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COEFFICIENT REGIONS FOR UNIVALENT TRINOMIALS 

Q. I. RAHMAN AND J. WANIURSKI 

0. Introduction. The problem of determining necessary and sufficient 
conditions bearing upon the numbers a2 and a3 in order that the polynomial 
z + a2z

2 + dzzs be univalent in the unit disk \z\ < 1 was solved by Brannan 
([3], [4]) and by Cowling and Royster [6], at about the same time. For his 
investigation Brannan used the following result due to Dieudonné [7] and the 
well-known Cohn rule [9]. 

THEOREM A (Dieudonné criterion). The polynomial 

(1) z + a2z
2 + • • . + anz

n 

is univalent in \z\ < 1 if and only if for every 6 in [0, T/2] the associated poly­
nomial 

/ON sin 20 s'mnd n__i 
(2) 1 H 7— a2z + . . . + - - - - - anz 

sin 6 sin 6 
does not vanish in \z\ < 1. For 6 = 0, (2) is to be interpreted as the derivative 
of (1) . 

The procedure of Cowling and Royster was based on the observation that 
f(z) = z + XX=2 dn

zn is univalent in \z\ < 1 if and only if for all a such that 
0 ^ \a\ rg 1, a 9e 1 the function 

m^TM = S bn{a)zn 

is regular in the unit disk. In conclusion they mentioned that although it would 
be of interest to obtain the precise region of variability of (a2, ak) for the 
univalent trinomial z + a2z

2 + akz
k, for k > 3, their method yielded only 

incomplete results in that direction. 

In the present paper wre take up this problem proposed by Cowling and 
Royster. We also consider arbitrary trinomials 

(3) z + avz* + aqz\ (p < q). 

Trinomials of the form z + avz
v + a2p^z2p~'1 were studied by Ruscheweyh 

and Wirths [12] and by Rahman and Szynal [11]. 

1. Basic theorem. Let us denote by V(p, q) the region of variability of 
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9 Q. I. RAHMAN AND J. WANIURSKI 

(ap, aq), ap Ç C, aq £ C for trinomials of the form (3) to be univalent in 
\z\ < 1. I t is clear tha t (av, aq) G V(p, q) if and only if 

(ape* (p-1)a, aqe^q-l)a) Ç F (£ , g) for every real a. 

So in order to determine the region V(p, q) we may restrict ourselves to the 
case aq > 0. Besides, for sake of simplicity we will write t for aq. Of course t is 
to vary in (0, l/q]. Finally, we find it more convenient to write the trinomial 
in the form z — avz

v + tzq which involves no loss of generality. 
Throughout the paper the value of an expression like (sin qd/s'm 6) a t a zero 

of sin 6 will be defined by continuity. 
If 0 < t < l/q then the curve 

(4) w(cp) = e-i{v-x)« + t - ~ ^ - eiiQ-p)^ 0 g <P ^ 2ir 

does not pass through the origin. The same is t rue if / = l/q provided 6 ^ 0 
(mod7r). Using s tandard terminology (see for example [1, p . 116]) we then 
denote the region determined by the curve (4) and containing the origin by 
Ge = Ge(p, q, i). By Go(p, q, l/q) we will mean the interval [ — 2, 2] if q = 
2p — 1 and {0} otherwise. 

T H E O R E M 1. The trinomial 

(5) ft(z) = z - apzv + tz\ (p <q,0 <t ^ l/q) 

is univalent in \z\ < 1 if and only if 

fa\ r rs sin 0 ^ 
(6) ap e Pi SZTn Ge-^e^r/2 s'mpO 

ir/p for 6 = ir/p, 2-w/p, . . . , 

sin 6 -
-. — ire — v>«. 
sin pd 

Proof. By the Dieudonné criterion ft(z) is univalent in \z\ < 1 if and only 
if for every 6 £ [0, T/2] the associated polynomial 

(7) 1 — ~ — avz + t --—- z 
sin 6 sin 6 

does not vanish in \z\ < 1. Since (7) is different from zero a t the origin we 
conclude tha t a necessary and sufficient condition for ft(z) to be univalent in 
\z\ < 1 is t ha t for every 6 in [0, ir/2] the function 

1 sin pd sin qd q-P 

z sin 0 sm 6 

does not vanish in 0 < \z\ < 1. 
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UNIVALENT TRINOMIALS 3 

The function 

/ \ 1 . .sin qO Q-p 

zv sin 0 

maps 0 < \z\ < 1 onto the complement of Ge with respect to the complex 
plane C. For 0 < t < 1/q as well as for t = 1/q bu t 6 ^ 0 (mod7r) this is seen 
by applying the argument principle to the function 

(l/œ(z) iîz^d 
m ' = \ 0 iîz = 0 

which is analytic in \z\ < 1. If t = 1/q and 6 = 0 then clearly w(z) maps 
0 < \z\ < 1 onto C \ [ - 2 , 2] in case q = 2p - 1. If t = 1/q and 0 = 0 bu t 
g ^ 2p — 1 then we have to show tha t u(z) maps 0 < |JS| < 1 onto C\{0} , i.e. 

assumes every complex value c ^ 0 in 0 < |s| < 1. This is true if and only if 
the trinomial 

g(z): = z«~l - czv~l + 1, (q j* 2p - 1) 

has a t least one zero in \z\ < 1. Suppose, if possible, t ha t g(z) does not have 
any zero in \z\ < 1. Since the coefficient of zQ~l is equal to the constant term, 
it mus t then have all its zeros on \z\ = 1. Consequently 

z*-*g{l/z) = g(z), 

and so 

czv~l = czQ~p, 

which is impossible since q 7e 2p — 1. 
I t follows tha t (8) does not vanish in 0 < \z\ < 1 if and only if 

(sin pd/sin 6) ap £ Ge, i.e. ap G (sin 6/sin pd) Ge. Thus ft (z) is univalent in \z\ < 1 
if and only if 

ap£-^LGe for all ^ [0, TT/2] sin pd 

and hence the result. 

Although the equation of the curve which determines the region Ge is ra ther 
simple it is not easy to identify the intersection 

(9) D(t,p,q)= H z—Ge 
ô 0̂ 7r/2 sin pu 

in general. The following lemma helps us to get a simpler description of the 
region D(t,p, q). 
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4 Q. I. RAHMAN AND J. WANIURSKI 

LEMMA 1. Let F(z, x) be a complex valued function of z {complex) and x 
{real) having the following properties: 

(i) there exists an absolute constant a > 0 such that for each x belonging to the 
interval I\ = {x: a < x S b], F(z, x) is analytic in the annulus 

Aa: = {z: 1 - a < \z\ < 1 + a], 

and is univalent on the arc 

yx: = {z = el«\ <px(x) g <p ^ ^(x)], 

where ipi(x), <p2(x) are continuous functions of x satisfying 0 < <pi(x) — 
(Pi(x) < 2T. 

(ii) for each z0 lying on yxo where x0 is an arbitrary point of I there exists a 
left-hand neighbourhood 

N(x0;d(zQ)): = {x: x0 — 5(zQ) < x ^ x0\ 

of Xo in which (dF/dx), (d2F/dx2), (d2F/dxdz) exist and are bounded, 
(iii) there exists an absolute constant M such that for all x £ I and z Ç Âar2, 

\F(z,x)\ < M. 

For each x (E / , let Cx be the arc 

w = F(eiip, x), <pi(x) g if ^ <pi{x). 

Now, if 

(10) Re[-fxF(z,x)/{zfzF(z,x)} > 0 

for all x d I, z Çz yx, then two arcs CXI, CX2 where X\ £ / , x2 (z I do not intersect 
each other if \xi — x2| is sufficiently small. 

The above lemma is similar to a lemma of Bielecki and Lewandowski [2]. 
In this connection also see [10, p. 159]. 

Proof. For a given x0 in (a, b] we investigate the position of the curve Cx 

relative to Cxo as x decreases away from Xo. Let F(z0, x0) be an arbitrary point 
on the arc Cxo. For all z in the disk {z: \z — z0\ < a/4} and for all x £ I, we 
have [5, pp. 72-73] 

dF 
F{z, x) = F(z0, x) + (z — so) — (zo, x) + 

dz 

/ N2 1 f F(W,X) 
(z — so) ^—: I 7 zrr \ dw-

IlTlJ |w_20 |=a/2 (W - Zo) {W - Z) 
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UNIVALENT TRINOMIALS 5 

Thus , in particular, if x Ç N(x0; 5(z0)) then there exist tx, rx in N(x0; 5(z0)) 

such tha t 

F(s, x) = F(z0, xo) + (x — xo) — (z0} xo) + —} (x — xo)2 ---2 (so, O 

ai 7 à2/7 

+ (z - Zo) — (z0} xo) + (z - Zo) (x - xo) - - — (zo, rx) oz ox oz 

+ (z - zo) T>~ I T~. Tvh~. IT dw-

Consequently 

,2_j._ r F(W,X) 
2iri J \w_ZQi=a/2 (w — z0)

2(w — z) 

dF dF 
F(z, x) = F(z0, xo) + (x — xo) — (zo, x0) + (z — z0) — (z0, xQ) 

+ O(\x-xo\2) + O(\z-z0\
2). 

From this it readily follows tha t if (10) holds then, provided x < x0 and 
\x — x0\, \z — z0\ (where z0 G yXQ, z G yx) are sufficiently small, we have 

Re Ei^pJ^^A <0. 
Zo ~r~ {Zo, Xo) 

oz 

This means tha t the angle between the vector F(z, x) — F(z0l x0) and the 
vector N normal (where the normal vector is supposed to be 90° behind 
the tangent vector) to CXQ a t the point F(z0, x0) is greater than T/2. Therefore, 
the arcs Cx being all simple, Cx cannot intersect CXQ if x < x0 and \x — x0\ is 
sufficiently small. 

Rider. In our applications the arcs CX1 except for the end points, remain 
confined to the interior of a fixed angle a\ < \p < ai of opening < 2T. Each arc 
has its initial point on \p = a2 and its terminal point on \p = «i- In such a 
si tuation if the conditions of Lemma 1 are satisfied, then the arcs Cx being 
locally disjoint, the sectors Sx determined by the angle and the arcs C^ form 
a monotonie family of domains. As a consequence, we obtain 

Obviously, the conclusion remains valid if (10) fails to hold for x = b and 

z = ei(pi(b\ ei<p2w as long as 

\F(eW\ b)\ < \F(e^i(-x\ x)\, \F(e^b\ b)\ < \F{e^^x\x)\ 

for a < x < b. 

Since trinomials of the form z — avz
v + tzq, (q = 2p — 1) have already been 

studied by Ruscheweyh and Wir ths [12] and by Rahman and Szynal [11] we will 
only consider the case q T6- 2p — 1. 
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6 Q. I. RAHMAN AND J. WANIURSKI 

From Theorem 1 it follows t h a t for t = 1/q the trinomial z — apz
v + tzq, 

(q 9e 2p — 1) is univalent in \z\ < 1 if and only if ap = 0. So, in our s tudy of 
such trinomials we will restrict ourselves to values of t £ (0, 1/q). 

Since the region Ge is determined by a curve of the form 

(11) w(<p) = w(b, <p) = e-'(p-i)* + be^-n*, 0 g <p g 2TT 

where — fr0 ̂  & < 1 with 0 < bo < 1, let us s ta te some of the impor tan t 
properties of the curve Tb defined by (11). 

P i : Since w(<p + 2ir/(q — 1)) = w(v?) exp (i2(q — p)ir/{q — 1)), a point w 
lies on Tb if and only if w exp (i2(g — p)ir/(q — 1)) does. 

P 2 : Since w((p) = w(27r — <p), a point w lies on Tb if and only if its conjugate 
does. 

P 3 : If b > 0, then 

max |w(&, <£>) | = > M T ) = 1 + 6 , 5 = 0 , 1 , 2 , 

min |w(6, (p)\ = 1 7 2 5 - X 

g - 1 
= 1 - b, s = 1 ,2 ,3 , 1. 

2. Descr ip t ion of t h e i n t e r s e c t i o n D(t, p, q). In order t h a t our method 
may not get obscured due to complicated expressions entering into our cal­
culations we first consider trinomials of degree 4. 

2.1. Polynomials of the form z — a2z2 + /z4, 0 < t < 1/4. In this part icular 
case the curve Tb defined by (11) has the following additional properties. 

P 4 : Since e~iirn w(<p) = e~iir/* W((£T/3) — <p) the curve Tb is symmetrical 
about the line arg w = 7r/3. 

P 5 : Since w( — b}cp) — — w(b, ç + IT) the curve T_& is the reflection of Tb 

in the imaginary axis. 
P 6 : If \b\ < 1/2 then <pi ^ <p2 implies w(&, <pi) ^ w(b, <p2). 
P7: For |6| < 1/4, the tangent to the curve Tb turns monotonically in the 

clockwise direction as <p increases from 0 to 2T, and hence the bounded region 
Ab determined by r 6 is convex (the region Ab is convex also for b = 1/4). T h e 
region is not convex if \b\ > 1/4 bu t it is star-shaped with respect to the 
origin provided \b\ ^ 1/2. If b > 1/2 then the tangent to the curve Tb tu rns 
monotonically in the counterclockwise direction as <p increases from 0 to 2TT. 
The region Ab determined by Tb and containing the origin is star-shaped with 
respect to the origin. T h e boundary of Ab consists of three congruent regular 
arcs. I t has three corners which lie a t the points b"1 — b, (b~l — b)e2irin and 
(6 _ 1 — b)eAlTin. Depending on the range in which /; lies the curve r& looks 
roughly as sketched in Figures 1, 2, and 3. 
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UNIVALENT TRINOMIALS 7 

FIG. 1 (0 < b < 1/4) FIG. 2. (1/4 < b < 1/2) FIG. 3 (b > 1/2) 

We are now in a position to s tudy the region 

<fcg*<T/2 2 COS 0 

Taking into account the properties of the curve Tb mentioned above we see 
tha t the boundary of the region (1/2 cos 0) Go is described by the moving point 

2 cos 0 \ sin 0 / 

as <p varies from 0 to 2w provided t\s'm 40/sin 0| ^ 1/2, whereas if 1/2 < 
t sin 40/sin 0 < 1 then <p is to vary over the union of the intervals 

h = [(k - 1 )2TT/3 + *>„, k2r/S - <pol k = 1, 2, 3 

where <̂o is the unique root of the equation 

(12) Im W(<p) = 0 

in (0, TT/3). Note tha t 

mino^<7r/21 sin 40/sin 0 ^ - V 6 / 9 > - 1/2 

which excludes the possibility 

- 1 < / s in 40/sin 0 < - 1/2. 

Now let us determine the intersection of D(t, 2, 4) with the real axis. I t is 
an interval [x~ (t), x+(t)] where x~(t) < 0 < x+(t). If {x: xe~~ < x < xe

+] is 
the intersection of (1/2 cos 0) Go with the real axis then for all 0 £ [0, ir/2) 

- _ l _ ( i _ , s in4f l \ 
Xd ~ 2 cos dV s i n * / " 
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8 Q. I. RAHMAN AND J. WANIURSKI 

Since max0^<,/2 xc = xQ~ we obtain 

x~(t) = - ( 1 - 40/2 , 0 < t < 1/4. 

On the other hand 

;2cos6>\ 

V2 cos 0 \ 

1 + Z ^ J iH 
sin 

sin 4(9 
sin 0 ^è 

sin 6 / s i n 40 \ .r - ^ sin 4(9 . 
it è < / - T — - < 1. 

t sin 4(9 sin 6 / l sin (9 

The inequality /|sin 40/sin 0| = 1/2 necessarily holds if / c (0, 1/8] and a 
simple calculation gives us 

+ / i ( l + 4/) if 0 < / g 1/16 
( 1 3 ) o^<?,2^ = U { 3 ( 2 / ) 1 / 8 - 4 * } if 1/16 ^ / £ 1/8. 

If £ G (1/8, 1/4) and we denote by 6 = at the only root of the equation 

/ sin 40/sin 0 = 1/2 

in (0, 7r/2), then it is easily seen that 

a{3 (2*) 1 / 8 -4 /} if 6 6 [«„ T / 2 ) 

, 2 U / 4ij i f e € [ 0 , a ( ) . 

Consequently 

a{3(2/)1 / 3 - 4/} i f | < / ^ è ( è ) 3 / 4 

(14) min * / = III 1 \ 3/4 ! 
ô 0<7T/2 ( 2 \ 4 7 ~ / ^ ^ *' 

The following theorem sums up the above conclusions. 

THEOREM 2. The trinomial 

(15) /,(z) = z - a2z
2 + /24, a2 e R, 0 < / g 1/4 

is univalent in \z\ < 1 if and on/^ if 

/ i 
U ( l + 4 / ) it 0 < / ^ 1/16 

- è ( l - 40 g a2 g <è{3(2/)1/3 - 4/} if 1/16 g t g è( l /6) 3 / 4 

lè((4/)-1 - 4/) if è(V6)3 / 4 ^ / è 1/4. 

COROLLARY 1. if the trinomial (15) is univalent in \z\ < 1 /Aen 

H g J63/4 - 6-3/4. 

Now we will use Lemma 1 to obtain a simpler definition of the region 
Z>(/,2,4). 

Let t G (0, 1/4) be fixed. According as / belongs to (0, 1/8] or to (1/8, 1/4) 
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UNIVALENT TRINOMIALS 9 

we choose e arbitrarily in (0, 1) and in (0, (16/)~~1/3) respectively. We then 
apply Lemma 1 (also see the rider) to the function 

F(z,x): = (2x)-l{z~l + 4/x(2x2 - l)z2} 

where x varies over (e, 1] or (e, (16/)~1 /3j according as / Ç (0, 1/8] or 
t G (1/8 , 1/4) respectively, and the arc {z = ei(f>: 0 g <p S 27r/3} is taken for 
yx. Computing (dF/dx), (dF/dz) we see tha t (10) is equivalent to 

(16) 1 + 128/2x4(2x2 - 1) - 8/x(4x2 - 1) cos 3<̂  > 0, 0 g <p ^ 2TT/3 

which is easily seen to hold for 0 < x S 1 if 0 < / < 1/16. I t also holds if 
/ = 1/16 and 0 < x < 1. If t = 1/16 and x = 1 then it holds only in the open 
interval 0 < <p < 2TT/3 bu t | F ( 1 , 1)| < \F(l,x)\, \F(e2*i/z, 1)| < \F{e2vil\x)\ 
for e < x < 1. If 1/16 < / < 1/4 then (16) holds for 0 < x < ( 1 6 0 " 1 / 3 

whereas for x = (160~ 1 / 3 it holds only if 0 < <p < 2T/3. But, again 
| F ( 1 , 1)| < | F ( 1 , x) | , \F(e2iri/\ 1)| < \F(e2*i/s, x)\ for e < x < ( 160" 1 / 3 . Hence 

1 _ J 2 W U if 0 < t g 1/16 

n 7 , - — , ^ if i / i 6 < t < i / 4 . 
deo-^^cos^ i 2 c o s 0 

This, in fact, implies tha t 

UGO ifO < t ^ 1/16 
Dit *>• 4) = \ 1 

^ *" ; O 7,-^-^0 if 1/16 < t < 1/4, 
' O<0<0ft ^ COS 6 

where #o is the unique root of the equation 

(17) cosfl = ( 1 6 0 " 1 / 3 

in (0, 7r/2). We can do better when / > 1/8. In tha t case, if x satisfies 

X: = 8/x(2x2 - 1) = 2 / s i n 4 0 / s i n 0 > 1 

then for yx we have to take the arc 

{z = el*\ <p0 g cp è 2?r/3 - <£>o} 

where <po is the only root of (12) in (0, 7r/3). Condition (10) is equivalent to 

(16') 1 + 128/2x4(2x2 - 1) - 8/x(4x2 - 1) cos 3 ^ > 0, <pQ S <P ^ 2TT/3 - v>o. 

I t holds since the left-hand side is larger than (16/x3 — l ) ( x — 1) and hence 
positive. Thus for 1/8 < / < 1/4 

£ ( / , 2 , 4 ) = { O 7T^TG9\n%Go 

where 0\ is the unique root of the equation 

(18) 8/(cos0)(2cos20 - 1) = 1 

in (0, TT/2). 
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10 Q. I. RAHMAN AND J. WANIURSKI 

Finally, we observe tha t if (1/4) (2 - V 2 ) 1 / 2 ^ t < 1/4 then for dl g 0 ^ 0O, 

2 cos 0 

so tha t for such values of /, 

D(t, 2 , 4 ) = |G 0 . 
Since 

| C 7 0 Ç {w: |w| g è((4/)~ 1 - 4/)} and 

\w : \w\ g - - - - - (1 - 4/(cos 0) |2 cos2 0 - 11) ? C - - - - - - - Ge 
{ 2 cos 0 ; 2 cos 0 

we simply check tha t 

(19) (4/)" 1 - 4/ g x~l(l - 4/x|2x2 - 1|) if 

(20) 1 g 16/x3 g 1 + Stx. 

Case (i). If * g 1 / V 2 then \2x2 - 1| = 1 - 2x2 and (19) becomes 

( 4 0 _ 1 ^ x - 1 + Stx2 

which is easily seen to be true. 

Case (ii). If x > 1/y/2 then \2x2 - 1| = 2x2 - 1 and (19) becomes 

(4*)-1* - 8/x + Stx's ^ 1. 

In view of the second inequality in (20), this certainly holds if 

x ( ( 4 / ) - 1 - 4/) S i 

Hence if x*(t) denotes the unique root of the equation 

(18') 16/x3 - (1 + Stx) = 0 

in (0, 1) then it is enough to verify tha t 

x*(t) ^ 2 / / ( l - 16/2). 

Replacing x by 2 / / ( l — 16/2) in (18') we see tha t the left-hand side is non-
negative if (1/4) (2 - \ / 2 ) 1 / 2 S t< 1/4 and hence (19) holds. Wi th this we have 
proved the following. 

T H E O R E M 3. The trinomial z — a2z
2 + tz4, 0 < / ^ 1/4 is univalent in 

\z\ < 1 if and only if 

(i) a2 e \G« in case t Ç (0, 1/16] U [ ( l /4 ) (2 - y/2)1'*, 1/4], 

(ii) a2 6 {H(Î I^^<?O(2 cos (6))~lGe} H \Go in case 

t 6 (1 /8 , ( l / 4 ) ( 2 - V2) 1 / 2 ) , 

(iii) a2 Ç P l o ^ ^ o ( 2 c o s (6))-lGe in case t Ç (1/16, 1/8), 

where 0O, 0i «re /&<? unique roots in (0, 7r/2) 0/ (17), (18) respectively. 
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UNIVALENT TRINOMIALS 11 

2.2. Polynomials of the form z — a3s3 + fe4, 0 < / < 1/4. Again, the curve I \ 
defined by (11) has, in addition to the properties P\, Pi, P,u the property P 4 

since 

e~iir/3w(<p) = e-i7r/'sw(2T/3 - <p). 

However, this time the trace of T_b is the same as tha t of rft. In fact, 

w( — b, <p) = w(b, cp + TT). 

As ip increases from 0 to 2ir the tangent to the curve Tb described by the moving 
point 

w(cp) = e~2iv + hey 

turns monotonically in the clockwise direction. The curve cuts itself in the 
points (1 — b2)e~irn, —1 + b2, (1 — b2)eiirn denoted by A, B, C respectively, 
in Fig. 4. The region Ab determined by Tb and containing the origin is convex 
and its boundary consists of three congruent regular arcs, namely AB, CA, 
BC. The arcs AB, CA, BC are symmetric about arg w = — 2TT/?>, arg w — 0, 
arg w = 27J-/3 respectively. Now we have to make a distinction according as b 
is positive or negative. If 0 < b < 1 and <p0 denotes the root of the equation 

(21) cos if = b/2 

in (71-/3, 7r/2) then the arc AB is described as <p increases from 2w/3 — <p0 to <p0 

whereas the arcs CA and BC are described as <p increases from 47r/3 — <fo to 
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12 Q. I. RAHMAN AND J. WANIURSKI 

n irrir»Ge=iGo. 

2T/3 + Co and from 2x - <£0 to 47r/3 + <p0, respectively. If & < 0 the initial 
point of the curve I \ is P and the arc PA is described as <£ increases from 
0 to 27r/3 — <pi where <pi is the root of the equation (21) in (TT/2, 2w/3). 

Now we are in a position to determine the intersection 

£ ( / , 3 , 4 ) = H f~9Ge. 
O ^ ^ T T / 2 s i n 0(7 

0^7r/3 

First , we use Lemma 1 to show tha t 

sin 0 

0^0^74 sin 30 

Note tha t Ge is determined by the curve 

w(<p) = e-2** + 4/x(2x2 - l)e^, (x = cos 0) 

where 0 g 4/x(2x2 - 1) < 1. Besides, (sin 0/sin 30) = (4x2 - l ) " 1 > 0. Hence, 
setting 

^(z , *) = (4x2 - l ) - 1 } ^ - 2 + 4/x(2x2 - l)z} 

it is enough (in view of (21) and the various symmetries of the region 
(sin 0/sin 36)Ge) to show tha t (10) holds for 1 / V 2 g x ^ 1 and 

2 = e1*, 2TT/3 - ^o ^ <P g ^o 

where <po is the root of 

cos <p = 2/x (2x2 — 1 ) 

in (71-/3, 7r/2). T h u s we have to verify tha t 

2x{l + /2(2x2 - l ) (8x 4 - 2x2 + 1)} - /(16x4 - 6x2 + 1) cos Sep > 0 

for 0 < / < 1/4, 1 / V 2 g x g 1 and 2TT/3 - <p0 ^ <p ̂  <p0. But this is clearly 

t rue since cos 3 ^ < 0 for <p Ç [27r/3 — <̂ o, <£o] and 2x{l + t2(2x2 — 1) 
(8x4 - 2x2 + l ) j , /(16x4 - 6x2 + 1) are both positive for 0 < / < 1/4, 
1 / V 2 ^ x ^ 1. Next, we note tha t \Go is contained in (sin 0/sin 30) Ge for 
all 0 e (TT/4, TT/2]. In fact, for 0 Ç (TT/4, TT/2] we have 

\G»Q{w:\w\ ^ l ^ - ^ ) } C ^ - ~ G e . 
sin 6u 

Hence 
sin 0 ^ 

30 

T h u s we have proved the following. 

T H E O R E M 4. The trinomial z — a3s3 + tz4, 0 < / rg 1/4 is univalent in 
\z\ < 1 if and only if 

a* 6 3C0 

H ^ T ~ ^ = i G o . 
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UNIVALENT TRINOMIALS 13 

where Go is the region determined by the curve 

w((p) = e-2i* + Uej« 

and containing the origin. 

COROLLARY 2. If the trinomial z — a^ + tz4, 0 < / ^ 1/4 is univalent in 
\z\ < 1 then 

|a3| S M l - 16/2), - i ( l - W2) ^ Re «3 g H I ~ 40-

Now we wish to discuss univalent trinomials of degree 5. Since trinomials of 
the form z + a3s3 + /s5 have already been studied in [12] and [11] we will 
consider those of the forms z + a2z

2 + tzb and z + aAz4 + /s5. 

2.3. Polynomials of the form z — a2z
2 + te5, 0 < / < 1/5. In this case the 

curve r 6 defined by (11) is symmetrical about the lines arg w = 0, arg w = 7r/4, 
arg w = 7r/2. The situation is in some sense analogous to tha t in 2.1. I t turns 
out tha t 

J5 ( / , 2 ,5 ) = f W < . / 2 ( 2 cos 0 ) - i & 

where the boundary of the region Go is described by the moving point 

W(if) = e>-*> + t (sin 50/sin # ) ^ v 

as (p varies from 0 to 2T in case /|sin 50/sin 0| ^ 1/3 and over the union of the 
intervals 

Ik: = l(k - 1)TT/2 + <pQ, kir/2 - <p0], k = 1, 2, 3, 4 

if 1/3 < t (sin 50/sin 0) < 1, <p0 being the unique root of the equation 

Im W(<p) = 0 

in [0, TT/4]. Note tha t min0^<>/2 * (sin 50/sin 0) ^ - 1/4 > - 1/3 which 
excludes the possibility — 1 < t (sin 50/sin 0) < — 1/3. 

Let us determine the intersection of D(t, 2, 5) with the real axis. I t is an 
interval [x~(t)} x+(t)] where x~(t) = — x+(t). If (xe", xe

+) denotes the 
intersection of (2 cos 6)~lGe with the real axis then 

I - ( i + ̂ f ) i f / |^f I <i 
2 cos 0 \ sin 0 I I sin $ \ ~ 3 

(l+)^)1/2(l-/^f) ifè<^?<l. 
\ / sin 00/ \ sin 0 / sin 0 

2 cos 0 

Sett ing cos 6 = x and 
g(x) = (2x)~1( l + ^(16x4 - 12x2 + 1)1 

-xe = x6
+ = 
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14 Q. I. RAHMAN AND J. WANIURSKI 

we see that in case /|sin 50/sin 6\ ̂  1/3, 

jg(l) i f O < ^ | : 
min Xe+ = \ 1 

< * < ̂  |g(**) i f | : 

where 

1 , 1 
** = 18 

Imin \g(x*), Xo+j if 1/35 < t < 1/5, 

1 / 12\1/2V /2 

On the other hand, if 1/3 < t (sin 50/sin 6) < 1, then 

minx*+ = Xo+ - è(l - 5/)(l + (5/)" l)1 /2 . 

Thus 

x+(t) = 

and we have the following. 

THEOREM o. A necessary and sufficient condition for the trinomial 

ft(z) = z + a2z
2 + tz\ a2 e R, 0 < / g 1/5 

to be univalent \z\ < 1 is that 

H I + 50 ifO < t g 1/35 

4 + /(l-j/21+f) 
' a 2 | = ( / / 7Ô\ l /2 (è + i i /ÏTf) 1 

where to = 0.0726 . . . is the unique root of the equation 

m (1/15, 1/5). 

Next, we prove 

THEOREM 6. For 0 < t g 1/35 we fta^ 
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Proof. We apply Lemma 1 (along with the rider) to the function 

F(z,x) = (2x)-l{z~l + /(16x4 - 12x2 + l ) s 3 } , 

where x varies over ( ( \ / 5 + 1/4), 1] and the arc {z = ei<p: 0 g <p ^ 7r/2j is 
taken for yx. I t turns out tha t (10) is equivalent to 

(22) 1 + 3/2(48x4 - 12a;2 - l ) (16x 4 - 12x2 + 1) 

- 2/(48x4 - 24x2 + 1) cos 4<p > 0, 0 è v è TT/2 

which is easily seen to hold for ( \ / 5 + l ) / 4 < x fg 1 if 0 < / < 1/35. I t also 
holds if t = 1/35 and (y/5 + l ) / 4 < x < 1. But for / - 1/35 and x = 1 it 
holds only in the open interval 0 < <p < T/2. However, \F(1, 1)| < 1^(1, x ) | , 
\F(e^/2, 1)| < \F(e^/2, x ) | for (VE + l ) / 4 < x < 1. Therefore, for 0 < t ^ 
1/35 we have 

D(t}2,5) = { n . / 5 ^ ^ / 2 ( 2 c o s ^ ) - 1 Q } n ±G„. 

Further , it can be easily verified tha t if 7r/5 S 0 < w/2, 0 < t ^ 1/35, then 

^Go C {w: M è è ( l + 50) C {w: |w| ^ (2x ) - 1 ( l ~ ^ 6 x 4 

- 12x2 + 1|)| C ( 2 c o s ^ ) - 1 G 0 , 
so tha t (22) holds. 

For t > 1/35 the definition of the region D(t, 2, 5) can be simplified as in 
2.1 and an interested reader may carry out the calculations himself. 

2.4. Polynomials of the form z — a4s4 + te5, 0 < t < 1/5. The curve Yb 

defined by (11) is symmetrical about arg w = 0, arg w = 7r/4 and arg w = 
7r/2. A S <p increases from 0 to 2T the tangent to the curve turns monotonically 
in the clockwise direction. The curve Tb cuts itself in eight different points and 
for positive b it looks roughly as sketched in Fig. 5. The curve T_ft is obtained 
on rotat ing the curve r 6 b y 4 5 ° . The same is true of the region A_& determined 
by T_& and containing the origin. For positive b the region Ab is bounded by 
four congruent arcs and has four corners which lie on the real and imaginary 
axes. One of the four bounding arcs is described as <p increases in (0, ir/2) from 
arc cos | \ / 3 — b to arc cos ^\/\ + b. Fur ther 

m'mwedAb\w\ = I - b, maxw€Ab\w\ = (1 - b)(l + b)l/2. 

Now we are in a position to showr tha t in the present case the r ight-hand side 
of (9) is jGo. I t is clearly enough to show tha t 

(23) P1O^0<TT /2G9 = Go-

First we prove tha t 

Plo^fl^Tr I'ÔGQ — GQ. 

For this we apply Lemma 1 to the function 

F(z, x) = s~3 -f £(16x4 - 12x2 + l)z 
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16 Q. I. RAHMAN AND J. WANIURSKI 

FKIUUK 5 

where (y/~5 + l ) / 4 < x g 1 and the arc 

\z = e**: TT/6 < arc cos W& ~ ^(16x4 - 12x2 + 1) g ^ 

^ arc cos Wl + ^(16x4 - 12x2 + 1) < TT/3} 

is taken for yx. Condition (10) turns out to be equivalent to 

(8x2 - 3){/(16x4 - 12x2 + 1) - 3 cos 4^} > 0 

which is easily verified. 
Next we observe tha t 

Go Q \w: \w\ g (1 - 5 0 \ A + ^ 1 

C \w: \w\ g 1 - /|16x4 - 12x2 + 1|) C Ge 

if 0 < cos 6 = x ^ ( \ / 5 + l ) / 4 , which completes the proof of (23). 
T h u s wre have the following. 

T H E O R E M 7. The trinomial z — a4z4 + tz'\ 0 < t S 1/5 is univalent in \z\ < 1 
i/ and only if 

where Go is //ze region determined by the curve 

w(<p) = e~3^ + 5te*«\ <̂  G [0, 2TT] 

and containing the origin. 
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COROLLARY 3. If the trinomial z + mzA + te5, 0 < t ^ 1/5 is univalent in 
\z\ < 1 /ftew 

|a4| ^ 1(1 - 50\ZT+~5*. 

3. Remarks and applications. 

3.1. So far we have restricted ourselves to the trinomials of small degree. 
In general it is very difficult to say anything more than what is given in 
Theorem 1. Jus t as the special case q = 2p — 1 was handled by Ruscheweyh 
and Wir ths [12] and by Rahman and Szynal [11] we can extend our earlier 
reasoning to the cases g = Sp — 2; q = 4/> — 3. In fact, if q — p = l(p — 1), 
where / = 2, 3, 4, etc., then the region Ge appearing in (6) is determined by 
the curve 

wty) = e~* + t ~ ^ e i l \ xp e [0, 2T] 
sin 6 

and for / = 2 and 3 the determination of the coefficient region for ap can be 
carried out in much the same way as in 2.1 and 2.3. 

3.2. In situations where the coefficient region D(t, p, q) has been satisfac­
torily determined we can find the Koebe constant of the family of univalent 
polynomials (5) by calculating the distance between the boundary of D(t, p, q) 
and the curve 

w(<p) = e-&-l)i* + te{q-p)iip, if G [0, 2TT]. 

3.3. Our reasoning can be used to determine the coefficient region for 
meromorphic univalent trinomials of the form 

z-1 + apz
p + aqz\ 

Instead of Theorem A of the Introduction wre will have to use Lemma B of 
[4] where the corresponding criterion for ixn{z) = z~l + a\Z + . . . + anz

n to be 
univalent in 0 < \z\ < 1 is given. 

3.4. I t is an open question if for every function f(z) = z + a2z
2 + . . . 

univalent in \z\ < 1 the integral 

(24) \ P/(r)# 
z J o 

is also univalent in \z\ < 1. In [8] the answer wras shown to be affirmative for 
polynomials of degree a t most 5. Our s tudy of the coefficient region of (ap, aq) 
for univalent trinomials of the form 

/ (*) = z + avz
v + aqz\ p <q 

helps us to answer the above question for such functions. 
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T H E O R E M 8. If f(z) is a normalized univalent trinomial in the unit disk then 

so is (24). 

Proof. In view of Theorem 3 in [8] we may assume q ^ 6. Clearly we may 
suppose 0 < / = aq ^ 1/q. Then we have to prove 

lD(t,p,q)CD(-^ri,p,qy 

(25) - - f - r max |w| £ mm |w| = - ^1 - ~ J j f j ) • 

I t is certainly enough to prove tha t 

2 

P + 1 wedD(t,p,q) ~ wtdD(21 /(<Z+1) ,p,q) P \ Q + 

Using the crude upper est imate 2/p for 

(26) maxw € Ô D (^P ) Ç ) |w| 

we see tha t (25) holds for p ^ 5 and p = 4, g ^ 9. 
In case £> = 3, q ^ 7 we may use 

sin (Tr/Wsin (Sir/tf) ( < ±) 

as an upper bound for (26) to get through. 
If^> = 2, q ^ 6 we consider two cases: 
Case (i). 0 < t ^ l/q(q — 3). The inequality (25) holds if we again use 

2/p as an upper bound for (26). 
Case (ii). l/q(q — 3) < t S 1/q. In this case the curve 

W(ip) = e-** + tqe«-2)i*, <p 6 [0, 2TT] 

cuts itself since l/(<7 — 2) < tq, and as an upper es t imate of (26) we may take 

| [cos <p0 + tq cos (q — 2 )^ 0 ] , 

where <pQ £ (w/2(q — 2), IT/(q — 2)) is the unique root of the equation 

Im W(<p) = 0. 

Since cos ((/ — 2 )^ 0 < 0 we have \ [cos <£>0 + tq cos (ç — 2)<^0] < \ and (25) 
is easily seen to hold if we take \ as an upper bound for (26). 

By a relatively careful s tudy of the coefficient region D(t, p, q) in cases 
(p = 3, q = 6), (p = 4, q = 6), (p = 4, g = 8) we see t ha t as upper est imates 
for (26) we may take V 2 / 3 , VÏÏ /4 , V 3 7 / 1 6 respectively and (25) holds. 

The last case p = 4, q = 7 can be settled by essentially the same reasoning 
as used in [8] for the proof of Theorem 3. 

In fact if f(z) = z + a4s4 + tz7 is univalent in \z\ < 1 then 

for 0 ^ 0 ^ TT/2. 

Now taking g(f ) = 1 + 2 • ff + Jf2 which does not vanish in |f | < 1 we see 

https://doi.org/10.4153/CJM-1980-001-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-001-0


UNIVALENT TRINOMIALS 19 

by a well known result (see [9], Corollary (16, la) on p. 66) that the polynomial 

rw ^ /. x „ , ^ 1 sin 40 «_ , 1 sin 70 f(_2 

does not vanish in |f | < 1 for 0 ^ 0 ^ 7r/2. Hence also 

, , 2 sin 40 3 , t sin 70 6 1 + - - -—- aAz + ~ --—- z 
5 sin 0 4 sin 0 

does not vanish in \z\ < 1 for 0 ^ 0 :g 7r/2. By the Dieudonné criterion the 
polynomial 

, 2 4 , * 7 2 f 
z + - a 4 s + 7 2 = - F 

5 4 2 Jn /m 
is univalent in |z| < 1. 

From 

^ ( / , ^ g ) C - - | - T - ^ ( / , ^ , g ) 

in conjunction with (25) and 

min \w\ < min 
wedD(2t/(q+l),p,q) wedD( t/q,p,q) 

it follows that 

and hence we also have the following. 

THEOREM 9. If the trinomial f(z) = z + avz
v + aQzQ, p < q is univalent in 

\z\ < 1 then so is 

/ , o S 

REFERENCES 

1. L. V. Ahlfors, Complex analysis (McGraw-Hill, New York, 1966). 
2. A. Bielecki et Z. Lewandowski, Sur certaines familles de fonctions a-étoilées, Ann. Univ. 

Mariae Curie-Skfodowska, Sectio A, 15 (1961), 45-55. 
3. D. A. Brannan, On univalent polynomials and related classes of functions, Thesis, University 

of London, 1967. 
4. Coefficient regions for univalent polynomials of small degree, Mathematika 1/+ (1967), 

165-169. 
5. E. T. Copson, An introduction to the theory of functions of a complex variable (Oxford 

University Press, 1935). 
6. V. F. Cowling and W. C. Royster, Domains of variability for univalent polynomials, Proc. 

Amer. Math. Soc. 19 (1968), 767-772. 
7. J. Dieudonné, Recherches sur quelques problèmes relatifs aux polynômes et aux fonctions 

bornées d'une variable complexe, Ann. Ecole Norm. Sup. (3) J+8 (1931), 247-358. 

https://doi.org/10.4153/CJM-1980-001-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-001-0


20 Q. I. RAHMAN AND J. WANIURSKI 

8. J. Krzyz and Q. I. Rahman, Univalent polynomials of small degree, Ann. Univ. Mariae 
Curie-Sklodowska, Sectio A, 21 (1967), 79-90. 

9. M. Marden, Geometry of polynomials, Amer. Math. Soc. Math. Surveys, 3 (I960). 
10. Chr. Pommerenke, Univalent functions (Vandenhoeck and Ruprecht, Gôttingen, 1975). 
11. Q. I. Rahman and J. Szynal, On some classes of polynomials, Can. J. Math. 30 (1978), 

332-349. 
12. St. Ruscheweyh and K. J. Wirths, Uber die Koeffizienten spezieller schlichter Polynôme, 

Ann. Polon. Math. 28 (1973), 341-355. 

Université de Montréal, 
Montréal, Québec; 
Maria Curie-Sklodowska University, 
Lublin, Poland 

https://doi.org/10.4153/CJM-1980-001-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-001-0

