubes and cylinders
might be expected to display appears at the ends of Sections 4 and 7.

2. Formal solutions
(a) Basic analysis

We consider a circular cylindrical tube having internal radius A, external radius
B and length L in its undeformed state and corresponding dimensions a, b and /
when deformed. The tube is composed of an incompressible isotropic hyperelastic
material of density p and the deformation is assumed to be given by

r = {\-\R*-A2)+a*}*, 0 = @+a>t, z = XZ. (2.1)

Here (R,®, Z) and (r,9,z) are respectively referential and spatial coordinates
relating to a common cylindrical polar system based upon the axis of symmetry of
the tube, A and a> are positive constants and / denotes the time. The isochoric
deformation (2.1) represents a rotation about the axis with constant angular speed
at combined with a radial inflation and an accompanying axial stretch of amount A.
At a representative material point the principal axes of stretch in the current
configuration of the tube coincide with the directions of r, 6 and z increasing and
the principal stretches are given by

at = A-»ir», ag = \-*v*, a, = \ (2.2)
where

Ar2 AT*
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Because of the isotropy of the material the coordinate directions in the spatial
system (r, 6, z) also define the principal axes of stress. The only non-zero physical
components of the stress tensor o relative to this system are therefore crm ogg and
o^. The constitutive equations characterizing the stress response of the material
may be written in terms of the principal stretches and stresses as

on = -p+aT-^-, aeg=-p + aeWg, am = -p+at—, (2.4)

where the strain-energy function W per unit volume in the undeformed configura-
tion is a symmetric function, assumed known, of the principal stretches, and the
pressure p, associated with the incompressibility constraint, is not determined a
priori by the deformation. In view of the relations (2.2) the strain energy can be
expressed as a function of A and v:

W(\, v) a WQr* fl-*, A"* v*, A). (2.5)

On forming the partial derivatives of W and using the constitutive equations (2.4)
we then find that

agg-an-2v-r- and 2azz-an-agg = 2 A-^. (2.6)

In the absence of external body forces it is a consequence of the equations of
motion that the stress components are functions of r only satisfying

IT • •* / \ 9 / / % *7\

• '•- -\ 1(7-- —- (Tffft) ^= -~ DO) rm I /,, 11

The pointwise vanishing of the traction on the outer cylindrical boundary of the
tube and the zero value of the resultant force on the end-faces provide the conditions

Cb

Ja

Equation (2.7) can be integrated subject to the first boundary condition to yield

r2). (2.9)

In particular, the radial stress at the inner wall of the tube is given by

°rr(a) = ~ I (aee ~ arr) 1" \pu>H{P — 02). (2.10)

The equation of motion (2.7) can also be written as

r(pn+oeg) = -£(r2c
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On integrating, with the use of (2.8) and (2.10), we obtain

\\^+oee)rdr = a* f ' ^ - a j ^ + l p ^ . ^
Ja Ja ' *

whereupon the end-face condition (2.8) can be expressed in the more convenient
form

j\2um-an-oM)rdr + (rj\oM-oJj+±pce>(P-tPf = 0. (2.11)

We conclude this basic analysis by entering into equations (2.9), (2.10) and (2.11)
the formulae (2.6) for age — an and 2az!—on—oge, at the same time changing the
variable of integration from r to v by means of equation (2.3). The results obtained
are

= - -^ -^L+lp^X-iAXN*- l) + a2-r>}, (2.12)

, . „ , , do
aja) = - -5 r+hp<»* X-iAXN2-1), (2.13)

and

where
N = BjA{>\), y = Xa2/A\ x = (Nz-l+y)/N2. (2.15)

(b) Shrink-fitted tube
When the tube is mounted on a rigid circular cylindrical spindle the internal

radius a in the deformed configuration coincides with the radius of the spindle and
is thereby known. In this case equation (2.14) in principle determines the axial
stretch A and the deformation is then fully specified. The distribution of stress in
the tube is given by equations (2.12) and (2.6), the contact stress at the interface
between the tube and the spindle being obtained from equation (2.13). Under
shrink-fit conditions the inequality

afr(a)<0 (2.16)

is a necessary condition for the tube to remain in contact with the spindle.

(c) Freely rotating tube
When the tube is allowed to spin freely about its axis the inner as well as the

outer curved surface is traction-free and the internal radius a in the deformed
configuration is no longer prescribed. In this situation equations (2.14) and (2.13)
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(with on(a) = 0) serve in principle to fix a and A. The deformation is then com-
pletely known and equations (2.12) and (2.6) again specify the non-zero stress
components.

(d) Rotating cylinder
A formal solution for a circular cylinder, originally of radius B, revolving about

its axis with constant angular speed to can be derived from the results of subsection
(a) by letting A and a tend to zero. From equation (2.3) we see that in this limit the
variable v is identically equal to unity, whence dW/dv = 0 and dW\d\ depends on A
only. The integration in equation (2.14) can now be performed explicitly; after
dividing through by (iV2—1)A-1 and then setting A = 0 we reach the simple
formula

A ^ ( A , l ) + i p ^ j B 2 = 0 (2.17)

which determines A. The distribution of stress is supplied by equations (2.12) and
(2.6) in the form

on=oee = \9u>\\-i&-r\ o-80 = crfr+A^(A,l). (2.18)

Results equivalent to (2.17) and (2.18) were first obtained by Green and Shield
[6, §6].

3. Ogden materials
We now particularize the main results of Section 2 by adopting the Ogden

strain-energy function (1.1). The form of the function W(X,v) which then follows
from the definition (2.5) is

{ H ) - 3}, (3.1)

where, from this point onwards, summation over the range 1, ...,s of the subscript n
is not indicated explicitly. Recorded below, without detailed derivations, are the
formulae to be used later.

(a) Shrink-fitted tube
We introduce the inflation constant

(3.2)

and regard y = \q2 rather than A as the quantity determined by equation (2.14).
The result of substituting (3.1) into this equation and replacing A by q~2y can be
arranged as

- \f, (3.3)
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where

and

(y; a) = ?-»
+2(JV2-1) (rs-2y+«-?-2-(<«yH«) (3.4)

The contact stress, as given by equations (2.13) and (3.i), is

aja) = -i/^^y-i^JxCy; «„) + \pufiq*A\N*- l)y~\ (3.6)

(b) Freely rotating tube
In this case two equations for A and y are obtained from equations (2.13) and

(2.14) by putting aj[a) = 0 and inserting the expression (3.1). After a little manipula-
tion, aimed at eliminating the integral Jx from the equation derived from (2.14),
this pair of equations can be set out as

y) = /*« A1"*"" hiy; O = po? A\N* -1), (3.7)

l). (3.8)

When A and y are known the internal radius a of the deformed tube is given by
equation (3.2), the inflation constant q being (y/A)*.

(c) Rotating cylinder
Equation (2.17), in conjunction with (3.1), gives the following relation for the

axial stretch A:
M (A) = /*n(A

1+<*» - AH«») = - Jpo>2 B2. (3.9)

4. The rotating cylinder

(a) Existence and uniqueness of solutions
We turn now to a discussion of the solutions of equation (3.9). On account of the

constitutive inequalities (1.2) it follows from the definition of the function M that
M(A)§0 according as A§1. Thus, for w>0, any solution of (3.9) lies in the
interval 0 < A < 1, which means that rotation necessarily causes axial shortening of
the cylinder.

A necessary and sufficient condition for equation (3.9) to have a solution for all
w ^ 0 is that M(A) takes on all negative values as A varies between 0 and 1. This is
so if and only if M (A)-»— oo as A \ 0 which is in turn true if and only if the exponents
an have the property (1.7). Granted the inequalities (1.2), (1.7) is therefore a
necessary and sufficient condition for equation (3.9) to determine at least one value
of A for all w ^ 0.
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The number of solutions of (3.9) is at most one for all speeds of rotation if and
only if M is a monotone function for 0< A< 1. Since

M'(A) = /*„{(«„+1) A01-+ (£«»-1) A"*"-}, (4.1)

the requirements (1.6) are sufficient for Af to be monotone; as will appear in
subsection (c), however, they are not necessary conditions. In any range of values of
to for which a solution of (3.9) exists the monotonicity of M ensures not only the
uniqueness of the solution but also that A decreases as ai increases.

When the conditions (1.6) and (1.7) are both fulfilled we now see that equation
(3.9) yields a unique value of the unknown deformation constant A no matter what
the speed of rotation of the cylinder. This justifies the statement made in Section 1.

(b) Particular materials
The neo-Hookean solid specified by equations (1.4) meets the requirement

ax>2 imposed by (1.6) but fails to satisfy (1.7). From the preceding discussion we
deduce that a positive solution of equation (3.9) can exist for at most a limited range
of angular speeds and that when it exists the solution is unique. In fact (3.9) can be
solved explicitly in this case to give

A = ( l - - !V (4-2)

where />w§ B2 = 4/LA. AS the speed of rotation increases the axial stretch decreases
from unity when to = 0 to zero when to = w0, at which juncture the cylinder has
collapsed into a lamina of zero thickness and infinite radius. This plainly constitutes
physically unrealistic behaviour and we recall that a similar instance of a neo-
Hookean elastic material losing its resistance to deformation occurs in the
spherically symmetric motion resulting from the sudden application of pressure at
an internal boundary [9, §7; 3, §3].

When the cylinder is made of a Mooney material equations (1.5) apply, with

lH>0, fi2<0 (4.3)

(on account of the inequalities (1.2)) and the conditions (1.6) and (1.7) are both
satisfied. Equation (3.9) accordingly yields a unique value of A for all a> ̂  0. This
conclusion, first reached by Green and Zerna [7, p. 103], is illustrated in Fig. 1
where curve (b) depicts the variation of — yr1 M(X) with A for a Mooney material
with constants nt = |/x, /*2 = — |/x. With the use of the definition w0 equation
(3.9) becomes

(a,/co0)\ (4.4)

and inspection of curve (b) at once confirms the existence of precisely one solution
for all speeds of rotation. In contrast, curve (a), referring to a neo-Hookean
material, shows that no physically meaningful solution of (4.4) exists when to ̂  co0.
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In the three-term strain-energy function of the form (1.1) used by Ogden [10, §4]
to account for the observed stress response of vulcanized natural rubber the
material constants are

ax = 1.3, aj = —2.0,

= 0.012,
= 5.0, (4.5)

the /in's being in kg cm~2. The exponents in (4.5) comply with (1.7), but ax violates
(1.6). A solution of equation (3.9) (or (4.4)) therefore exists for all w^0, but its

Fig. 1. Rotating cylinder: behaviour of the function — ̂ i"1 Af(A) for (a) a neo-Hookean
material, (b) a Mooney material with — faint = -7, and (c) the Ogden material with constants

specified in equations (4.5).
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uniqueness is not assured. From the variation of —/Lt~1M(A) with A, displayed as
curve (c) in Fig. 1, we see that there is a closed interval of values of w/aj0 within
which equation (4.4) has either two or three solutions. The region of non-unique-
ness, shown shaded in Fig. 1, is given by

0.104 < A < 0.434, 0.977 < oi/w0 ̂  0.990. (4.6)

(A similar multiplicity of solutions occurs in the inflation of a spherical balloon
[1].) As co increases from zero the cylinder extends radially and shortens axially, the
increment of deformation corresponding to a given increase in CJ rising steadily.
This tendency, reflecting a progressive "softening" of the material, becomes
especially pronounced as a> approaches the critical valuef co0.

Previous studies of isothermal deformations of Ogden materials yield results for
the solid specified by equations (4.5) which agree qualitatively with their counter-
parts for a Mooney material [4,5,11,12]. Here, however, we have encountered a
situation in which the two materials respond differently to prescribed inertial
forces.

(c) Discussion
From the energy considerations described in Appendix 2 it may be concluded

that in the case of the Mooney material the solution of equation (3.9) is locally
stable and that the same is true for the neo-Hookean material when a> < <o0. For
the Ogden material defined by equations (4.5) there is one stable solution when «
lies outside the interval (4.6). When w falls within this interval the extreme values of
A are associated with stable solutions and the intermediate value of A gives an
unstable solution. The end-points of the interval (4.6) correspond to one stable and
one neutrally stable solution.

It should be emphasized that all the results obtained in this section rest on the
assumption that the deformation depends only on the radial coordinate r. Recent
work of Patterson and Hill [13] for a rotating neo-Hookean cylinder shows that an
alternative axisymmetric mode of deformation dependent on r and z is possible at a
value of w considerably less than io0, and it is conjectured that the physically
unrealistic response exhibited by the neo-Hookean cylinder at to = u>0 may be
avoided by preference for this alternative mode. In considering the physical
behaviour of a rotating cylinder composed of a rubber-like material the possibility
of asymmetric deformations must evidently be entertained. (A static case has been
studied by Alexander [2].) Thus while the present results are valid when the
cylinder deforms in a shape-preserving manner, there is no guarantee that this

t When p = 906.5 kg m-3, //. = 4.143 x 105 Nm"2 and B = 30 mm, we have a>0 = 1425 s"1

= 13 610 r.p.m. For the solid cylinder the principal stretches aT and ag are both equal to A~*.
When A = 0.104, a, = ag = 3.101.
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represents a close approximation to the conditions realized in practice over the
entire range of angular speeds considered in our numerical results. Experimental
evidence bearing on this question appears to be lacking.

By adjustment of the material constants in (4.5) it may be possible to remove the
non-uniqueness displayed in Fig. l(c). There then comes into question the extent to
which the close correlation of theory and experiment achieved by Ogden [10] is
preserved. To take a particular example, the function M(A) is made monotone by
reducing fj.t to 5.49 kgcm"2 and increasing ax to 1.49 without changing the other
four constants.f The 53 readings comprising Treloar's experimental data for
vulcanized natural rubber are still represented with fairly good accuracy, but the
modification which has been carried out must be regarded as ad hoc in as much as
no general uniqueness criterion, such as (1.6), has been satisfied. In the next section
we look into the possibility of recalculating the material constants in a more
systematic way.

5. Re-correlation of theory and experiment for vulcanized natural rubber

In the light of the additional conditions (1.6) the offending exponent in the
material constants (4.5) derived by Ogden [10, §4] is ax = 1.3. An objection to this
value can also be raised on more general grounds. Through the attribution of
Gaussian statistics to the molecular chains the kinetic theory of rubber elasticity
gives strong support to the neo-Hookean form (1.4) of the strain energy as the
correct representation of the stress response of a cross-linked rubbery polymer at
small strains [15, Ch. 4]. But the neo-Hookean function fails to account satis-
factorily for the observed force-extension behaviour of such materials outside the
small-strain regime, and the notion of a "non-Gaussian" contribution to the
strain energy, supplementing the neo-Hookean function and assuming increasing
importance at progressively larger strains, is consequently favoured. When the
material constants have the values (4.5) the strain-energy function (1.1) contains no
neo-Hookean term. However, the structure "neo-Hookean term + non-Gaussian
contribution" can be induced by requiring the first exponent ax to be equal to 2, a
step involving no conflict with the requirements (1.6). Guided by these considera-
tions and the arguments developed in Section 4(c) we now attempt to correlate
Treloar's experimental results [14] with theoretical calculations based upon a
three-term strain-energy function of the form (1.1) in which ax = 2 and the
conditions (1.2), (1.6) and (1.7) are all satisfied.

Treloar's data were obtained in three distinct experiments on samples cut from a
single sheet of a natural rubber vulcanizate. In each experiment a homogeneous
deformation was realized and the load/needed to effect the strain (and reckoned

•f This example substantiates our earlier statement that (1.6) are not necessary conditions for
equation (4.4) to have a unique solution.
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per unit undeformed area) was measured at a sequence of values of the appropriate
principal stretch a. The three deformations, simple tension, pure shear and
equibiaxial tension, are referred to here as experiments 1, 2 and 3 respectively.
The theoretical relations between / and a for the three experimental situations
derived from the strain-energy function (1.1) are

/=/*„/>(*;<*„), (5.1)
where

( a-i+otn-a-i-locn for experiment 1,

a-i+a»_a-i-an for experiment 2, (5.2)
a-i+aB_a-i-2a» for experiment 3,

see [10, §3]. The values of / calculated from (5.1) and (5.2) using the measured
stretches and the material constants specified in (4.5) provide the graphs in Fig. 2
(solid lines), the experimental points being shown by circles, squares and diamonds
for experiments 1, 2 and 3 respectively. (This convention is also used in Figs. 3 and
4.) In these figures/e denotes the experimental and/ t a theoretical value of/ the
units being in kg force per cm2, and error estimates for the theoretical fit of each set
of experimental points are noted in the figure captions.

Following the pattern of equations (4.5) we take o^ to be less than — 1 and og to be
large and positive. The exponents then comply with the requirements (1.6) and (1.7),
and the constitutive inequalities (1.2) hold provided that y^ and fi3 are positive and
fi2 negative.

At small strains (ax 1) the main contribution to the load /comes from the first
term \i^p(a\ 2) with /x2/?(a; oQ next in importance and [J^piq; ctg) of least import-
ance. We therefore make a preliminary calculation of /xj,/^ and a2 as follows. First
we specify 02 and evaluate ^ and fi2 by minimizing

S= S{/e-/*iXfl; 2)-W(ai "a)}2.
where the sum is over all the data for which 1 < a < 3.5. Then we find the value of og
which gives the smallest mimmum value of 5. The result of this procedure is the set
of values

/^ = 3.0 kg cm-2, ^ = -0.81kgcm-2; ax = 2, 02 =1.2. (5.3)
At large strains (a>5, say) the expression (5.1) for / i s dominated by the third

term ^pia; oQ which, for all three experiments, is nearly equal to iM3a~1+a: The
constants ^ and og can be estimated for each experiment by fitting a straight line to
the plot of \og{fe—y^pia; 2)-/x2/?(a;-1.2)} versus log a, utilizing all the data for
which a > 3.5. The plots furnished by experiments 1 and 2 are found to lie reasonably
close to the same straight line but the points supplied by experiment 3 fall near to a
different line. We therefore compromise by restricting the range of stretches to
a>4.3 and excluding data from experiment 3. The values ^ = 3.7 x 10""5 kgcm~2,
03 = 7.8 are then obtained. At this stage the large-strain results for experiments 1
and 2 turn out to be accurately reproduced, but the last three values of / for
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0 -
10

Fig. 2. Comparison with experiment of the response of the Ogden material specified by equations
(4.5). The values of 2 l /e~/ t I for experiments 1, 2, 3 are 41.99 (24 points), 3.95 (13 points),

5.79 (16 points).

experiment 3 are under-estimated. Marginal adjustments produce a slightly better
overall fit and the material constants finally chosen are

^ = 3.0, /x2 = -0.81, JU3 = 3.7

These constants, entered into equations (5.1) and (5.2), provide the comparison
with experiment shown in Fig. 3.
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60-

I

u

0 -

Fig. 3. Comparison with experiment of the response of the modified neo-Hookean material
specified by equations (5.4). The values of 2 l/e— ft | for experiments 1,2, 3 are 12.75 (24 points),

2.94 (13 points), 11.05 (16 points).

On repeating the above calculations with ax = 2 and 02 = — 2 ab initio we arrive
at a second set of material constants, viz.

^ = 3.24, ^ = - 0 . 1 , ^ = 6.2x10-0 (kg cm"2),
0=1 = 2, ota = - 2 , «3 = 8.7.

The resulting comparison with experiment is presented in Fig. 4.

(5.5)
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60-

70

Fig. 4. Comparison with experiment of the response of the modified Mooney material specified
by equations (5.5). The values of 2 l/e— /t I for experiments 1, 2, 3 are 14.71 (24 points),

3.89 (13 points), 8.63 (16 points).

It should be mentioned that setting ĉ  = 2 at the outset precludes a close
representation of the experimental data for all three experiments at stretches up to
about a = 2. On comparing Figs. 2 and 3 we see that for experiments 1 and 2 the
theoretical representations of the experimental data computed from Ogden's
constants (4.5) and the recalculated values (5.4) are of comparable accuracy,
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Ogden's results being superior at small strains, but inferior at large strains. In the
case of experiment 3, Ogden's correlation of theory and experiment is palpably the
closer of the two. It appears, therefore, that the experimental data are best described,
on the basis of the strain-energy function (1.1), by taking the smallest positive
exponent to be less than 2, a conclusion supported by an analysis of a fresh series of
experiments by Jones and Treloar [8, §3]. On the other hand, the closeness of fit
produced by the constants (5.4) is not unsatisfactory, and the concept of non-neo-
Hookean behaviour at small strains is not, as yet, firmly founded on the kinetic
theory of rubber elasticity. Reference to Fig. 4 shows that the account of Treloar's
experimental results provided by the second set of recalculated material constants
(5.5) is mostly inferior to that given by (5.4). However, it is worthy of note that a fit
which is qualitatively correct over the entire range of strains and quantitatively
accurate at large strains can be achieved when only one exponent (pQ is disposable.
It is also significant that the addition to the Mooney strain-energy function of a
third term which is negligible at small strains nevertheless provides, for all three
experiments, the upturn of the force-extension curve at large strains which the
Mooney function fails to predict.

We now return to the remaining problems formulated in Section 3.

6. The shrink-fitted tube
(a) Existence and uniqueness of solutions

The axial stretch A experienced by the shrink-fitted tube is determined, through
the constant y, by equation (3.3), with (3.4) and (3.5). We now prove that the
constitutive inequalities (1.2) together with the additional requirements (1.6)
guarantee the existence of a unique stable solution for all values of the speed of
rotation a> for which the contact stress an(a) is compressive.

First, we examine the formula (3.6) for an{a). It is a consequence of the defini-
tions (3.5)! and (2.15) that I^y; a) has the same sign as a when y > l and the
opposite sign when 0<y< 1. In view of the inequalities (1.2) it follows that the first
term on the right side of (3.6) is negative when y> 1, zero when y = 1 and positive
when 0<y< 1. Since the second term on the right of (3.6) is zero when w = 0 and
positive when to > 0, we conclude that any solution of equation (3.3) must exceed
unity if the contact condition (2.16) is to be satisfied when the tube is stationaryf or
turning sufficiently slowly.

Next we introduce a bounding value d> of the angular speed, defined by
2 q\N2 - 1 ) = 4nn(q<*» - q-***). (6.1)

t The fact that the search for solutions can be confined to the interval y > 1 was overlooked by
Chad wick and Haddon [5] when treating the static case of the present problem. Consequently
the additional requirements (Al) in their paper are redundant, as are the first members of the
two pairs of expressions given on p. 275.
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Equations (3.3) to (3.5), with (2.15), then show that if 0<o)<d>,

J(l) = - Iptf A\N* -\f<- Jpco2 A\N* - If. (6.2)

The asymptotic results

/ 2(N*- l)g-2-2°y+ a when «>0

Xyl <*)'
4

(JV2+a - l)q-2+« /-<* when a < 0, a ^ - 2 (6.3)
2 + a

-^logffyq^y3 when a = —2

as y->co

are easily derived from equations (3.4) and (3.5). In conjunction with (3.3) and the
inequalities (1.2) they tell us that J(y)->co as y->co. These facts imply that when
0 < (o< <2> there is at least one solution of equation (3.3) exceeding unity. A sufficient
condition for the solution to be unique is J'(y) > 0 for all y > 1. A detailed investiga-
tion similar to that described in [5, App. 1] shows that for y>\

>0
<o *«<-!, (64)

and it follows from (3.3) that, subject to the restrictions (1.2) and (1.6), J'(y) > 0 for
y> 1. According to the energy criterion stated in Appendix 2 the unique solution
guaranteed by this inequality is locally stable.

When (o = <b we see from (6.1) that the unique solution of equation (3.3) is y = 1.
Reference to equations (3.6) and (3.5)! reveals that an{d) is then positive. When
£o = 0 equation (3.3) delivers a unique value of y greater than unity and, as noted
above, «•„.(«) is then negative. Since a^a) is a continuous function of a> we deduce
that there is a value 55 in the interval 0 < co< d> at which an{a) = 0 and such that
an(a)<0 for all 0<a><a>: 55 is the speed of rotation at which the tube loses
contact with the spindle and we refer to it henceforth as the spin-off speed.

In the course of the foregoing analysis we have shown that the unique solution
of equation (3.3) which exists when 0 ̂  o>< a> is greater than unity. This means that
A><JT2, but since q> 1 the question of whether or not the tube is shortened by
rotation remains unanswered. Equations (3.4), (3.5) and (2.15)3 give

fa1

= -
Juv- v-l

(6.5)

! dv. (6.6)

The right side of (6.5) is negative when a<0 and the right side of (6.6) is positive
when 0 < a. < 2. Thus J(q2) > 0 if

an < 2 for each n.
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In view of (6.2) these conditions, conjoined with (1.2) and (1.6), suffice for the
unique solution of equation (3.3) to lie between q~2 and 1, and hence for the tube
to shorten. The extended requirements are satisfied by the neo-Hookean and
Mooney materials, but not by the Ogden materials specified in equations (4.5),
(5.4) and (5.5). However, the numerical results described below show that in fact
tubes made of these materials undergo axial contraction for all angular speeds
below the spin-off value.f

(b) Numerical results
Calculations have been performed for each of the Ogden materials defined by

equations (4.5), (5.4) and (5.5) and for three sizes of tube, given by N = 1.4, 1.8
and 2.2. For each N numerical results have been obtained for six values of the
inflation constant q, namely 1.2 (0.2) 2.2. When the radius a of the spindle and the
density p of the material composing the tube are prescribed, <& can be evaluated
from equation (6.1). The bounding speeds corresponding to the chosen (N,q) pairs
are given in Table 1, the adopted values of a and p being 20 mm and 906.5 kgm"3

respectively.
The main computational task is, given ca/(J>, to solve equation (3.3) iteratively for

y and then to determine the contact stress from equation (3.6). This programme
has been carried out for values of eo/d> increasing from zero} in steps of 0.05,
and inverse interpolation in the resulting tabulation of an{d) versus v>j& yields
the spin-off speed as a fraction of d>.

The values of a>l&> and the axial stretch at spin-off corresponding to the three
materials and the assumed (N,q) values are set out in Table 1. These results display
anticipated trends: for each material and each N the spin-off speed and the amount
of shortening ultimately suffered by the tube both increase with the inflation
constant q, while at each q these quantities both decrease as the thickness constant
N increases. As we might expect from the discussion given in Section 5, there is
little variation of response among the three materials. Figure 5 shows the variation
with a>l&> of the scaled contact stress for the two Ogden materials specified by
equations (4.5) and (5.4) and for selected values of Wand q. In each case the contact
stress increases monotonically through negative values as the angular speed
increases, and again the results for the different materials are closely similar.
The general form of the stress distribution in the cylinder is the same for all
speeds of rotation in the range 0<w<ai. The detailed study of the static case
<M = 0 made in [5, §2(c)] accordingly obviates the need for further comment here.

t See Table 1 below.

\ In the case of the stationary tube (a> = 0) our calculations reproduce exactly the analogous
results reported in [5, §2(c)].
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TABLE 1
Shrink-fitted tube: values of the bounding angular velocity u> (s-1), the scaled spin-off speed
a>/<fi and the axial stretch A at spin-off for Ogden materials with constants specified in (a)

equations (4.5), (b) equations (5.4), (c) equations (5.5).

q

1.2 (a)

(b)

(c)

1.4 (a)
(b)
(c)

1.6 (a)

(b)

(c)

1.8 (a)
(b)
(c)

2.0 (a)
(b)
(c)

2.2 (a)
(b)
(c)

a>

2620
2385
2293

4077
3773
3591

5502
5206
4927

6996
6774
6397

8606
8509
8038

10362
10424
9872

N= 1.4

dJ/cD

0.287
0.290
0.296

0.311
0.311
0.323

0.328
0.324
0.340

0.340
0.332
0.351

0.347
0.337
0.357

0.352
0.340
0.360

A

0.928
0.928
0.928

0.870
0.870
0.869

0.821
0.821
0.820

0.780
0.779
0.778

0.744
0.743
0.741

0.712
0.711
0.709

<S

1715
1562
1501

2669
2470
2351

3602
3408
3226

4580
4435
4188

5634
5570
5262

6784
6824
6463

N= 1.8

0.354
0.356
0.363

0.389
0.389
0.403

0.416
0.410
0.429

0.436
0.424
0.446

0.450
0.433
0.457

0.459
0.439
0.464

A

0.936
0.936
0.936

0.884
0.883
0.882

0.839
0.838
0.837

0.801
0.799
0.797

0.768
0.765
0.762

0.738
0.734
0.730

a>

1310
1193
1147

2039
1887
1796

2751
2603
2464

3498
3387
3199

4303
4254
4019

5181
5212
4936

AT =2.2

dj/a)

0.386
0.389
0.397

0.430
0.428
0.444

0.464
0.456
0.477

0.490
0.475
0.499

0.509
0.487
0.514

0.522
0.496
0.523

A

0.940
0.940
0.940

0.892
0.891
0.890

0.851
0.849
0.847

0.815
0.812
0.809

0.784
0.779
0.775

0.756
0.750
0.744

7. The freely rotating tube
In our earlier investigations of the rotating cylinder and the shrink-fitted tube

we have obtained conditions on the material constants fin and an in the Ogden
strain-energy function (1.1) which guarantee the existence of a unique solution for
all relevant angular speeds. The problem of the freely rotating tube presents greater
mathematical difficulties because there are now two coupled equations, (3.7) and
(3.8), determining the unknown deformation constants A and y.j In subsection (a)
we establish sufficient conditions for the existence of at least one solution at all
speeds of rotation. The additional restrictions on the exponents an which we lay
down are, however, more severe than their predecessors (1.6) and (1.7), so much so
that they exclude the Mooney as well as the neo-Hookean material. The behaviour
of freely rotating tubes composed of these materials is investigated in subsections
(c) to (e) and instances of both the non-existence and the non-uniqueness of
solutions are encountered.

t The problem of the eversion of a tube, discussed in [5], also has this feature.
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Fig. 5. Shrink-fitted tube: variation of cr^a)//* with <O/UJ for Ogden materials with constants
specified in equations (4.5) (solid curves) and equations (5.4) (dashed curves). For N = 1.4,

q = 1.2 the results for the two materials are indistinguishable on the vertical scale shown.

(a) Existence of solutions for a restricted class of Ogden materials
The Ogden materials to be considered here satisfy the constitutive inequalities

(1.2) together with the following additional conditions:

N=2-2,q=20

| a n | ^ 2 for each n;

an<0 for some n;

the exponent an of greatest magnitude exceeds 2.

(7.1)

(7.2)

(7.3)

Subject to these requirements we prove that, for all angular speeds, there are
positive values of A and y satisfying equations (3.7) and (3.8). Certain properties of
the auxiliary functions K and L and the integrals 7X and J2 which are needed in the
proof are listed in parts (a) and (b) of Appendix 1. The derivations of these results
from the definitions (3.7), (3.8) and (3.5) are, for the most part, straightforward and
details are omitted.
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Each of equations (3.7) and (3.8) specifies a family of curves in the (A,y)-plane
parametrized by a>. We regard equation (3.7) as determining y as a function of A,
and (3.8) is taken to define A as a function of y. The two families of solution curves,
which we denote in turn by {BJ and {CJ, thus have the representations y = F(A; a>)
and A = My; cS) where

K{\, F(A; co)) = pu?A\N*-1), L(A(y; w),y) = - i p r fA^W-1) . (7.4)

Since equations (3.7) and (3.8) can only be satisfied by values of A and y which
make K(X, y) non-negative and L(A, y) non-positive, the statement (Al) allows us to
confine attention henceforth to the quarter-plane Q = {(A,y): A>0; y>l}.

The results (Al) to (A3) show that, for any fixed positive A, K(X, y) is a monotone
increasing function of y which is zero at y = 1 and unbounded as y->oo. For any
a> > 0 equation (3.7) therefore assigns to the chosen A exactly one value of y in the
interval [1, oo]: in other words, the function F is well defined for all A > 0 and cu > 0.
We deduce from equations (3.7), (A8)x and (7.4) that F(A,0) = 1, and from (7.4)L

and (A3) that (cT/da>)(A; to)>0.
In geometrical terms we have proved that the curve Ba meets every line

A = constant in the quadrant Q in a single point, the associated value of y increasing
with o) from unity at co = 0. The conformation of the family {BJ will be established
once the behaviour of F(A; w) in the limits A JO and A-»oo is known, and to this
end we invoke the bounds (A9). Let a and & be respectively the largest and the
smallest of the exponents an, and let p, and p, be the corresponding [in's. The
conditions (1.2), (7.1) and (7.3) require that

a>2, a<-2; fi>0, fi<0, (7.5)

and a further consequence of (1.2) is that fin A
1"*"*/^; an)>0 for each n. Hence,

by appeal to (3.7) and (A9), ^(A, y) exceeds both

x^a) and (

On equating each of these expressions to the right-hand member of (3.7), using the
definition (2.15) and solving for y, we obtain the equations

(7.6)
U pmiv- ; j

and

(7.7)

Let I?* and B% denote the curves in the (A, y)-plane given by (7.6) and (7.7)
respectively.! By the manner in which they have been introduced, both curves lie

t For a fixed positive to, Bl, and B% are not defined for all \>0. However, B* is defined for
sufficiently small and B% for sufficiently large values of A, and this suffices for the validity of our
argument.
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above Ba in Q. This is most easily understood by considering a three-dimensional
representation of the functions K{\,y) and fl(logN2) A1-*s(l-x~a) plotted on the
same vertical axis against y and A on horizontal axes. Consideration of the inter-
section of the surfaces so formed with planes parallel to the (A, y)-plane makes
evident the relative placements of Ba and 2?*. A similar procedure justifies the
stated relationship between Ba and B%. It is plain from (7.6) and (7.5)x that B\ passes
through the point A = 0, y = 1, and from (7.7) and (7.5) that B\ approaches the
A-axis (y = 1) asymptotically as A^-oo. These properties also apply to Ba and the
family of solution curves of equation (3.7) accordingly has the form sketched in
Fig. 6(a). A closer analysis of equation (3.7) in the limit A10 reveals that, for all
to>0, the gradient (ar/dA)(0; to) of Ba at its left extremity is infinite if 2<a<4 ,
finite and positive if a = 4, and zero if a>4.

Passing on to the equation (3.8), we first note, with regard to (A4) and (A5), that,
for any fixed value of y not less than unity, L(A, y) is a monotone increasing
function of A, tending to negative infinity as A10 and to infinity as A-»-oo. For any
w > 0, equation (3.8) therefore assigns to the chosen y precisely one positive value of
A, rendering the function A(y; w) well defined for all y> 1 and to^O. It follows
from equation (7.4)2 and (A5) that (BA/8co) (y; to) < 0. Thus the curve Ca cuts every
line y = constant in the region Q in a single point, the value of A at the intersection
decreasing as co increases.

It remains to determine the behaviour of Cw at y = 1 and as y-*oo. Equations
(3.8), (A8) and (7.4) give A(l; 0) = 1. Hence 0< A(l; <o)< 1 for all to>0, and on
differentiating (7.4)2 with respect to y, evaluating at y = 1 and making use of (A5)
and (A6), we find that {(8A/dy)(l; a*)}-1, the gradient of Ca at its lower end, is
infinite when co = 0 and negative when to > 0. To determine the asymptotic form of
Ca as y->oo we call on the result (A7). Arguing by contradiction we can infer from
this equation and (7.4) that, for all to>0, A(y; to) does not approach zero or a
finite limit as y->oo. A and y must therefore tend to infinity together on Ca and
inspection of (A7) shows that the dominant terms in L(A, y) in this limit are one or
more of Tx = {l(N2-1) A^y"1 , T2 = -p.£>\^«y-m«, T3 = ( - / I ) D X ^ ^ y - 1 ^ ,
where t> = D{&) and D = £>(-<*). Since 7i and T3 are positive and T2 is negative,
equation (3.8) can hold true only if

(i) Ti+Tjj = 0 and TJT2^0 as A,y-*oo, or

(ii) T2+Ta = 0 and TJT2-+0 as A,y->-oo, or

(iii)ri+T2+T3 = 0.

Each of these requirements gives rise to a relation of the form

y = kXm, (7.8)
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i • — • '

(b)

Fig. 6. Freely rotating tube: sketch of the solution curves of (a) equation (3.7) and (b) equation
(3.8) for the restricted class of Ogden materials satisfying the conditions (1.2) and (7.1) to (7.3).
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describing a curve asymptotic to Ca. Possibilities (i), (ii) and (iii) apply according
as &+2a is positive, negative or zero, and the corresponding values of the constants
k and m in (7.8) are given by

r {(#2 _ l)/£>f/& when a+25 > 0,
k = ( - fiD/fLD?'1*^ when a + 2S < 0,

[ &2p.£))-\( -fi)D+(fi?D2+4p? D(N* -1))*}]-2'* when <£+2a = 0,

and

(3
m~\ (a--a)/(a + a)(>3) when a + 2a<0.

We are now able to sketch, in Fig. 6(b), the salient features of the solution curves
of equation (3.8), and we observe, on viewing Figs. 6(a) and 6(b) together, that, for
all toX), the curves Ba and Cu intersect in Q.\ When co = 0 the unique point of
intersection is A = 1, y = 1, representing the undeformed configuration of the tube,
and continuity considerations ensure that for small enough speeds of rotation there
exists just one solution of equations (3.7) and (3.8). The general question of
uniqueness has not been settled, however, and neither have we proved that the tube
is invariably shortened by rotation. The fact that F(A; o>) and A(y; a>) are not
monotone functions of their first arguments effectively rules out a frontal attack on
these problems.

(b) Numerical results
Of the particular Ogden materials considered in the earlier sections only one, the

modified Mooney material specified by equations (5.5), meets the requirements
(7.1) to (7.3). Numerical solutions of equations (3.7) and (3.8) have been obtained
for this material in respect of a tube with thickness constant N= 1.4. Solution
curves for the values 2.2, 2.6 and 3.0 of the parameter pw2A2% are displayed in Fig.
7, where the broken curve marks the Ca asymptote y = 1.5736A3. Values of A, y and
q determined by unique intersections of Ba and Cm for pa>2A2 = 1.0 (0.2) 3.0 are
set out in Table 2.

As pw2A2 increases the curves Ba and Ca tend to coincidence over an increasing
interval of y as is indicated in Fig. 7. Nevertheless, calculations up to pu>2A2 = 30
reveal, for each of the chosen values of this parameter, a unique point of inter-
section which can be located if a sufficient number of significant figures is retained
in the numerical work. This number increases from two when pu>2A2 = 2 to five
when pco2 A2 = 30. However, the material constants in equations (5.5) are given to at

t Alternatively we could conclude the existence proof in formal terms by means of the
fixed-point principle used in [5, §3(b)].

t These values are in kg cm"8. When p = 906.5 kg m~3 and A = 20 mm, pcu2 A2 = 1
corresponds to w = 520.1 s"1 = 4966 r.p.m.
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Fig. 7. Freely rotating tube: solution curves of equations (3.7) and (3.8) for the modified
Mooney material with constants given by equations (5.5) and thickness constant N = 1.4.

The parameter in brackets is pu? /4a.

TABLE 2
Freely rotating tube: variation of the deformation parameters A, y and q with the parameter
pai* A2 for the modified Mooney material with constants specified in equations (5.5) and N = 1.4.

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

A

0.9079
0.8826
0.8531
0.8174
0.7717
0.7063
0.5818
0.4543
0.4199
0.4003
0.3870

y

1.451
1.611
1.823
2.122
2.590
3.481
6.408

13.02
15.64
17.15
18.25

q

1.264
1.351
1.462
1.611
1.832
2.220
3.319
5.353
6.103
6.546
6.867
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most three significant figures, so the results for po^A2 greater than about 2.8 are of
questionable validity. The last row of Table 2 shows that by then the tube is in a
highly strained state, f With reference to the energy arguments developed in
Appendix 2, the Hessian A (defined by equation (BIO)) is found to decrease through
positive values as co increases. It follows that the material defined by equations (5.5)
yields a locally stable solution tending towards neutral stability as the tube is
rotated more rapidly.

Since the exponents in equations (1.4), (1.5), (4.5) and (5.4) do not comply with
the conditions (7.1) to (7.3) it appears that materials providing more or less accept-
able models of rubber-like elasticity may fail to yield a solution, or produce
multiple solutions, to the present problem. We now look further into these
possibilities by eliciting the nature of the solutions of equations (3.7) and (3.8)
for Mooney and neo-Hookean materials.

(c) Mooney materials
In the case of a Mooney material, specified by equations (1.5), explicit evaluation

of the integrals Ix and I2 in equations (3.7) and (3.8) becomes possible. For our
present purposes it is convenient to replace (3.8) by the relation

obtained by eliminating co. The two equations governing the deformation constants
A and y can then be expressed by

) = <>, (7.9)
where

( I I 4 (7.10)

(7.11)
y X W 2 - l X/

and K and to1 are defined by$

K = -te/n1, ptolAXNt-V^^lnN*. (7.12)

We note that x is given by equation (2.15) and that K>0 by virtue of the in-
equalities (4.3). Properties of the functions <f> and I/J to which appeal is made in the
subsequent analysis are assembled in part (c) of Appendix 1.

t For the hollow tube the maximum value of the circumferential principal stretch ae occurs
at the inner surface r = a and is equal to q.

% When p = 906.5 kg m"3, /^ = 3.625 x 105 N m"2, A = 20 mm and N = 1.4, we have
tot = 837.1 s-1 = 7994 r.p.m.
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Equation (7.9) defines a family of curves {BJ in the (A,y)-plane and (7.9)
represents a single curve C. Modifying slightly the notation used in subsection (a),
we take Ba to be given by y = F(A; a>) and C by A = A(y). Then

t£(F(A; co)) = (1 + KA*)-1(CO/CO])
2, ^(A(y),y) = 0. (7.13)

We are justified by the statement (AlO) in restricting the search for the intersection
of Ba with C to the quadrant Q of the (A, y)-plane.

We start by drawing from equations (7.9) and (7.10) the main features of the
curves {Ba}. The results (AlO) to (A 12) show that <f>(y) is a monotone function,
increasing from zero at y = 1 towards unity as y->oo. It follows from equation
(7.13X that (dr/d\)(\; co)<0 and (dr/dco)(\; co)^0, the zero values holding
together at to = 0. Since the left side of (7.9)x lies between 0 and 1, the ranges of
values of A and co for which F(A; co) is well defined are restricted. We consider in
turn the cases 0 < co< cox, co = a>t and co > cov

When 0^co<co1 the right side of equation (7.9) is less than unity for all A^0,
wherefore F(A, y) is well defined throughout this interval. For the stationary tube,
F(A; 0) = 1, and for 0<u><to1, F(A; CO) decreases monotonically from a finite
value at A = 0 towards zero as A^-oo. Curve (i) in Fig. 8 portrays a typical member
of {BJ in this case. As co increases from zero, F(0; co) increases from unity and
tends to infinity as co-*-^, the right side of (7.9) being equal to unity when A = 1
and to = (!>!. The solution curve Ba in the case co = cox therefore resembles a branch
of a rectangular hyperbola and appears in Fig. 8 as curve (ii). When to > cox the
right side of (7.9)x is less than, equal to, or greater than unity according as A % Ax

where

In this case F(A; oS) is well defined in the reduced interval (A^oo), approaching
infinity as Aj X1 and zero as A->oo. Again the solution curves are quasi-hyperbolic
and two representatives of {BJ are labelled (iii) in Fig. 8.

The properties (A13) to (A15) of ^r(A,y) tell us that, for all y ^ l , the quartic
equation (7.9)2 has exactly one positive real root, situated between 0 and 1. Thus
not only is A(y) well defined for all y > l , but C lies entirely in the half-strip
{(A, y ) :0<A<l ,y> l} , implying that a freely spinning tube composed of a Mooney
material is necessarily shortened by rotation. Equations (7.13) and (7.11) give
A(l) = 1, and from (7.13) and (A16) we deduce that A'(y)<0 for all y> 1. The
asymptotic form of A as y^-oo is found from equations (7.13) and (7.11) to be

MY) ~ i(N* - J)/ln #2}* y-t.

The features of the curve C revealed by these findings are illustrated in Fig. 8.
It is now apparent with reference to Fig. 8, that Bo intersects C whenever

0 ̂  to < wv As in subsection (a) the governing equations have the unique solution
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X, =0-532

Fig. 8. Freely rotating tube: solution curves of equations (7.9) for a Mooney material with
= •?. The vertical broken lines indicate asymptotes of the curves (iii).

A = 1, y — 1 when <D = 0 and the uniqueness property can be extended to a finite
range of values of at on grounds of continuity. Ba and C do not meet if \ > 1 and
no physically meaningful solution of equations (7.9) then exists. The associated
range of angular speeds is given by

i where ^ • (1+ «)*»i ~ C7.15)
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The intermediate range CO1^W<CJ'1 marks the transition from a situation in which
there is at least one solution to one in which no solution exists. Since our analysis is
inconclusive in this regime we seek further insight in a numerical study of a
particular case.

(d) Numerical results and discussion
Equations (7.9) have been solved numerically for a tube with thickness constant

Ar — 1.4 composed of a mooaey material for which K = f. The curve C and the
solution curves of equation (7.9)! for which co/^ = 0.9, 1, 1.0097 and 1.02 are
shown in Fig. 8.

There is evidently a unique solution for all angular speeds up to a^ and values of
the deformation constants at speeds within this range are given in Table 3. As ca

TABLE 3
Freely rotating tube: variation of the deformation parameters A, y and q with the scaled

angular speed for a Mooney material with —/^//ti = \ and N = 1.4.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A

0.9985
0.9939
0.9859
0.9741
0.9579
0.9358
0.9056
0.8623
0.7923
0.5956

y

1.006
1.025
1.058
1.109
1.184
1.295
1.466
1.757
2.376
6.101

q

1.004
[.015
1.036
1.067
1.112
1.176
1.272
[.428
1.732
5.201

increases from zero the deformation of the tube, consisting of radial inflation
accompanied by axial contraction, is at first gradual, but progressive "softening"
occurs, as in the steady rotation of a cyhnder made of the Ogden material specified
in equations (4.5) (Section 4(b)). This tendency reaches an advanced stage at
speeds in excess of about 0.7a)1; and as the critical value wx is approached the tube
offers no appreciable resistance to further deformation. At u> = a^ the deformation
is severe, the internal radius being increased more than three-fold and the length
reduced to 60% of its initial value.

The member of {BJ for which w = ^ intersects C at the point A = 0.5956,
y = 6.101, and both curves are asymptotic to the y-axis as y->oo. Thus there are
two solutions when to = cox, one corresponding to a deformed configuration in
which the radii of the tube tend to infinity and the length to zero. As a> increases
further this bifurcation phenomenon persists, the two points at which Ba cuts C
approaching one another until, when u> = w2, they coalesce and Ba touches C. In

https://doi.org/10.1017/S0334270000001454 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000001454


[30] Deformation of cylinders and tubes 91

the present case, CDJ^ = 1.0097 and the point of contact is given by A = 0.4518,
y = 14.42 (with q = 5.649). When to > w2 the curves Ba and C are disjoint and no
solution exists.f As shown in Appendix 2 the energy criterion implies that the
solution is locally stable when O^axa^. In the range ^ ^ o x w j for which
bifurcation occurs the solution with the larger value of A is locally stable while the
other solution is neutrally stable. With the values for p, /xj and A given in the
footnote relating to equation (7.12), w2 = 8072 r.p.m. The corresponding value of
pu>\A2 is 2.6408 kgcm~2 which invites comparison with the value 2.8 kgcm~2 of
puPA2 noted in subsection (b) in connection with the approach to neutral stability
of a freely spinning tube composed of the modified Mooney material defined by
equations (5.5).

The critical speed of rotation a^ thus marks the onset of a curious type of
bifurcation which terminates, after an additional rise of less than 1% in the angular
speed, in the entire disappearance of the solution. This behaviour, which seems to
have no parallel in previous studies of Mooney materials at finite strain, shows that
the propensity of the Mooney strain-energy function towards physically realistic
response may not be without limitations. It is possible, however, as in the case of
the solid cylinder, that bifurcation into an asymmetric state of deformation may
occur before the critical angular velocity is reached. Following this line of con-
jecture we observe from (7.12)2 that a^ decreases as N increases at fixed internal
radius A, indicating that the critical speed is a decreasing function of the thickness.
Since thick tubes are generally more stable than thinner ones this suggests that the
interpretation of a^ as marking the onset of instability must be viewed with some
caution.

(e) Neo-Hookean materials
In conclusion we note the effect on the solution obtained in subsection (c) of

setting fa = (i, /n2 = 0 (and hence K — 0). Equations (7.9) now assume the decoupled
form

y and A being determined successively by (7.16)x and (7.16)2. The first equation has a
unique solution if and only if 0 < to < u>x, y increasing monotonically from unity at
o) = 0 towards infinity as U)-*-OJV Equation (7.16) gives dX/dy<0, whence A
decreases monotonically from unity as w increases from zero. It follows that

t Equation (7.15) supplies the upper bound w[ = 1.0690a*! for a)2.
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as o>->£»>!, demonstrating that A becomes zero when w reaches a critical value
co3<a)v For a tube with thickness constant N = 1.4, otj^ = 0.9998.

In summary, equations (7.16) have exactly one solution for all angular speeds up
to u)a and no meaningful solution when tu ̂  o>3. As indicated in Appendix 2 the
unique solution for w < w3 is stable. The bifurcation effect encountered in subsection
(d) is absent in the neo-Hookean case.
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Appendix 1

Properties of auxiliary functions

(a) The functions K and L
For all A >0 ,

K(Ky) § 0 according as y J 1 , (Al)

•K(A,y)->°o as y->oo, (A2)

v . , / y , „ for a l ly 5=1. (A3)
tiy

The restrictions on the material constants //.„ and an used in proving these results
are, in turn, (1.2); (1.2) and (7.3); and (1.2) and (7.1).

For all y ^ 1,

£(A,y)->-—oo as A JO, Z,(A,y)->oo as A->co, (A4)

for all A >0, (A5)

> 0 whenO<A<l ,
= 0 when A = 1 . ( A t > )

For each of (A4) to (A6) the basic inequalities (1.2) are needed and the additional
requirements (7.1) to (7.3) are also used in proving (A4) and (A5).

For all A>0,

L(A, y) =

)}] (A7)
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as y-*oo, where

— when a ^ 2,

2 — OL

inN2 when a = 2.

(b) The integrals Ix and I2

M y + 1 ' (A8)

if|a|>2. (A9)

(c) The functions <f> and ifi

*Ky) S 0 according as y § 1, (A10)

asy->oo, (All)

forally>0. (A12)

For all y>l ,

«A(0,7)<0, (A13)

0(l,y)>O. (A14)

For all A>0andy^l,

^ (A15)

(A16)

Appendix 2

Energy considerations

In this appendix we calculate the total potential energy V of the rotating tube or
cylinder and examine the extrema of V. The conditions for an extremum reproduce
the equations for the deformation constants derived in Section 3 while the possible
types of extrema determine the status of the deformation in regard to local stability.
Attention is again confined to shape-preserving deformations, depending only on
the radial coordinate r.

The deformation of a body rotating with constant angular velocity cu about a
fixed axis is the same as that of the identical stationary body acted on by a body
force r<o2 per unit mass directed radially outwards from the axis. The total potential
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energy of the body is hence the total strain energy less the work done by the body
force in passing from the undeformed to the deformed state. For a tube,

V=2nL [BWRdR—npu>4l[br*dr-L i*R3dR\, (Bl)

with the notation introduced in Section 2(a).
Substituting into (Bl) the expression (3.1) for the Ogden strain-energy function

and recalling the definitions (2.3), (2.15) and (3.2) we find that

(N*/TTLB*) V= ( M > n ){(^_i ) (A« n + 2A-* a »-3) + ( y - l ) A-i"»J2(y; aB)}

- lPa>* B\\-N -2) { X-\N2 -1) + 2tf2 - JV2 - 1 } , (B2)

12 being given by equation (3.5)2. For the cylinder and the shrink-fitted tube V is a
function of A only. In the case of the unconstrained tube, however, V is a function
of A and y, and q2 must then be replaced by y/A.

(a) The solid cylinder
Letting a and A tend to zero in (B2) we obtain

(1/7TL52) F(A) = (fln/aJ(A«»+2A-*«»-3)-ipa>2
JB

2(A-1-1), (B3)
whence

(I/TTLJB2) A2 F'(A) = M(X)+ipco2B\ (1/TTLB2) (A2 F'(A))' = M'(A), (B4)

the function M being defined in (3.9). Evidently a root of equation (3.9) is an
extremum of F(A) and a root represented by a point on the graph of — /*-1M(A)
(see Fig. 1) at which the gradient is negative (resp. positive) corresponds to a
configuration which is locally stable (resp. unstable). A maximum or minimum
point of M(A) is associated with neutral stability. An inspection of the curves in
Fig. 1 now leads directly to the conclusions stated in Section 4(c).

(b) The shrink-fitted tube
In this case equation (B2) yields

2 F'(A) = J(y) + \p«? A\N*-1)2, \

use being made of equations (3.3) to (3.5). We see from (B5) that a root of equation
(3.3) is a minimum value of F(A) if J'(y), evaluated at the root, is positive. The
deformation associated with the root is then locally stable and the assertion made in
Section 6(a) is justified.

(c) The freely rotating tube
The potential energy is now a function of A and y and the standard criteria for

maxima, minima and saddle points apply. Let

(B6)

https://doi.org/10.1017/S0334270000001454 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000001454


[34] Deformation of cylinders and tubes 95

Then it follows from (B2) with the use of equations (3.7) and (3.8) that

*-1),

a suffix notation being employed for partial derivatives. These results confirm that a
root of equations (3.7) and (3.8) is an extremum of the potential energy. The values
of the second derivatives of V at such a root are given by

XVyy = Ky.

Denoting by mB and mc the gradients dy/dX of the solution curves Ba and Cw of
equations (3.7) and (3.8) respectively, we readily obtain, with the aid of (B8), the
relations

mB — — A A / A . , — — ' A y / Y yy> mC — —'-'M'-'y — — ' AA; ' yX' \D")

Hence
A = Kx Vyy-(VXy? = {(mc/ms)-l} F| r , (BIO)

proving that A has the same sign as (mc/mB) — 1.
For the modified Mooney material specified by equations (5.5) it appears from

the numerical results illustrated in Fig. 7 that mc/mB > 1 at a solution of equations
(3.7) and (3.8). Thus A>0 and the inequalities (A5) and (A3) imply, via (B8), that
^AA > 0 . Vyy>0. The solution evidently minimizes the potential energy and is
locally stable. The tendency towards neutral stability, mentioned in Section 7(b),
arises from the steady diminution of mc/mB towards unity as co increases.

In the case of a Mooney material the calculations described above lead to the
explicit formulae

2/cA /y~2—y"^-1/! 1 . . y\

(Bll)

where (A, y) is a solution of equations (7.9). The numerical results presented in Fig.
8 show that when there is just one solution (that is, for 0 < co < ojj), mc\mB > 1.
Since PAA and Vyy are positive for all o> this solution is locally stable. When two
solutions exist (that is, for CJ^OXCD^), the one for which A is largest is similarly
stable. For the other solution mc/mB < 1 and a state of neutral stability is
indicated.

mc = ~ ( I - I + l n ^ P 1 \6(N2- 1)+2K\~4(N2- 1)(A~2+2A)
2K\X y x) L

https://doi.org/10.1017/S0334270000001454 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000001454


96 P. Chadwick, C. F. M. Creasy and V. G. Hart [35]

When the strain energy is neo-Hookean

j % = o.
Hence A>0 and when a solution exists it is locally stable.
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