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OF GENERAL ORDER 

G. F. D. DUFF 

The object of this paper is the extension to linear partial differential equations 
of order m in N independent variables, of the existence theorems for mixed 
initial and boundary value problems which have been established for systems 
of first order equations in (3). In such mixed problems an initial surface S 
and a boundary surface T are the carriers of the two types of data, and the 
number of datum functions to be assigned on T depends on the configuration 
of the characteristic surfaces relative to S and T. 

For the first part of the paper (§§ 1-5) the coefficients in the differential 
equation, the initial and boundary surfaces, and the data prescribed are all 
taken to be real analytic in the variables x1 . . . xN. In this "analytic" case 
an existence theorem is established for boundary conditions of considerable 
generality. We assume that the differential equation is regularly hyperbolic 
with respect to 5 and T, a notion which is stated precisely in § 1, and is 
weaker than the usual regular hyperbolic condition. Then the single equation 
of higher order is reduced to a system of equations of first order, of the type 
treated in (3), and the existence theorem there established is taken over to 
obtain the result, which is stated as Theorem 1 in § 5 below. For this purpose 
we require a certain algebraic lemma relating to the characteristic roots. 

The non-analytic problem for regularly hyperbolic equations is treated in 
§§ 6-10, by adaptation of the energy integral method. A general sufficient 
condition for the existence of a solution is given in § 6. As it appears that this 
condition is not always fulfilled, it is necessary to discuss particular cases. 
In § 8 and § 9 are treated two such special problems, each of which is a 
generalization of the known results for second order equations. The first of 
these concerns the problem wherein the number of boundary conditions is 
one less than the number of initial conditions. The second requires an assump­
tion of symmetry relative to the boundary surface, and the number of boundary 
conditions is half the number of initial conditions. 

1. The differential equation. We consider an analytic linear partial 
differential equation of order m in the N independent variables xl: 

m *h 

(1-1) Lu = S aWii...ik'TTl 7TA = °-
ft=o dx . . . dx 

The dependent variable is u = u{xi). The coefficients 
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of order h are assumed in this first part to be convergent real power series 
of the real variables x\ 

Let S : ̂ (x1) = 0 be an "initial" surface not characteristic for the linear 
operator L; and let T :\(/(xi) = 0 be a "boundary" surface likewise not 
characteristic. We assume that both S and T are analytic and that they have 
an (N — 2)-dimensional intersection C. 

The characteristic surfaces G : x(#0 = 0 °f the operator L satisfy the 
equation 

(1.2) q x ] = a ( . ) f t . . . ^ . . . ^ - 0 , 

and in general there will be m (or fewer) characteristic surfaces which pass 
through the edge C. As seen below we assume that there are actually m. We 
suppose that at least ko(k0 < m) of these lie in a fixed "quadrant" R defined 
by S and T: and we select ko of these surfaces Gu (i = 1, . . . , ko). These 
shall be referred to as "select" characteristic surfaces, and all others as "non-
select." 

The mixed problem to be studied below is now formulated as follows. 
Define t = <£(#*)> x — ^(#0> a n d assign on S Cauchy data for u with respect 
to the operator L: that is, values of u and its derivatives with respect to t 
up to order m — 1 inclusive. Assign on T any ko of the m quantities: 

du dm~ u 
U' dx ' * * • ' dxm~T ' 

subject to compatibility conditions of order m — 1 on the edge C. We seek 
a piecewise analytic solution in R of Lu = 0 which takes the given values 
on S and on T, and is analytic except across the select characteristic surfaces, 
where it is of class Cm~l. 

In order to treat this problem we shall need to assume that the operator 
L is regularly hyperbolic with respect to 5 and T, in the following sense: 
there shall be m distinct characteristic surfaces passing through C. Another form 
of this condition is available if we consider the coefficients 

Q>(m)ii...im 

of highest order derivatives in Lu, in which the indices iv take values N and 
N — 1 corresponding to t and x, respectively. To find this condition we note 
that by the theory of first order partial differential equations, the characteristic 
surfaces through C are composed of characteristic strips of the reduced 
characteristic equation 

(1.3) Ci[£p, - 1 ] = aim)i1...imPi1...pim = 0, 

where pN = pt = — 1 has been substituted so that % appears in the form 
X = Xo(#p, x) — t. On the initial "curve" C the initial values for the strip 
elements are found from (1.3) and the conditions 

N-l 

dt = S PpdXp. 
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Since for p = 1, 2, . . . , N — 2, the dxp are independent, we have pp = 0, 
(p = 1, 2, . . . , N — 2), and only px is different from zero. Thus 

(1.4) &[0f 0, . . . , 0, px, - 1] = 0 

determines the m values of px, which we shall suppose are real and distinct 
on C and in a neighbourhood of C. Setting 

&k = &(m)N-l,N-l N—1,N,N Ni 

where the index N — 1 appears k times, we see that (1.4) becomes 

(1.5) amp7-an-1pr1+ • • . + (-l)ma0 = 0. 

That is, the roots px of (1.5) must be distinct and real. 
We note that if Lu — 0 is regularly hyperbolic in the sense of Leray (8) 

and if S is spacelike, then Lu is regularly hyperbolic with respect to S and 
to every non-characteristic surface T. If in the regularly hyperbolic case we 
imagine the edge C to rotate about a fixed point in 5, the characteristic 
surfaces issuing from C remain separated: no two touch. For our purpose it 
is enough if these surfaces are distinct for the one position of the edge C. 
Thus our condition is weaker than the customary regular hyperbolic con­
dition. In fact it becomes equivalent for the case of two independent variables, 
when the edge C reduces to a point. 

Analogously, the normal surface of a regularly hyperbolic operator consists 
essentially of a nest of concentric ovals, such that any line through the origin 
meets the surface in a maximal number of real points. In our case it is sufficient 
if a particular line through the origin, namely the normal to C in S, meets the 
surface in a maximal number of real points. This could be realized, for instance, 
by a surface with multiple points, or by a surface consisting of ovals external 
to one another. 

If we alter the negative signs in (1.5) and consider the equation 

(1.6) amym + am-ilm-x + . . . + a0 = 0, 

we see that the roots 71, 
first order operator 

(1.7) 

which indicates differentiation along the section of a characteristic surface 
by a plane xp = const, (p = 1, . . . , N — 2). 

The operators Dt shall also be termed select or non-select according as the 
characteristic surface Gt and the characteristic root yt are select or not. We 
note the identity 

m *m 

(1.8) amYl Dau = Y, ah - ^ T T ^ * + . . . 
a k=0 C# Ol 

where the terms omitted are derivatives of order less than m. In consequence, 
we can write the given differential equation (1.1) in the form 

• • • » y m of (1.6) are also distinct. Let us define the 

_ du . du 
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(1.9) E l Dau = Li(u) 
a 

where L\(u) is a linear operator of order m in which no term has more than 
m — \ differentiations with respect to x and t combined. 

2. Reduction to a system of first order equations. By introducing 
as new dependent variables vt suitable combinations of the derivatives of u, 
we shall perform a formal reduction of (1.1) to a system 

(2.1) DaVi= X) c^r^lJr X CijVj, 

where each Da operator will occur several times, in general, and where only 
derivatives with respect to xp (p = 1, . . . , n — 2) appear as d/dxp on the 
right. This system is of the type studied in (3), as the elementary divisors 
of AN relative to AN~l are simple. The dependent variables in (2.1) are also 
divided into select and non-select classes, a variable v being select if the 
operator Da which operates on it in (2.1) is select, and vice versa. The assigned 
boundary conditions will be transformed into 

(2.2) v<= £ atflj+ft 

where on the left shall appear only the select vt. Thus the existence theorem 
of (3) is applicable and will lead to a solution of the original problem, when 
that problem is analytic. 

The formal reduction and labelling of new variables will follow the pattern 
of the Cauchy-Kowalewski reduction to normal form, except for those deriva­
tives with respect to x. To handle these we have introduced the Da operators 
and will employ them in the fashion of (1). A result of this distinction is the 
following subdivision of the new variables into groups. We define formally 

dqu 
(2.3) vu) = vab...h iu,,iq = DaDb. . . Dh—r —r 

ox . . . ox 
and construct the first order system so as to satisfy these definitions 
identically. 

In the first group we take q = 0; and for higher values of q up to m — 1 
inclusive there is a group of equations corresponding to each distinct array 
iij . . . , iQ, where order is immaterial. 

A fixed ordering a, b, c} . . . , k, . . . of the operators Da is used in each of 
these groups. However, as the exact selection of these indices depends on the 
boundary conditions, we shall for the present reserve the choice of select 
and non-select values. 

Certain * 'commutator" expressions appear and we now define them. The 
symbol 
(2.4) Ca 

shall denote the reduced form of the expression 
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à T. r. T. dq~XU d „ „ „ dQ~lU 
(2.5) Da — Dt...DhDk — —r--—DkDh...Da tl 

dxiq dxn . . . dxl~ql dxlq dx11 . . . dxiq~l 

this reduced form contains derivatives of u of lower orders a, b, . . . , h, ky 

ii . . . iff_i, with coefficients functions of the ya. 
By writing 

Caiqb...hkii...iq-i[v] 

we shall indicate that the derivatives of u have been formally replaced by 
the corresponding variables 

Vab...hii...iq 

as defined in (2.3). This is possible, since we will show that all derivatives of u 
can be expressed as linear combinations of the variables V(t) in (2.3). In fact 
we shall prove by induction that all k + 1 derivatives 

dku _ 
dxndtk-n h - 0, . . . , k, 

can be expressed as linear combinations of the k + 1 variables 

Vhg...ai Vkg...aj • • • > Vkh...bi 

in each of which one of the k + 1 operations is omitted, and of variables with 
a lesser number of subscripts. To show this, we note that by (1.7) and (2.3) 

(2.6) »»..., = É Sa
h(y) ^ ~ s + F^[u] 

where Sh
a(y) is the symmetric function of degree h of the k quantities yk, 

yhj . . . , yb and with ya omitted. Forming similar equations with bf c, . . . , h, 
k omitted in turn, we see that the system can be solved for the &th order 
derivatives of u provided that the determinant | 5 / (7 ) | is not zero. This is 
proved separately in Lemma 1 below, and thus our assertion is verified. 

In (2.6) Fk-i[u] denotes an operator in d/dx, d/dt of order k — 1, which 
by the induction hypothesis may be considered to be already expressed as 
a combination of the vs. 

The groups shall be written with definitions and differential equations in 
parallel columns. For q = 0 we have the "triangular" array of equations 
shown in Table I. 

In Table I a, b} c, . . . , k, . . . , n denote the distinct numbers from 1 to n 
in an as yet undefined order. The operator Li[v] is defined by replacing deriva­
tives of u in Li(u) (cf. (1.9)) with the appropriate first derivatives or values 
of the vs. This array or group of equations contains n subgroups, the feth 
group containing k equations each with a different operator Da. 

For each array (i)q — (ii, . . . , iq) we have a similar group of equations, 
in which appear on the right side certain first derivatives with respect to 
xq*. We let (i)q-i = {i\ . . . iq-i) and construct Table II, which also contains 
a triangular array, with subgroups of increasing size. 
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TABLE I 

DEFINITIONS DIFFERENTIAL EQUATIONS 

v = u Dav = va 

vb = Dbu £>aVb = »&a + Cab[v] 
Va = DaM Dbva = vba 

vcb = DcDbu + Cacb[v] 
vca = DcDau Dbvca = vcba + Cbca[v] 
vba = DbDau J^cVba = Vcba 

1>kh...b = DkDn . . . DbU DaVkh...b = Vkhg...a + Caich...b[v] 

Vkg...a = ^ A ? • • • DaU T>hVkg...a = VkJlg...a + Chkg.,,a[v] 

Vhg...a — DhDg . . . DaU DkVhg...a = Vkhg...a 

Vnm...b = - D n ^ m • • • DbU, DaVnm...b = Li[v] + Canm...b[v] 

Vnl...a = DnDl • • . DaU, £>mVnl...a = LX[v] + Cnml...a[v] 

Vml...a = DmD\ . . . DaU, DnVm\...a = Li[v]. 

The last of the "subgroups" of Table II contains m — q equations, and 
the order of a, b, c . . . h, k is the same in all groups, that is, for all (i)Q. It is 
seen that the number of new variables denned in these groups is equal to 
the total number of partial derivatives of u with respect to ty x and the xpi 

up to and including order m — 1. We emphasize that not all groups (i\. . . iq) 
are here represented, but only one for each set of integers (i\. . . iq) without 
regard to order. Thus we may for simplicity assume that i± < i% < ù < . . . 

3. Reduction of the boundary conditions. Let the derivatives of u 
with respect to x up to order n — 1 be paired in order with the numbers 
a, by c, . . . , k, which label the Da operators: 

(3.1) u ux uxx , . . . ux
{m~l) 

a b c , . . . / . 

We establish an ordered correspondence between the operators of the 
sequence Dai Db, . . . , Dk in Table I and the derivatives u, ux, . . . , ux

m~l. 
The labels a, b, . . . , k shall be chosen so that to an assigned derivative ux

(3) 

there corresponds a select operator Dh, and vice versa. This is possible, in 
general in a number of ways, since the number of select operators has been 
taken as equal to the number of boundary conditions. I t is now assumed 
that this arrangement has been adopted in advance in Tables I and II. We 
repeat that the select v's are those which are operated on in (2.1) by a Da 

operator which is select according to this scheme. 
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DEFINITIONS 

_ dQu __ 
»'«) dxil . . . dxiq 

fl&O) = DbUa) 

*>ati) = DaU(i) 

TABLE II 

DIFFERENTIAL EQUATIONS 

- = uu), DaVu) = - va{i)q_1 + Cflil...<„[»] 
uXiq 

fDtflKi) = TTJ^Oj-i + Cabil...iq[v] 
ox 9 

dx 8 

•j 

^c6(0 = DcDbU(i) ,DaVcHi) = T T yc&a(î) g - i + Caiqcbii...iq-i[v] 

dx q 

Vca«) = DcDaU(i) , Djflcad) = Z ̂ c&a(i)fl_i + CbiqCaii... t a - i M 

dx 9 

*>&a«) = = DJDaUd) yDCVba(i) = T~Z,vcto(i)q-i + CCiqbaii... i f l - i M 
OX 

l>kh..Mi) ~ DkDh . • • DbU(i), DaVk1l..^i) = 7aVkhg...a(i)q-i + C ,
f l{ 8Jt». . .6i i . . .< g- iW 

dX 9 

r\ 

Vkg...a(i) = DkDg . . . DaU(i), DhVkg...a(i) = ~ T »*^ . . . o ( i ) f l - i + Cniqkg..Mii... iq-i[v] 

dx 9 

*\ 
Vhg...a(i) = DhDg . . .Dalla), DkVhg...aU) = T ~ T Vkhg...a(i)q-i + Ckiqflg...aii... iq-\[v] 

OX 

These boundary conditions must be reduced to the form (2.2) where the 
select vs appear only on the left. Let us consider first the group q = 0: for 
the other groups the calculations are similar. If u is given, Da and v shall be 
select; and then v = u is a boundary condition of type (2.2). If u is not given 
then no boundary condition for v will be needed, as Da is then non-select. 

If ux is given then Db is select. There are two cases, according as Da is select 
or not. If Da is select, then va = ux + yaut and vb = ux + 7&w< are both 
assigned and these conditions are of the form (2.2). If Da is not select, we 
eliminate ut between these two relations and find 

(3.2) vb = ^va + (l-^)ux, 

which again has the form (2.2). However, if ux is not given, there are two 
other cases. If Da is select, and Db is not ,we can solve (3.2) for va, which 
is then the single necessary boundary condition of form (2.2). If neither Da 

nor Db is select, no boundary condition is needed. 
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We may now proceed by induction from one subgroup to the next. If the 
boundary conditions for the &th subgroup have been put in the form (2.2) 
then all select variables of that group can be expressed in terms of non-select 
variables. Thus in treating the next sub-group we can allow all variables of 
the preceding groups to appear on the right side of the boundary conditions, 
as the select ones can later be eliminated by means of the preceding boundary 
conditions. If in (2.6) we replace the quantity Fk-i[u] by its formal equivalent 
in terms of the v's, we see that only those v's of the preceding groups will 
appear. Consequently this term of (2.6) may be considered as non-essential 
in the remainder of the calculation. 

Assuming then that the result holds for the (k — l)s t subgroup, let us 
prove it for the &th subgroup. We divide the k equations (2.6) into select 
and non-select categories according as the v variable on the left is select 
or not. All derivatives of u, ux, . . . , ux

{n) with respect to t are known, or 
select, on T, according as u, ux, . . . , ux

(n) is select or not. Thus if h of the k 
quantities u, ux,..., ux

{]c) are select, then h of the derivatives written explicitly 
on the right side of (2.6) are select. Let us pick out the k — h non-select 
equations of (2.6) and solve them for the k — h non-select derivatives of 
u in terms of the select derivatives of u and the (non-select) variables v of 
these equations. The possibility of this depends on the non-vanishing of a 
determinant of which the elements are symmetric functions of the 7's, with 
one of the Y'S omitted in each row. Supposing, as will be shown in Lemma 1 
of § 4, that all such determinants are different from zero, we can carry out 
this inversion of the non-select equations (2.6), and then replace the k — h 
non-select derivatives of u in the h select equations of (2.1) by the expressions 
so found for them. These h select equations will then take the form (2.2) 
since all earlier groups of select variables can be eliminated from the right 
sides. 

Now consider these groups with q > 0. As all differentiations with respect 
to xp (p = 1, . . . , N — 2) are tangential to T, the derivatives 

dqJrhu/dxil . . . dxiq dxh 

are select according as dh u/dxh is select, or not. Thus equations similar to 
(2.6) can be written down for any such group, and the coefficients of the 
terms shown explicitly will be exactly the same, and the structure of the 
operator Fk-i[u] will be unaltered except that instead of u as argument we 
will have 

dQu/dxil . . . dxiq. 

It follows that the boundary conditions for all groups with 0 < q < m — 1 
can be put in the same form (2.2). 

Remark. Suppose that the k linear boundary conditions are linear and 
independent relations among the n quantities u,ux,uXXJ . . . , ux

{n~l\ on T. 
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Such a system of boundary conditions can be reduced to a triangular standard 
form 

(3.3) ux
ihi) + £ cti ux

(Ti) = gu (* = 1,. . . , h), 

where the orders ht of the leading derivatives form an increasing sequence: 

hi < h2 < . . . < hk0. 

In addition, the indices rt are all less than hu while the coefficients cri are 

analytic functions on T. 
To show that this system of boundary conditions can be expressed in the 

form (2.2), we need modify the previous working only slightly. In the array 
(3.1) we choose as select operators D&, . . . , Dn those corresponding to the 

We then commence with the quantity u: if and only if it is given in the first 
array q = 0 of Table I, a boundary condition is required. Now, considering 
ux, we see that if one of the ht = 1, there is a condition 

Ux + CuU = gu 

and if u is given it may be replaced by its given values while, if it is not, 
the corresponding variable v of Table I is non-select and so may appear on 
the right of the boundary conditions (2.2). Thus the form (2.2) is attained 
in either case, as in the preceding calculations. 

Proceeding by induction on ht, we see that in the typical condition (3.3) 
the terms ux

{Ti) are either non-select, in which case they are allowed on the 
right side of (2.2), or else they can be expressed, by means of the boundary 
conditions already standardized, in terms of non-select variables and given 
data. As remarked earlier any variable of a previous group can be allowed 
on the right side of a boundary condition in the course of such a calculation. 
This completes the demonstration that (3.3) can be reduced to the standard 
form of the boundary conditions for the system of first order equations. 

4. A lemma on symmetric functions. To justify the reduction of the 
differential equation as well as the boundary conditions, we establish a lemma 
which is required in its most general form in the preceding discussion of the 
boundary conditions. 

LEMMA 1. Let k distinct numbers ya 7e 0 be given, and let sr
a(y) = sT

a denote 
the elementary symmetric function of degree, r of all k — 1 y1s with ya omitted. 
Then every subdeterminant formed by deleting an equal number A ( 0 < / z < f e — 1) 
of rows and columns from the k X k determinant 

(4.1) 1^(7)1, 
is different from zero. 
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T h e numbers ya corresponding to the deleted rows are the select ya\ for 
convenience we shall denote them now by ca while retaining ya for the I = k—h 
non-select numbers . T h e deleted columns refer to the assigned derivat ives 
among u, uXl uX} . . . , ux^

m~l). 

Let sr(c) denote the elementary symmetr ic function of degree r of the ca: 
if we now delete the h select rows we observe from (4.1), t h a t all h of the select 
ca are present in each of the other rows. Let 0-/(7) = o>a denote the e lementary 
symmetr ic function of degree r of the non-select y 's , with ya omit ted. T h e 
following proper ty of sr

a is evident : sr
a is the convolution of the sm(c) and 

o>_m
a(y) of all lower orders: 

(4.2) sa
T(y) = É sm(c)aa

r-m(y). 
ra=0 

Now let o> denote the column vector with I = k — h components aT
a. T h e 

k X (I — h) matr ix (the select rows have been deleted), m a y now be wri t ten 

/ fc-i 

I /-j Si(Tk-i-i 

W e note t h a t o> = 0 for r > /, so t h a t we may write this a r ray in the form 

(4.3) (500-0, S00-1 + S10-0, S00-2 + 5i<ri + 52o-0, . . . , Sj_io-0 + . . . + 50o-z_i, 
SiffQ + . . . + SiO-j-i, . . . , 5/^-2 + Sh-KTi-i, Sh(Ti-i). 

If the select columns are deleted, and the resulting square de te rminan t A 
expanded, we see t h a t it takes the form of a sum of / X / de te rminants with 
columns the o- r ( r = 0 , l , . . . , — 1). Since any one of these with two equal 
columns is zero, it follows t h a t the only non-vanishing de te rminan t among 
them is |o-0o"i . . . crz_1|. Therefore every surviving term has this de te rminan t 
as a factor. However e lementary reasoning shows t h a t 

(4.4) |<TOO-I . . . o-*_i| = =fc f i (Ta - 7&) 5* 0. 

T h e ar ray (4.3) is the symbolic product of (4.4) with the a r ray 

so si s2 . . . sh 0 0 . . . 0 
0 SQ Si 52 . . . Sh 0 . . . 0 

(4.5) 0 0 so . . . s* 0 . . . 0 

0 . . . 0 so si . . . sh 

of / rows and h + I columns, according to the formal rules of de te rminan t 
multiplication. We have therefore to show t h a t the / X I de te rminan t which 
remains when any h columns have been deleted from (4.5) is not zero. 

This I X I de te rminan t has the form of the representat ion of a Schur 
function {X} corresponding to a certain par t i t ion (X) consisting of h numbers 
Xi, . . . , X/j arranged in decreasing order. For the theory of par t i t ions and 
S-iunctions we refer to (11, chapters 5, 6 ) . T h e par t i t ion (X) is best defined 

• 
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in this case by means of its conjugate partition (/*), which consists of / positive 
integers nu not necessarily distinct, arranged in decreasing order. We set 

Hi = h — d(i) 

where d{i) is the number of select, or assigned, derivatives of the sequence 

^ > MX} ^XXJ • • » 1 "Cx 

which are encountered before the ith non-select derivative. From (10, chapter 
6, 3.3) we see that the Schur function 

(4.6) {X} = | s M , _ w | 

has the form of (4.5) after deletion of the select columns and transposition 
about the secondary diagonal. 

On the other hand, from (10, chapter 6, 3.1) we have 

\c*i+h~j\ 
(4.7) Iw-i+il = IM = i h~jT~ > (i,j = 1, . . . , A), 

\Ci I 

where h is the number of select cjs and i and j are indices of position in the 
determinants. We recall that the ct are all distinct; the denominator in (4.7) 
is the Vandermonde's determinant which is equal to 

± n (ct- ci)> 

and so is not zero. The numerator is a slightly more general type of deter­
minant, which has been studied in (1) and shown to be different from zero. 
For this it is necessary that the ct should be distinct and positive, and the 
powers Xj — j distinct, and these requirements are satisfied since the \j are 
non-increasing with j , while the cu being the select yiy are positive and dis­
tinct. A direct proof that the Schur function {X} is a symmetric polynomial of 
the ct with non-negative coefficients has been given recently in (8, Theorem 1). 
Thus (4.7) is different from zero in our case since the ct are all positive. 
Combining this with (4.4) we see that the original subdeterminant of (4.1) 
is not zero, and this concludes the proof of the lemma. 

The special case h = 0 is needed in connection with (2.6), and a sequence 
of applications with various values of h and /, one for each subgroup of 
Tables I and II, is needed in § 3 as stated there. 

5. Verification of the solution. By (3, Theorem 3), a piecewise analytic 
solution of (2.1), satisfying (2.2) and appropriate initial conditions, exists. 
Let the solution of (2.1) with given Cauchy data and boundary conditions 
(2.2), which is defined by the piecewise analytic expansions of (3, Theorem 3), 
be constructed, and let us show that the solution u of (1.1) which we seek 
is actually the component v of the first equation of the first group of Table I. 
To show that v satisfies (1.1) we shall verify that the defining equations in 
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the left columns of Tables I and II hold, in succession, and use the last sub­
group of equations of the first table. When the "definitions" are re-established 
the various boundary conditions will be automatically satisfied, in view of 
the equivalence (2.6) between the derivatives of u of a given order, and the 
variables va . . . of the same order. Thus it will be established that 

(5.1) u = v 

is a solution of the original problem, since the algebraic verification of the 
initial conditions will be trivial. We shall use the uniqueness property of 
solutions of the first order system which are analytic on the closure of the 
sector domains. 

Consider first Table I, and let us verify the relations in the left-hand 
column subgroup by subgroup. The first such relation, namely v = u, is 
taken as a hypothesis, or rather a definition of u. The second definition of 
the second subgroup is precisely the first differential equation and so is valid. 
To show that the first definition of the second subgroup holds, let us define 

(5.2) f& = Dbu - vb. 

Then £6 is piecewise analytic on the closure of the sector domains Rt. Also 

Dah = DaDbu — Davb 

(5.3) = DbDau + Cab[u] — vab — Cab[v] 
= vba - vab + Cab[u] - Cab[v] 
= Cab[ï], 

where we have used the first three differential equations of Table I. With 

Cab[u] = DaDbu — DbDau = aDau + 0Dbu, 

where a and /3 are certain coefficients which we need not calculate explicitly, 
we have 

Cab[v] = ava + Pvb 

and therefore 

Cab[£] = aia + /3&. 

Now in this case, £a = Dau — va = 0. Thus £6 satisfies the homogeneous 
linear equation 
(5.4) Da$b = /%. 

The initial conditions for £& are also homogeneous, as follows from the defini­
tion of initial conditions for the v variables. If Da is select, there is a homo­
geneous boundary condition for £& on T. In this case only, discontinuities 
of the derivatives of £& across Ga are in principle permitted, but the expansions 
of (3) applied to this equation show that all such jumps are here zero. Since 
Ga is the only characteristic surface of (5.4), it follows that £& is analytic 
everywhere and so identically zero. 
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To verify the third subgroup of definitions, note that the last of these 
relations is now equivalent to the last differential equation of the preceding 
subgroup. Define 

(5.5) 

then 

£cô = DcDbu - vcb = Dcvb — vcb 

£ca = DcDau — vca = Dcva - vca 

Daicb = DaDcDbu - Dtvcb 

(5.6) = DcDbDau + Cacb[u] - Davcb 

= Dcvba + Cacb[u] - vcba - Cacb[v] 

= CacAU 

and likewise 

(5.7) DbU = Cbca[Ç\ ; 

using the differential equations and previously established definitions. Here 
the Cacb\i\ expressions are linear homogeneous in the £ variables with less 
than three indices: since all one-index £'s are zero, (5.6) and (5.7) form a 
linear homogeneous system for Çcb, £CÛ. Again, these functions satisfy homogen­
eous initial conditions. As above it follows in either case that £c6 and %ca 

vanish identically. 
The inductive procedure for the &th subgroup is similar: the last definition 

of the subgroup is true in view of the previously established definitions and 
the last differential equation of the preceding subgroup. We define k — 1 
variables £**...ô, . . . , £**...a as follows: 

/ r y \ £kh...b = DkDh . . . DbU — Vkh,..b, 

ha...a = DkDg . . . DaU — Vkg...at 

there being a different D operator missing in each of these sequences of 
differentiations. Then 

Djinn...* = DaDkDh. . . Dbu - Dvkh...b 

(5.8) = DkDh. . . DbDtu + Cakh...b[u] - Davkh...b 

= DkVhg...ba "h ^akh...b[u\ ~ Vkh...ba ~~ Cakb,,mb[v\ 

— Cakh...b[£\ i 

and there are k — 2 similar equations of which the last is 

(5 .9) Dl&kg...a ~ ^Mj7...al£J-

Here the Cakhmm.b[%\ are linear expressions containing the £**...&> . . . , %kg...a, as 
well as those of lower order (which are now known to be zero). Thus (5 .7) , . . . , 
(5.8) form a self-contained linear homogeneous system, with homogeneous 
initial and boundary conditions. Since the £*/>...&>• ••>£*?...a are analytic on 
the closure of each sector Rt they are identically zero, in view of the unique­
ness theorem in (3). 
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The proof that the last subgroup of defining relations holds for the solutions 
of the first order system is similar to the earlier steps of the induction. The 
only difference is that the operator Li[v] replaces the variable vkhg...a hi the 
general step. Since this quantity does not appear in the final form (5.8) and 
(5.9) of the equations for the £'s, this change has no effect on the result. This 
shows, then, that all defining relations of Table I are valid. 

Let us show that the defining equations of Table II hold for each index 
group (i)q = (i\. . . iq) by induction on q for each of these groups. Let 
(i)q-i = {ii. . . iQ-i) and let us assume that the result has been proved for 
the (i)Q-i group. First define 

(5-10) fco. = d x / " d x u ~ '<«. = ~tu ««,.-, ~ *(«>.. 

We see that 
*\ 

(5.11) Az?u), = Da—-vii)q_1 - Davii)q 

ax q 

= A»—7flfl(o,-i - ~~qVacoa-i ~ Cail...iq[v]} 

by the first differential equation of the group (i)q. However the right side 
of (5.11) contains only v variables of g-order (i)q-i or less, and in view of 
the definition (2.5) of the commutator operator, this side of (5.11) will be zero, 
since all variables 

have been proved equal to the corresponding partial derivatives of u. It 
follows by differentiation of the initial and boundary conditions that 

£ (i)a 

vanishes identically. 
For the typical &th subgroup of Table II, we have a system of k equations 

involving the variables 

(5.12) 

Then, for instance, from the first differential equation of the subgroup, we 
have 

£w».. 
• • « « « - a x < . " » . . 

. . 6 ( 0 « - l """ Vkh.. ..6C0fl> 

%kg.. 
d 

. a U ) f l - i ~" Vkg.. . .o(i) f l« 

(5.13) Da£kh..Mi)q = Da~T„v*h--Mi)q-\ ~" D(Pith..Mi)q 
dx q 

~~ Da ^ inVkh..Mi)q-i ~" „ ia1>kh..Mi)q-i ~~ Caiqkh..Mi)q-Àv]' 
dx q dx q 
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Now the right side contains a commutator which includes only v variables of 
order q — 1 or less with respect to the xip, or else of order q but from a pre­
ceding subgroup of the qth group. As the identification of all these with the 
corresponding derivatives of u has already been made, we see by the definition 
(2.5) that the right side of (5.13) reduces to zero. Similarly, all other right 
sides, obtained by differentiation of the quantities in (5.12) by appropriate 
Db . . . Dh operators, are seen to vanish. Homogeneous auxiliary conditions 
are applicable as before, and it follows that the variables £ in (5.12) vanish 
identically. 

Proceeding thus by induction we make all the identifications of the various 
q groups, and so identify all derivatives of u = v with the appropriate v 
variables as foreshadowed in (2.3). This proves that u satisfies all the initial 
and boundary conditions. It remains now to show that u satisfies the original 
linear partial differential equation of order m. However this follows at once 
from the very last differential equation of Table I and the definition (1.9) 
of the operators L1(u) and Li[v]. The existence proof is therefore complete. 

THEOREM 1. Let L(u) = 0 be an analytic linear differential equation of order 
m which is regularly hyperbolic with respect to analytic initial and boundary 
surfaces: S:t = 0 and T:x = 0. Let ko characteristic surfaces Gt issuing from 
C = S r\ T into the region R be selected, and let ko of the quantities 

14/, 14% y • • • j v^X 

be assigned on T in addition to Cauchy data on S. Then there exists a piecewise 
analytic solution u assuming the given initial and boundary values, and analytic 
except across the Gt where it is of class Cm~l. 

This analytic solution is piecewise analytic in the strong sense described 
in (2, § 10); that is, it is analytic on the closures of the distinct sector domains 
Dh which separate the select characteristic surfaces. The solution must still 
be proved unique even within this class of functions, since there are many 
ways of setting up the corresponding first order system, and it is necessary 
to show that these distinct ways all lead to the same discontinuities of 
derivatives across the select characteristic surfaces. 

To prove this, let us suppose that u is piecewise analytic in the above 
strong sense, that u is Cm~1, and analytic except across the select GV, that 
L(u) = 0 and that homogeneous Cauchy data and boundary conditions have 
been assigned. Then u and its derivatives satisfy the system of Tables I 
and II, which is arranged according to any one of these alternative ways. 
However the data entering this system are all zero. Since a solution of the 
system is unique in the strongly piecewise analytic function class, (3) the 
solution of the system is identically zero. Hence u = 0 as was to be proved. 

As a further corollary we add that if every characteristic surface Gi issuing 
into the domain is select, then our solution is unique in the class of Cn func­
tions. This now follows at once from the uniqueness in the C1 class of solutions 
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of the first order system, when every characteristic root is real and not zero, 
and when all positive roots are select (3, § 10). 

We have seen in § 3 that lower order derivatives with respect to x can be 
permitted to appear in the boundary conditions. It is also true that lower 
order derivatives with respect to the other iV — 1 variables can be accommo­
dated in the same way. This is possible since we could establish the definitions 
required in working back to the mth order equation in a lexicographic sequence 
which takes account of first, order of the derivative, second, index (i) of the 
group, and third, ordering of the Da operators within each subgroup. However 
it is not possible to permit oblique derivatives of an order equal to the highest 
order which occurs in the boundary condition, as can be seen even for hyper­
bolic equations of first or second order (2). Such conditions will lead to in­
consistencies if directional derivatives involved have characteristic directions. 

We comment on the fact that non-analytic "kinks" can be chosen to occur 
on some, but perhaps not all, characteristic surfaces issuing into the region. 
Each such characteristic surface may be thought of as corresponding to a 
particular kind of wave, generated at the boundary. For a vibrating beam 
there will be flexural and shear waves, travelling at different speeds, for 
example. Our theorem shows that there is a solution, satisfying one boundary 
condition, in which only one type of wave is generated. With a suitable bound­
ary condition, it is quite possible to have a solution in which only some other 
type of wave arises. In a physical problem, the appropriate linear combination 
of these solutions would have to be selected by some further conditions; usually 
these would be additional boundary conditions. 

6. The non-analytic case. An existence theorem for hyperbolic equa­
tions of order m has been given by Leray (9) under an assumption of finite 
differentiability, and by means of analytic approximations for which uniform 
estimates are obtained through the use of energy integrals. More recently 
Gârding (5) has given a direct existence proof using only the energy integrals. 
These calculations refer to the Cauchy problem, and we shall here investigate 
their application to mixed problems as in the preceding sections. For second 
order equations, this aspect of mixed problems has been treated, for example 
in (2, 7, 10). 

The results which we obtain do generalize the known theorems for second 
order equations in two different ways, which will constitute Cases I and II 
below. However it has not been possible to attain the generality of the theorem 
for analytic equations, and a considerable gap remains to be filled. It should 
be remarked that for the case of two variables a thorough treatment by 
Picard's method has been given by Campbell and Robinson (1), covering 
semilinear equations as well. The energy integral method has been applied 
to the linear problem in two variables by Thomée (12). 

In contrast to the analytic case, we must now assume that the differential 
equation (1.1) is regularly hyperbolic in the sense of Leray: that is, in effect, 
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that there exist timelike directions and that the normal cone is real and 
has no multiple points except the origin. This criterion will be fulfilled if the 
initial surface S is so situated that the equation is regularly hyperbolic (in 
the sense of § 1) with respect to S and to every surface T meeting S in a 
smooth hypercurve C. 

When applied to a mixed problem, the energy integral formulae are modified 
by the presence of a boundary integral taken over the surface T. To complete 
the estimates we must show that this boundary integral form is semi-bounded. 
We therefore begin with an algebraic study of this boundary term, and will 
use the elegant notation of Hormander (6) for the algebra of energy integrals. 

Let the terms of highest order m in (1.1) be written 

(6.D P(D)u, D ^ \ ^ ' 

where P(D) is a polynomial of order m\ and let Q(D) be a real polynomial 
operator of order m — 1 in D. Then the quadratic form 

(6.2) F(D, D)uû^ P{D) u Q{D) û - P(D) ù . Q{D)u 

is a divergence expression 

(6.3) - i X) d/dxj(Gj(D, D) u H), 
i 

where the operators Gi(D, D) are related to F(D, D) by the equation 

(6.4) F(jt, f) = S (r, - ?,) G, (r, f>. 
J 

Here f j = ^ + irjj and f;- = ^ — irjj are complex variables dual to Dt. In 
forming (6.3) we shall assume that the coefficients of P(D) and Q{D) are 
constants; this assumption can later be relaxed. 

Writing the differential equation (1.1) in the form 
(6.5) Lu = P(D)u + B(D)u = fix1), 

where B(D) is an operator of order less than tn, we integrate the expression 
2 Re Lu Q(D)û over a lens-shaped region R such as is described in (3, Figure 
2). This region is bounded by initial and final surfaces So and St (t = const), 
and by a portion Tt (x = 0) of the boundary surface T. We find, on the 
one hand 

(6.6) i f F(DD)uudV - f Q(D, D, u, ûj) d V, 

where the quadratic form Q(D, Z), u> ù,f) is of order m — 1 or less in the 
Du and contains factors linear i n / . On the other hand, by (6.3) we have 

(6.7) i \F(DD)uûd F = f Gt(DD)uûdSt 
*J R J St-So 

— I Gx(DD)uudSx, 
J Tt 

https://doi.org/10.4153/CJM-1959-024-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1959-024-1


212 G. F. D. DUFF 

the minus sign in the last integral being due to the convention that x shall 
be measured as increasing along the interior normal to Tt. Comparing (6.6) 
and (6.7), we find 

(6.8) f Gt(DD)uûdSt- ( Gx(DD)uûdSx 
J St J Tt 

= f Gt(DD)uûdSt + ( Q{D,D,u,u,f)dV. 
J So J Rt 

The method of Leray and Gârding is based on the fact that if the auxiliary 
operator Q(D) is so chosen that the sheets of its normal cone separate the 
sheets of the normal cone of P(D), then the integral over St is positive definite 
(4, Lemma 3.1). For this purpose we may assume that the coefficients of 
imDt

m in P(D), and of im-lDt
m-1 in Q(D), are both + 1. 

Now let us suppose that P(D) and Q(D) have variable but sufficiently 
often differentiate coefficients. Then (6.3) is modified by the addition of 
derivatives of order lower than m — 1, and a quadratic form in such deriva­
tives of u, û will appear in (6.7). These terms may be absorbed in the integral 
over Rt in (6.8), which is thus not changed in form. Also, in this case, the 
integral over St can be made positive definite in all derivatives of u of all 
orders < m — 1, by the addition of derivatives to the integrand Gt(D D) uû 
of orders not greater than m — 2. Again, such terms in the new integrand 
Gt(D D) uû over St can be counterbalanced by terms in the volume integral 
containing derivatives of order no higher than m — 1. Consequently (6.8) 
holds unchanged in form for the case of variable coefficients as well, with 
a somewhat different quadratic form Q(D, Z>, u, û,f) in the volume integral. 
Set 

(6.9) Ek(t) = f Z \Dau\2dSt, 
v St 0<a<fc 

the summation being taken over all essentially distinct partial derivatives 
of u of order less than k + 1. By the positive definiteness of the integrand in 
the integral over St1 we find, (4, Theorem 2.1; 5, Theorem 3.1) that there 
exists a constant c > 0, depending only on the differential equation and the 
domain, such that 

(6.10) f Gt(D, D)uudSt> c-lEm^{t) - cEm_2(0, 
•J st 

for every t and all u Ç Cm_1. 
We may express Ew_2(0 as the integral of the time-derivative of its inte­

grand: this leads to an estimate 

(6.11) Ew_2(0 < Em_2(0) + K ( Em^(t)dt. 

It now follows from (6.8) and (6.10) that 
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c-1 £w_i(0 < cEm^{t) + f Gt(D, D)uûdSt 
•J St 

< c £w-2(0) + c K j Em^(r)dT 

(6.12) ° 
+ Gt(D,D)uûdSt+ Q(DDuûf)dV 

•J So J Rt 

+ J Gx(DD)uûdSx. 
J Tt 

By Schwarzian estimations of the third and fourth terms on the right-hand 
side of this last inequality, we find 

(6.13) Ew_x(0 < c2£m_2(0) + ZiEm_!(0) + K2 f £w-i(r)rfr + IB(t) 

< Ko + i£2 f 4 - i ( r ) dD + IB(t) 

where we have written 

(6.14) IB(t) = ( Gx(D,D)uùd Sx. 
J Tt 

Here Ko and K2 are constants depending on all the data of the problem, but 
not on u. 

Now let us suppose that we can prescribe a similar estimate 

(6.15) IB(t) <K,+Kb ( £m_i(r)rfr, 
*/o 

for the boundary integral. By standard methods (9; 4, Lemma 1.2) we can 
now establish a conventional L2 estimate 

(6.16) Em^(t) < (Ko + KA) exp [(K2 + K*)t]. 

Integration with respect to t leads to L2 estimates over the entire domain 
Rty and the process of solution, using analytic approximation together with 
Sobolev's lemma and Ascoli's selection theorem, then proceeds as in (9, 
p. 162). Further details will not be presented here. 

To summarize this discussion, we state 

LEMMA 2. Let initial and boundary surfaces S and T subtend exactly k charac­
teristic surfaces of the regularly hyperbolic equation 

(6.17) £ « = / , 

the surfaces and functions present being of class [\N] + h + m in the closure 
of the region R. Let zero Cauchy data be assigned on 5, and let k of the derivatives 
u , u x y . • . y u x

 m~1 be assigned the value zero on T. Then if the boundary integral 
I sit) satisfies an estimate (6.15), there exists a solution u (E Ch+m of (6.17) 
which satisfies these conditions. 
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We note in passing that the problem with non-homogeneous boundary 
conditions can be reduced to the form above by subtraction of a function 
which satisfies the initial and boundary conditions. 

In Cases I and II below we shall need quite different methods to establish 
the inequality (6.15). The work falls into two parts, namely, an analysis of 
the case of constant coefficients, and an adaptation of this case to the more 
general situation with variable coefficients. 

7. The boundary form. We consider first the particular case of constant 
coefficients in the differential operator, and use Fourier transforms to estimate 
the integral over Tt. Let us denote by u = #(£*) the Fourier transform 

ifa) = JV i (*'*WP , t) dx> dt 

of a function of xp and /, defined as equal to u(xp, i) on Tt and zero elsewhere. 
Here also 

(f, x) = fa + X) ter-
p 

The inverse transform is easily written down, and we note that £p is now 
dual to Dp = — id/dxp. Thus, we shall need to distinguish differentiation 
with respect to the transverse variable x (across 7"), by writing 

GX(D, D)=G (Dit Dx, Du Dx). 

Now Parseval's theorem (6) shows that 

(7.1) IB(t) = f Gt(D„ Dx, Dit Dx)uûdSt= f G,(f „ Dx, £„ Dx) U u dS^. 

This last integrand is a quadratic form in the variables Dx
j u, (j = 0, 1, . . . , 

m — 1), which are independently defined when regarded as functions of 
the £<. Thus in the case of constant coefficients we are led to study the alge­
braic properties of this quadratic form. We single out the variable fz = J x +^x 
and set all other variables f t in Gx equal to their real parts %t. From (6.4) it 
is found that 

(7.i) G,($„ r«, €«. r.) = %&&&&. 
Çx S x 

Let us now write 

p(f) = P(r.) = P(TX, «) = E «,(£i)rr, 
(7.2) r=0 

m—1 

<2(r) = Q(r.) = Q(r*,«) = E *.tt«)r*. 

Then, dropping mention of the ^ variables (i ^ x), we find 
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O I ^ ' w " (f, - f.) 
ro—1 m m—1 

s=0 r=0 s=0 
S arll Z2 bs& — JL/ arVx 2 6*fs 

Sa; Sx 
m m—1 / zsyT yszr\ 

r«:0 s=0 \ Sx Sx / 

Since the expression in parentheses is the sum of the geometric series 
l r - s l -1 

(the + sign being taken if r > s, the minus if r < s), we find, after some 
rearrangement, 

m—1 

(7.3) G,(r„ f.) = Z CM ÎÎ ri, 
p,q=*0 

mln(p,q) 

P̂ff = 2l> \VS dp+q+l-s ~ (LsVp+q+i-s). 

Here as is taken as zero for s > m, while 6S = 0 for s > m — 1. It may be 
noted that cpg = cpg(£i) is homogeneous of degree 2m — 2 — p — q in the 
variables £*. 

When k homogeneous boundary conditions are assigned, then in effect k 
rows and columns of the coefficient matrix cpg are deleted, since the corre­
sponding terms fall out. The estimate we require is essentially that the 
remaining, or residual, quadratic form, be non-positive. We consider two cases 
here: when it is negative definite, and when it is zero. 

Let the residual form be negative definite; then by altering the k deleted 
rows and columns we can arrange that the new (enlarged) form should also 
be negative definite. Then an estimate of the type of (5, Lemma 3.1) will 
hold, though in the opposite direction. This property of the constant-coeffi­
cients case, which is a local property for variable coefficients, enables us to 
deduce the analogue of (5, Theorem 3.1) which applies to the case of variable 
coefficients. It now reads 

(7.4) IB(t) = f Gx(Dif Dx, î)u Dx)uûd St 

< - c-'Ë^it) + cËn-2(t), c > 0, 

where 

(7.5) Ë,{t) = f Z \D"u\2dSt. 
J Tt \a\<j 

We must remember that the assigned homogeneous boundary data are in­
serted on the left in (7.4). The first term on the right in (7.4) can be replaced 
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by zero; we shall now estimate the second one, in much the same way as 
in (6.11). Let each point of Tt be joined to a point of So by a line x + t = 
const, xp = const, p = l , . . . , i V — 2 ; and let us express the integrand of 
£m_2(0 as the integral of its derivative along this line. Thus derivatives of 
order m — 1 or less appear; and integration over Tt leads to integrals over 
a "triangular" portion of Rt making their appearance. Application of Schwarz' 
inequality now leads at once to the estimate (6.15) which we require. 

This method of negative definite character for the residual quadratic form 
will be used in Case I below. 

For Case II, where the residual quadratic form vanishes identically at 
every point of T, we must use a different approach to gain the result for 
variable coefficients. Let us use the fact that the coefficients are continuous, 
and, given a fixed function u, together with an arbitrary positive number e, 
subdivide the boundary surface Tt into a finite number of portions Th, in each 
of which the oscillation of the coefficients is less than e. Select a point Xoh 

in each Th, and write 

J Gx{DiDxDiDx) uûd ST 
Th 

= I GXQ(DiDxDiDx) uûd St 
JTH 

+ I R(DifDXlDiDx)uûdSTl 
J Th 1 Th 

where 

is the boundary form with constant coefficients evaluated at #o, and the 
coefficients in the remainder term R(D, D)uû are all less than e in magnitude. 

Suppose now that u satisfies the homogeneous boundary conditions; then 
by hypothesis the first integral on the right vanishes. The second integral 
can be estimated to be less than 

€ m2 I ^ \Dau\2d ST. 
J Th |a|<m—1 

It follows by summation over the Th that the boundary integral IB(() is 
less than 

em2Ëm-i(t) 

in magnitude. However, u and therefore Em-i(t), are fixed, and e is arbi­
trary. Consequently Isif) must vanish. For the variable coefficient problem, 
it is therefore sufficient that the coefficients at each point of Tt should lead 
to a vanishing residual matrix. We employ this result in Case II below. 

8. Case I : k = m — 1. The corner element cm-i,m-i of the coefficient 
matrix of the above quadratic form is a polynomial of degree zero in the 
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£*; it is in fact ambm-\. If this element is negative then the conditions of the 
lemma will be fulfilled when the function and its first m — 2 derivatives 
M, « ! , . . . , uz(

m~2) are given as zero on T. Now this boundary condition will 
be appropriate if k = m — 1 characteristic surfaces lie between 5 and T: we 
assume this. Consequently one characteristic surface lies between T and the 
portion of S prolonged beyond the edge C = 5 H\ T. Define an auxiliary 
co-ordinate z = t cos a + x sin a, and let a range from a = 0 to a = \-K. The 
coefficient of Dz

m in P(D) is equal to 1 when a = 0 and z coincides with t. Since 
this coefficient vanishes when the surface z = const is characteristic, and 
changes sign at a simple characteristic surface, it vanishes once for 0 < a < \-K 
and is therefore negative. For a = \-K it is am which is thus negative. 

To make bm-\ positive, we should, in view of this discussion and of the 
fact that the characteristic surfaces of Q(D) must separate those of P(D), 
arrange that all m — 1 of these surfaces should lie between 5 and T. That 
is, T must be spacelike with respect to Q(D), or equivalently the normal to 
T must be timelike. We shall assume that it is possible to find an auxiliary 
operator which has this property. For example, if m = 2, the order of Q(D) 
is 1 and the characteristic surface can be chosen to have any direction between 
5 and T. In the general case, it will be possible to find such an operator 
whenever T lies sufficiently close to the single characteristic surface G which 
lies outside the domain between 5 and T. 

Together with Lemma 2 this demonstrates the following. 

THEOREM 2. Let k = m — 1 and suppose there exists an operator Q{D) 
separating the sheets of P(D) such that all m — 1 characteristic surfaces of Q(D) 
lie between S and T in the region R. Then there exists a solution of Lu — f, with 
given Cauchy data on S, and with given values for the m — 1 quantities u, ux, 
ux

(2\ . . . , ux(
m~v on T. 

When the coefficients of the differential equation are independent of x, it 
is possible to show that two other sets of m — 1 boundary conditions can 
be reduced to the set just treated. We write Lu = ux

(m) + am-iux
(m~1} + . . . 

+ a0u, where am-k is a differential operator of order k in D u Dp, with coeffi­
cients independent of x. 

COROLLARY. Let the coefficients in (1.1) be independent of x. Then there exists 
a solution of the preceding mixed problem when the boundary conditions are 

(a) uxw = 0 , h = 0, 1, . . . , m - 3, m - 1, h ^ m - 2 

or 
(b) «,<*> = 0, h = 1, 2, . . . , m - 1, h * 0. 

To prove (a) let us suppose that z; is a solution of this problem in the 
analytic case, and let us show that v = ux + am-\U, where u is a solution 
of a suitably selected problem with u, uX} . . . , ux

(m~2) vanishing on T. Since 
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all m — 1 characteristic surfaces between S and T are select, it follows from 
the reduction of Theorem 1 and the uniqueness theorem of (3, §9) that 
the solution is unique. Now let u satisfy Lu = g, where g is a solution, vanish­
ing on T, of the first order linear partial equation 

Since the coefficient of dg/dx is not zero, and since / is supposed analytic, 
such an analytic solution g exists and is uniquely determined. Since g = jf ds, 
where the integration is taken along a characteristic curve, we can find L2 

estimates for g and its derivatives if such estimates are given for / . 
Formal calculation, using the non-dependence on x of the coefficients, now 

shows that the combination w = ux + am-\U satisfies w = 0, wx — 0, . . . , 
Wxim-z) = 0> o n ^ w h i l e Wx(m-i) = UxW + am_2Ux = am-2ux(m-2) 

— a0u + g, which latter expression also vanishes on T by the boundary 
conditions for u and g. 

Now 

LW = L(ux + «w_i U) = ( — + Om-iJ LU = I — + OLm-\ ) g = / , 

so that w is an analytic solution of the case (a). Hence, by the uniqueness 
property, v = w = ux + am-iu. Since we have found L2 bounds for u and 
its derivatives, it now follows that such bounds can be obtained for v if one 
degree of differentiability extra is assumed for the non-analytic problem. The 
remainder of the existence proof now follows the conventional methods and 
so is omitted. 

The demonstration of case (b) is similar in principle, but a different device 
is used. We note that the ''coefficient'' a0} which is a differential operator of 
order m in the other N — 1 derivatives, contains just those terms of Lu not 
involving d/dx, and so is regularly hyperbolic in the N — 1 variables. Also, 
the edge C = S C\ T is a spacelike surface relative to a0, so that the Cauchy 
problem a0z = 0, with Cauchy data on C, is a correctly set problem within 
the boundary T. We will show that a solution v of case (b) is equal to a 
combination 

w = ux(
m-» + an-iu^1"-» + . . . + au, 

when certain preliminary reductions have been made. As the non-homogeneous 
boundary conditions corresponding to Theorem 2 can be set up by a substitu­
tion, we shall consider the problem vx = / i , vx

(2) = /2 , . . . vx
(m~l) fm-i on T, 

with Lv = 0 in R, and, as usual, zero Cauchy data. Subtracting from this a 
suitable solution of the problem with wx

(m_1) not given on T, we can suppose 
without loss of generality that / i = f2 = . . . = fm-2 = 0. 

Now let u be that solution of Lu = 0 with u = ux = . . . = wx
(m_3) = 0 

on T, with ux^
m~2) = z on T, where z is the solution of aQz = — fm-i on T. 
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Straightforward calculation shows that w, defined above, satisfies Lw = 0 
with wx = wx

(2) = . . . = wx
{m~2) — 0 on T, while 

Wz<*-i> = *,(»*-» + a^u^-v + . . . + axu£m-V = - «o^ ( w- 2 ) = fm-i 

on T. Thus w is an analytic solution of the problem and so is equal to v. Hence 
estimates for u can be applied now to v, provided that m — 1 extra degrees 
of differentiability are assumed for the original problem. This completes the 
reduction of case (b) to the conventional energy integral method. 

9. Case II : Symmetry with respect to T. The second circumstance in 
which it can be shown that the residual quadratic form can be bounded above 
is when the hyperplane T : x = 0 is a plane of symmetry for the characteristic 
cone of the hyperbolic differential operator. We shall here restrict considera­
tion to equations of even order, as it is necessary, for the odd order case, to 
make rather lengthy changes in the i'analytic" existence theorems to cover 
this situation. 

Thus let Lu be a regularly hyperbolic operator of even order m = 21, of 
which the highest order terms contain Dx

2 but not odd powers of Dx, at any 
rate for x = 0. Then T is a plane of symmetry as stated above. If now the 
terms of order 21 are written as in (7.2), it is seen that ar(£*) = 0 for r odd. 
Let us take Q(f) = dP/dÇt; as shown in (8, p. 140) the sheets of the cone 
of Q will separate those of P as required for the formulation of the estimates. 
Thus the odd terms bs(^t) in (?(f) will likewise vanish. 

From (7.3) it is seen that in 
mln(p,q) 

CPQ ^ 2^t \bs&p+q+l-s ~~~ &sbp+q+l-s) 

the sum of indices of the a and b coefficients is p + q — 1, which is odd 
whenever p + q is even. It follows that each term will contain a vanishing 
factor when p + q is even, and therefore that cPQ = 0 for p + q even. Thus 
about half the terms in the matrix are zero, including all diagonal terms, all 
terms twice removed from the diagonal, and so on. 

From the symmetry of the characteristic surfaces relative to the boundary 
T, we see that half of the sheets lie in R, and thus / boundary conditions 
are appropriate. 

THEOREM 3. Let Lu = / be a regularly hyperbolic equation of even order 21, such 
that the boundary surface T is a plane of symmetry relative to the characteristic 
cone at each point of T. Then there exists a solution of the C2l+[*N]+1 mixed 
problem with zero data assigned on T for either 

(a) / derivatives of even order: u, ux
(2), . . . uz

(2l~2) or 
(b) / derivatives of odd order: ux, ux

(d\ . . . ux
{2l~l). 

Proof. In case (a), an element cpq belongs to the residual matrix only if 
both p and q are odd, and thus p + q is even. Hence the residual part of the 
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quadratic form is identically zero. Similarly, in case (b), the residual part 
contains elements with both p and q even so that cpq vanishes and the quadratic 
form is zero. An application of Lemma 2 completes the proof. 

For the case m = 21 = 2 we can use the Lorentz transformation to show 
that the symmetry requirement can always be satisfied. 

10. Signature of the quadratic form. We conclude with some remarks 
on the algebraic structure of the quadratic form GX(ÇX,ÇX). An adaptation of 
Gârding's analysis (5, Lemma 1.1) to the case where complex roots are present 
shows that the signature of this quadratic form is always compatible with 
the number of boundary conditions suggested by the arrangement of charac­
teristic surfaces. However, the coefficients of this quadratic form are coeffi­
cients of the variables £p dual to t and xp, (p = 1, . . . , N — 2), and conse­
quently the eigenvectors corresponding to the negative eigenvalues of the 
coefficient matrix depend on the £p. As these eigenvectors are linear com­
binations of the transforms of the x-derivatives, it follows that in general k 
linear conditions (with coefficients depending on the £p) of the transforms 
ïïx{h) (£P) are required as boundary conditions in order that the residual matrix 
should be bounded above. Upon transformation back to the /, xp variables, 
these relations would become integral conditions of convolution type on the 
derivatives of u. It seems probable that Gârding's direct method could be 
modified to include this rather unconventional type of condition. 

11. A remark. I wish to correct a misstatement in the paper (3) on 
first order systems. On page 154, the fourth line from the bottom of the 
page should read "Let a non-singular analytic family of surfaces St fill R in 
such fashion that through each point of R there passes one and only one 
surface St of the family, and that S\ = St=i." 
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