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COEFFICIENT REGIONS FOR UNIVALENT TRINOMIALS
Q. I. RAHMAN AND J. WANIURSKI

0. Introduction. The problem of determining necessary and sufficient
conditions bearing upon the numbers @, and «3 in order that the polynomial
z + a22? + a32® be univalent in the unit disk |z| < 1 was solved by Brannan
({31, [4]) and by Cowling and Royster [6], at about the same time. For his
investigation Brannan used the following result due to Dieudonné [7] and the
well-known Cohn rule [9].

TaEOREM A (Dieudonné criterion). The polynomial
(1) g4 a2 + ...+ 2"

is univalent in |z| < 1 if and only if for every 6 in [0, w/2] the associated poly-
nomial

2 1+ §1_{l_ﬁ az + ...+ §21—EQ I
sin 6 sin 0

does not vanish in |3| < 1. For 6§ = 0, (2) s to be interpreted as the derivative

of (1).

The procedure of Cowling and Royster was based on the observation that
fiz) =2+ Zi;g @,2" is univalent in |z| < 1 if and only if for all @ such that
0 = |a| £ 1, # 1 the function

b4 = n
ey =) ~ &

n=0

is regular in the unit disk. In conclusion they mentioned that although it would
be of interest to obtain the precise region of variability of (a., ax) for the
univalent trinomial z + «@»2* 4+ @;2*, for k& > 3, their method yielded only
incomplete results in that direction.

In the present paper we take up this problem proposed by Cowling and
Royster. We also consider arbitrary trinomials

(3) 3+ @2 + azl, (P <q).

Trinomials of the form z 4+ «,2* 4+ «2,—12**~! were studied by Ruscheweyh
and Wirths [12] and by Rahman and Szynal [11].

1. Basic theorem. Let us denote by 1(p, ¢) the region of variability of
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2 Q. 1. RAHMAN AND J. WANIURSKI

(ap, ay), ap € G, a, € C for trinomials of the form (3) to be univalent in
lz| < 1. It is clear that (a,, «,) € V(p, q) if and only if

(ape’®—Va qett=ba) ¢ (p, g) for every real a.

So in order to determine the region 17(p, ¢) we may restrict ourselves to the
case a, > 0. Besides, for sake of simplicity we will write ¢ for a,. Of course ¢ is
to vary in (0, 1/¢]. Finally, we find it more convenient to write the trinomial
in the form z — «,2? 4+ #2? which involves no loss of generality.

Throughout the paper the value of an expression like (sin ¢f/sin 8) at a zero
of sin 6 will be defined by continuity.

If 0 <t < 1/q then the curve

(4) W(QO) = ¢ —i(p— 1)¢>+ t?;_}%%g i(g— PW 0 é P é or

does not pass through the origin. The same is true if { = 1/q provided 6 # 0
(modr). Using standard terminology (see for example [1, p. 116]) we then
denote the region determined by the curve (4) and containing the origin by
Gy = Go(p, q, 1). By Go(p, q,1/q) we will mean the interval [—2, 2] if ¢ =
2p — 1 and {0} otherwise.

THEOREM 1. The trinomial
(5)  fiz) =z — @+ 1z, (p<q0<t=1/9)

s untvalent in |z| < 1 if and only if

sinf
(6) & < 0<Q-,r/2 ;ln;eG
For 6 = =/p, 2x/p, . . ., [TP)J"F/P
sin 6
gl_n_pBG = C.

Proof. By the Dieudonné criterion f,(z) is univalent in |z| < 1 if and only

if for every 6 € [0, 7/2] the associated polynomial
§1_rﬁ)0 71 sin g6 1
(7) 1= sin T sin 6
does not vanish in |z] < 1. Since (7) is different from zero at the origin we
conclude that a necessary and sufficient condition for f,(z) to be univalent in
|z] < 1 is that for every 6 in [0, 7/2] the function
1 sin p@ sin ¢qf e

@ T Gne 7T ing

does not vanish in 0 < |z| < 1.
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The function

sin g 207
sin 6

1
w(z): = ;EIT + ¢

maps 0 < |z| < 1 onto the complement of Gy with respect to the complex
plane C. For 0 < t < 1/q as well as for t = 1/¢g but 8 # 0 (mod~) this is seen
by applying the argument principle to the function

Y1/ w(@) ifz#0
9(3),_{0 ifz=0

which is analytic in |3] < 1. If t = 1/¢ and 6 = 0 then clearly w(z) maps
0 < |z] <1 onto G\[—2,2] in case ¢ =2p — 1. If t = 1/g and 8 = O but
g # 2p — 1 then we have to show that w(z) maps 0 < |z| < 1 onto C\{0}, i.e.

1 .
=1 + Zq 7
ZP 1

assumes every complex value ¢ # 0 in 0 < |z| < 1. This is true if and only if
the trinomial

g(z): =21 — 141, (¢#2p—1)

has at least one zero in |z| < 1. Suppose, if possible, that g(z) does not have
any zero in |z| < 1. Since the coefficient of 2z~ is equal to the constant term,
it must then have all its zeros on |z| = 1. Consequently

2971g(1/2) = g(2),

czPl = ¢z777,

which is impossible since ¢ # 2p — 1.

It follows that (8) does not vanish in 0 < |z2| < 1 if and only if
(sin p6/sin 8) a, € Gy, i.e.a, € (sin 6/sin p8) Go. Thus f,(z) isunivalentin |z| < 1
if and only if

sin 0~
a, € gl—n—'&g Ge forall € [0, m/2]

and hence the result.

Although the equation of the curve which determines the region G is rather
simple it is not easy to identify the intersection

© Dupg= n S2lg

: 0
0<o<r/2 SIN PO

in general. The following lemma helps us to get a simpler description of the
region D (¢, p, q).
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LeMMA 1. Let F(z,x) be a complex valued function of z (complex) and x
(real) having the following properties:
(1) there exists an absolute constant a > O such that for each x belonging to the
wterval 1: = {x: a < x £ b}, F(z, x) 1s analytic in the annulus

A = {201 —a <3| <1+ af,
and 1s univalent on the arc
v = {2z = €% o1(x) £ 0 £ pa(x)],

where ¢1(x), ¢2(x) are continuous functions of x satisfying 0 < @a(x) —
o1(x) < 2.
(i1) for each zq lying on v., where xo s an arbitrary point of I there exists «
left-hand neighbourhood
N(xo;6(z0)): = {x: x0 — 8(20) < x = Xo}

of xg in which (0F/0x), (02F/0x?), (8*F/dxdz) exist and are bounded,
(iii) there exists an absolute constant M such that for all x ¢ I and z € Ay 2,

|F(z, x)| < M.
For each x € I, let C, be the arc
w = F(e" x), o1(x) = ¢ = ¢2(x).

Now, if

(10) Re [:%c F(z, x)/‘{zgéF(z, x)}] >0

forall x € I,3 € v, then two arcs C,,, Cy, where x, € I, xy € I do not intersect
each other if |x; — x.| is sufficiently small.

The above lemma is similar to a lemma of Bielecki and Lewandowski [2].
In this connection also see (10, p. 159].

Proof. For a given x¢ in (a, b] we investigate the position of the curve C,
relative to C,, as x decreases away from x¢. Let F(2, xo) be an arbitrary point
on the arc Cy,. For all z in the disk {z: |z — 20| < a/4} and for all x € I, we
have [5, pp. 72-73]

Pl %) = Floo %) + (& — 20) 2o (a0, %) +

_ zif F(w, x)
(2 = 20) 271 \y—zpimary (W — 20)° (w — 3z) dw.
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Thus, in particular, if x € N(x; 6(2¢)) then there exist ¢,, 7, in N (xo; §(20))
such that

1 I'F
F(z,x) = F(z0, %0) + (x — x0) %3]; (20, 20) + 57 (& — xo)z_(%? (0, 1)

2

I
+ = m) S (e 0) + (&= 20) (0 — ) o (o, )

+ (z — 20)2*L f] I(w, x) dw.

2w w—z0l=a/2 (w — 20)2(‘10 —2)

Consequently
oF oF
F(z,x) = F(zo, x0) + (x — x0) o (20, x0) + (2 — 20) ™ (20, x0)

+ 0(Jx — xo]*) + O(lz — 20]").

From this it readily follows that if (10) holds then, provided x < xy and
lx — x|, |2 — 20| (Where 20 € v, 2 € v,) are sufficiently small, we have

Re F(z,x) — F(z0, x0) <0

20 %g (20, .X‘o)
This means that the angle between the vector F(z, x) — F(z0, xy) and the
vector N normal (where the normal vector is supposed to be 90° behind
the tangent vector) to C,, at the point (2, x¢) is greater than /2. Therefore,
the arcs C; being all simple, C, cannot intersect C,, if x < x¢ and |x — x| is
sufficiently small.

Rider. In our applications the arcs C,, except for the end points, remain
confined to the interior of a fixed angle a; < ¢ < a» of opening < 27. Each arc
has its initial point on ¥ = a» and its terminal point on ¥ = a;. In such a
situation if the conditions of Lemma 1 are satisfied, then the arcs C, being
locally disjoint, the sectors S, determined by the angle and the arcs C, form
a monotonic family of domains. As a consequence, we obtain

ma<r§bgl = Sb’

Obviously, the conclusion remains valid if (10) fails to hold for x = b and
z = ele1® ¢ a5 long as
[Feie1®, b)| < |Flet1®, x)|, |F(et:™®, b)| < |F(e:™®, x)|
fora < x < 0.

Since trinomials of the form z — @,2? + 3%, (¢ = 2p — 1) have already been
studied by Ruscheweyh and Wirths [12] and by Rahman and Szynal[11] we will
only consider the case ¢ # 2p — 1.
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From Theorem 1 it follows that for ¢ = 1/¢ the trinomial z — «,2” + 1z,
(g # 2p — 1) is univalent in |3| < 1 if and only if ¢, = 0. So, in our study of
such trinomials we will restrict ourselves to values of ¢ € (0, 1/q).

Since the region Gy is determined by a curve of the form

(11)  w(e) = w(b, @) = /0700 4 be!™P9 0 < ¢ < 2m

where —0y £ 0 <1 with 0 < 0y < 1, let us state some of the important
properties of the curve T, defined by (11).

Pi: Since w(e + 27/(g — 1)) = w(p) exp (12(q — p)w/(¢g — 1)), a point w
lies on T, if and only if w exp (12(¢ — p)7/(g — 1)) does.

P»: Since w(p) = w(2r — ¢), a point w lies on T', if and only if its conjugate
does.

Py If b > 0, then

9 [
max |w(b, ¢)| = ’pw(b,—:g—— r)} =140, s=0,1,2,...,9—2,
@ | g—1

|
\ _ |
min {w(b,¢)|=1w(b,“q——_———7r)]=l——b, s=1,2,3,...,g— 1.
¢ |

2. Description of the intersection D({, , ¢). In order that our method
may not get obscured due to complicated expressions entering into our cal-
culations we first consider trinomials of degree 4.

2.1. Polynomials of the form z — asz* + i2*, 0 < t < 1/4. In this particular
case the curve T', defined by (11) has the following additional properties.

Py: Since em "B w(p) = e~/ w((4n/3) — ¢) the curve T, is symmetrical
about the line arg w = 7/3.

Pj;: Since w(—0, ¢) = — w(b, ¢ + 7) the curve I'_, is the reflection of T',
in the imaginary axis.

P If |b] < 1/2 then ¢1 # ¢» implies w(b, ¢1) # w(b, ¢2).

Pq: For |b] < 1/4, the tangent to the curve T, turns monotonically in the
clockwise direction as ¢ increases from 0 to 2w, and hence the bounded region
A, determined by T, is convex (the region A, is convex also for b = 1/4). The
region is not convex if |b| > 1/4 but it is star-shaped with respect to the
origin provided |b] < 1/2. If b > 1/2 then the tangent to the curve T, turns
monotonically in the counterclockwise direction as ¢ increases from 0 to 2.
The region A, determined by T, and containing the origin is star-shaped with
respect to the origin. The boundary of A, consists of three congruent regular
arcs. It has three corners which lie at the points b=! — b, (b~ — b)e* /3 and
(b=t — b)e* /3, Depending on the range in which 0 lies the curve T', looks
roughly as sketched in Figures 1, 2, and 3.
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S
s
)

Fic.1 (0 < b < 1/4) Frc. 2. (1/4 < b < 1/2) Frc. 3 (b > 1/2)

We are now in a position to study the region

1
D(t,2,4) = ——— Gy
( ) ogerg,r/g 2 cos 6 Ge
Taking into account the properties of the curve T', mentioned above we see
that the boundary of the region (1/2 cos 8) Gs is described by the moving point

(e—w n ﬁﬁﬁem),

sin 6

1
W(e) = 2 cos §

as ¢ varies from 0 to 27 provided f[sin 46/sin 6] < 1/2, whereas if 1/2 <
tsin 40/sin 6 < 1 then ¢ is to vary over the union of the intervals

I, = [(k — 1)20/3 + ¢o, k21/3 — @), k=1,2,3
where ¢y is the unique root of the equation
(12) Im W(e) =0
in (0, 7/3). Note that

MiNg<per s t 5in 46/sin 0 = — /6/9 > — 1/2
which excludes the possibility

—1 < tsin46/sinf < — 1/2.

Now let us determine the intersection of D (¢, 2, 4) with the real axis. It is
an interval [x~(t), x*(t)] where x=(¢) < 0 < xt(t). If {x: x5~ < & < x4t} is
the intersection of (1/2 cos ) G with the real axis then for all § € [0, 7/2)

X = 1 (1 _sin 40) .

sin 0
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Since maxg<g<r ;2 s~ = X~ we obtain
x—(t) = — (1—4H/2, 0<t<1/4
On the other hand

1 ( sin46)
. §2c050 1+tsinf)

o :? 1 (sinﬁ _tsin49) 1 sin 46
2 cos § \tsin 46 sin @

The inequality ¢[sin 46/sin 6] < 1/2 necessarily holds if ¢/ € (0,1/8] and a
simple calculation gives us

S B¢ o 1)) if0<t=<1/16
(13) min X, = 1 o173 . o
0z6<r 12 V3320 — 41} if1/16 <t < 1/8.
Ift € (1/8,1/4) and we denote by 8 = «a, the only root of the equation
tsin46/sin g = 1/2
in (0, w/2), then it is easily seen that
%%{3(20”3 — 4t} if6¢ [a, 7/2)
n
X9 ; 1({1 .
5(717— 4t) if 6 €0, a).

Consequently

(14) min x5 =
0=0<m /2

30T — 4 ity <=3

%é(%— 4;) 1) =< b

The following theorem sums up the above conclusions.
THEOREM 2. The trinomiul

(15) fiz) =2 —az*+tz4, wx€R, 0<t=1/4

is untvalent i |z| < 1 if und only if

}%a + 41) if0<t<1/16
—1(1 — A1) S SMBEOV — 4t} Jf1/16 < ¢ < 1(1/6)¥
1((4)~' — 4 if 3(1/6)%1 < ¢ < 1/4.

COROLLARY 1. If the trinomial (15) 1is univalent in |z| < 1 then

/

}(121 é %63/4 — 6—3/4‘
Now we will use Lemma 1 to obtain a simpler definition of the region
D(t,2,4).
Lett € (0,1/4) be fixed. According as ¢ belongs to (0, 1/8] or to (1/8, 1/4)
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we choose e arbitrarily in (0, 1) and in (0, (16¢)~!/3) respectively. We then
apply Lemma 1 (also see the rider) to the function

Fz,x): = 2x) Hz™! 4 4t (2x* — 1)2%

where x varies over (e 1] or (e (16¢()7'73] according as ¢t € (0, 1/8] or
t € (1/8,1/4) respectively, and the arc {z = e 0 < ¢ < 27/3} is taken for
v.. Computing (8F/dx), (dF/dz) we see that (10) is equivalent to

(16) 1 4 1282x4(2x* — 1) — Six(4x> — 1) cos 3¢ >0, 0 = ¢ < 27/3

which is easily seen to hold for 0 < x <1 if 0 <t < 1/16. It also holds if
t=1/16and 0 < x < 1. If t = 1/16 and x = 1 then it holds only in the open
interval 0 < ¢ < 27/3 but |F(1, 1)] < |F(, x)|, |F(e* 3, 1)] < |F(e /3, x)|
for e <x <1 If 1/16 <t < 1/4 then (16) holds for 0 < x < (164)~1/®
whereas for x = (16£)~'/% it holds only if 0 < ¢ < 27/3. But, again
[F(1, 1)] < |FQ,x)], |[F(ex3,1)] < |F(e*/3, x)| for e < x < (16£)~!/3. Hence

§%GO f0<t<1/16
1.
o Gy = ) 1

e<eosfs1 2 6 N T Ge 1 1/1 t 1/4.
<cosf<1 2 COS ;(16,)—1/359053512(305060 if1/16 <t <1/

This, in fact, implies that

j—;@o ifo<t<1/16
D([, 21 4) = »;_l____ ~ :
llé@% ooy G0 iT1/16 <1< 1/4,

where 6, is the unique root of the equation
(17)  cos 6 = (161)~1/3
in (0, 7/2). We can do better when ¢ > 1/8. In that case, if x satisfies
X: = 8ix(2x* — 1) = 2tsin460/sin 6 > 1
then for v, we have to take the arc
12 =e% ¢y S ¢ = 21/3 — ¢4}
where ¢ is the only root of (12) in (0, 7/3). Condition (10) is equivalent to
(16") 14 1282x*(2x2 — 1) — 8ix(4x®> — 1) cos 3¢ > 0, ¢y < ¢ = 27/3 — ¢o.

It holds since the left-hand side is larger than (16/x* — 1)(x — 1) and hence
positive. Thus for 1/8 <t < 1/4
f l

Dt 2,4) = 1 N 5 "Ga( N 1Go

01<6=8q 2 cos B

where 6; is the unique root of the equation
(18)  8i(cos ) (2 cos?d — 1) =1
in (0, =/2).
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Finally, we observe that if (1/4)(2 — +/2)"/2 <t < 1/4 then for §; £ § < 0y,

so that for such values of ¢,

D(f, 2, 4) = %Go
Since
1Gy C {w: |w| < 3((4t)~" — 4t)} and

1 _
{'w : 1w1 = é‘&*@ (1 — 4¢(cos 0)12 cos’ 6 — 1')} - é‘gag—é Gy

we simply check that
(19)  (@AH" — 4 < x7'(1 — 4ix|2x2 — 1)) if
(20) 1 = 16(x* = 1 + S,
Case (i). If x £ 1/4/2 then |2x2 — 1} = 1 — 2x? and (19) becomes
(44)=" < x—! + Six?
which is easily seen to be true.
Case (ii). If x > 1/~/2 then |2x2 — 1|
(4t)~'x — Six + Six* = 1.

2x% — 1 and (19) becomes

In view of the second inequality in (20), this certainly holds if
x((4)7h —4) =5

Hence if x*(t) denotes the unique root of the equation

(18") 16ix* — (1 + 8tx) = 0

in (0, 1) then it is enough to verify that
x*(t) = 2/(1 — 1682).

Replacing x by 2¢/(1 — 16¢2) in (18") we see that the left-hand side is non-
negative if (1/4)(2 — +/2)!2 £t < 1/4 and hence (19) holds. With this we have
proved the following.

THEOREM 3. The trinomial z — uyz® + 124, 0 <t £ 1/4 is univalent in
lz2| < 114f and only if

(i) as € 2Go tn case t € (0, 1/16]\U [(1/4)(2 — v/2)172, 1/4],
(i) a2 € {May<o=a, (2 cos 0))"1Go} N LGo in cuse
te (1/8, (1/4)(2 — V/2)12),
(i) ay € Mozozsy (2 cos (0))~'Gy in case t € (1/16, 1/8),
where 8y, 0y are the unique roots in (0, w/2) of (17), (18) respectively.
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FIGURE 4

2.2. Polynomials of the form z — a;2® + (2%, 0 < t < 1/4. Again, the curve T,
defined by (11) has, in addition to the properties Py, P, P, the property P,
since

e~y (p) = e~ B (27 /3 — ).
However, this time the trace of T'_, is the same as that of T',. In fact,

w(—0, ¢) = w, ¢ + 7).

As ¢ increases from 0 to 27 the tangent to the curve T, described by the moving
point

w(p) = e7*% + De's

turns monotonically in the clockwise direction. The curve cuts itself in the
points (1 — 02)e~/3, —1 + b2, (1 — b*)e™"/? denoted by 4, B, C respectively,
in Fig. 4. The region A, determined by T, and containing the origin is convex
and its boundary consists of three congruent regular arcs, namely 4B, CA4,
BC. The arcs AB, CA, BC are symmetric about arg w = — 27/3, argw = 0,
arg w = 2w/3 respectively. Now we have to make a distinction according as b
is positive or negative. If 0 < b < 1 and ¢, denotes the root of the equation

(21) cos¢ =10/2

in (w/3, 7/2) then the arc AB is described as ¢ increases from 27/3 — ¢ to ¢
whereas the arcs C4 and BC are described as ¢ increases from 47/3 — ¢4 to
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21/3 + ¢ and from 27 — ¢y to 47/3 + ¢y, respectively. If b < 0 the initial
point of the curve T, is P and the arc PA is described as ¢ increases from
0 to 27/3 — ¢ where ¢, is the root of the equation (21) in (7/2, 27/3).

Now we are in a position to determine the intersection

D, 3,4) = 059{;”/2 “n 30 Go.
07 /3
First, we use Lemma 1 to show that
osherrs Sin 30 Gy = 1G..
Note that Gy is determined by the curve
w(p) = e~ + 4tx(2x® — 1)e’, (x = cosf)

where 0 = 44x(2x? — 1) < 1. Besides, (sin 6/sin 30) = (4x* — 1)~! > 0. Hence,
setting

F(z,x) = (4x* — 1)z 4 4fx(2x2 — 1)z}

it is enough (in view of (21) and the various symmetries of the region
(sin 8/sin 30)Gy) to show that (10) holds for 1/4/2 £ x £ 1 and

z=e"% 2r/3 — ¢S ¢ = o
where ¢ is the root of
cos ¢ = 2fx(2x* — 1)
in (r/3, 7/2). Thus we have to verify that
2xf1 + £2(2x? — 1)(Sxt — 2x2 4+ 1)} — £(16x% — 632 + 1) cos 30 > 0

for 0 <t < 1/4,1/v/2 £ x £ 1and 27/3 — ¢y £ ¢ = ¢ But this is clearly
true since cos3¢ < 0 for ¢ € [20/3 — @0, ¢o] and 2x{l 4 £2(2x* — 1)
(8x* — 2x% + 1)}, #(16x* — 6x2 4+ 1) are both positive for 0 < ¢ < 1/4,
1/4/2 £ x £ 1. Next, we note that 3G, is contained in (sin 8/sin 30) Gy for
allg € (r/4, 7/2]. In fact, for 6 € (x/4, 7/2] we have

- ) < 1(1 _ 2. sinf -

3G Clw : |w| = 5(1 — 16t7)} C a3 O
Hence

sinf - |~

0<6<x/2 sin 36 (]0 N 360.

Thus we have proved the following.

THEOREM 4. The trinomial z — az® + t24, 0 <t = 1/4 4s univalent in
lz2| < 1if and only if

a3 € %G_(l
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where Gy 1s the region determined by the curve
w(p) = e~2le 4 4fele
and containing the origin.

COROLLARY 2. If the trinomiul 3 — «3z® + tz', 0 < t = 1/4 1s unwalent in
lz] < 1 then
las] < 3(1 — 162), —31(1 — 1622) < Reay = 3(1 — 44).

Now we wish to discuss univalent trinomials of degree 5. Since trinomials of
the form z 4 «33° 4 {2° have already been studied in [12] and [11] we will
consider those of the forms z + @222 + f2° and 2 + «yz* + 27,

2.3. Polynomials of the form z — wsz®> + tz°, 0 < t < 1/5. In this case the
curve I'ydefined by (11) is symmetrical about the linesarg w = 0, arg w = 7/4,
arg w = w/2. The situation is in some sense analogous to that in 2.1. It turns
out that

D(t,2,5) = Noszser 2(2 cos 0) 7' Gy
where the boundary of the region Gy is described by the moving point
W(e) = e~ 4 1 (sin 50/sin §)ed'e

as ¢ varies from 0 to 2 in case {|sin 50/sin §] < 1/3 and over the union of the
intervals

[};Z =L(k—*1)7|'/2+¢0,k71'/2—¢0], k = 1,2,3,4
if 1/3 <t (sin 58/sin 8) < 1, ¢, being the unique root of the equation

Im W(g) = 0

in [0, 7/4]. Note that ming<per ;o (sin H8/sind) = — 1/4 > — 1/3 which
excludes the possibility — 1 < ¢ (sin 50/sin 8) < — 1/3.
Let us determine the intersection of D(t, 2, 5) with the real axis. It is an

interval [x—(t), xt(£)] where x= (/) = — xt(t). If (x4, x4") denotes the
intersection of (2 cos 8) =!G with the real axis then
1 ( sin ')0) . ' sin H6 ’
-~ 1 T t t N = 1
2 cos 0 Fein 6 " sing | =8
— 4 . 1/2 . T
—xy =" = 139_01) ( &9@) 1 o sinof
(1+tsin;')0 ! tsino 1f3<tsin(9<1'
2 cos @

Setting cos 6§ = x and

g(x) = (2¢)71(1 + 1(16x* — 12x2 + 1)]
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we see that in case /[sin 50/sin 8] < 1/3,

1

e

1

Sg(l) o<t <

<

min xp"

F—t

)

B 1
" e 4
zg(x ) gz <t<
where
1,1 12)1ﬂ11n
v {8+24('1+ i)
On the other hand, if 1/3 < ¢ (sin 56/sin §) < 1, then
min xg" = 20" = 3(1 — 5) (1 + (56)7")"2

Thus
£ = {g(l) if0<t<1/3
min {g(x*), x"} if 1/35 <t < 1/5,

and we have the following.
THEOREM 5. A necessary and sufficient condition for the trinomial
fi3) =z4 w22+ 12, wweR, 0<t=£1/5
to be univalent |z| < 1 is that

1(1 + 51) if0 <t <1/35

12
4+t(1— 1/ ‘21+—‘)
. !

if 1/35 <t £t

las| < (3 ( ; 2\
141 9 1=
2t V 2t
1 1/2
%(1——5[)(1—{—;)2) ifte St =1/5
where ty = 0.0726 . . . 1s the unique root of the equution
’ 12
3 W =l(1—~5l)(1+;)2)

3 2 2
( + 14/ 2+ 7)

in (1/15, 1/5).
Next, we prove
THEOREM 6. For 0 < t < 1/35 we have

D(t, 2, 5) = %Go
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Proof. We apply Lemma 1 (along with the rider) to the function
F(z,x) = (2x)~Yz~! 4 {(16x* — 12x% + 1)33},
where x varies over ((+/5 + 1/4),1] and the arc {z = ¢%: 0 < ¢ < 7/2} is
taken for y.. It turns out that (10) is equivalent to
(22) 1 4 3£2(48x* — 12x2 — 1) (16x% — 12¢% + 1)
— 2t(48x* — 24x2 4+ 1) cos4e > 0, 0= ¢ £ /2
which is easily seen to hold for (v/5 + 1)/4 <x = 1if 0 <t < 1/35. It also

holds if ¢ = 1/35 and (v/5 + 1)/4 < x < 1. But for = 1/35 and x = 1 it
holds only in the open interval 0 < ¢ < 7/2. However, [F(1, 1)] < |F(1, x)/|,
[Fe/2, 1)| < |F(e™/2, x)| for (v/5 + 1)/4 < x < 1. Therefore, for 0 < { <
1/35 we have

D(t, 2, 5) = {mw/5§9<7r/2(2 CcOos 0)“160} N %GU
Further, it can be easily verified thatif #/5 £ 0 < 7/2,0 < t < 1/35, then
1Go Clw: |w] £ (1 + 5t)} C {w: Jw| £ (2¢)~1(1 — ¢[16x*

— 12x2 4+ 1])} € (2 cos 0)~1Gy,
so that (22) holds.
For ¢ > 1/35 the definition of the region D (¢, 2, 5) can be simplified as in
2.1 and an interested reader may carry out the calculations himself.

2.4. Polynomials of the form z — awz* + 125, 0 < t < 1/5. The curve T,
defined by (11) is symmetrical about argw = 0, argw = 7/4 and argw =
7/2. As ¢ increases from 0 to 27 the tangent to the curve turns monotonically
in the clockwise direction. The curve T', cuts itself in eight different points and
for positive b it looks roughly as sketched in Fig. 5. The curve T'_, is obtained
on rotating the curve I', by 45°. The same is true of the region A_, determined
by I'_, and containing the origin. For positive 0 the region A, is bounded by
four congruent arcs and has four corners which lie on the real and imaginary
axes. One of the four bounding arcs is described as ¢ increases in (0, v/2) from

arc cos $+/3 — b to arc cos $+/1 + b. Further
Mingeya,lw| = 1 — b, maxyea,lw| = (1 —0)(1 + )12

Now we are in a position to show that in the present case the right-hand side
of (9) is 1G,. It is clearly enough to show that

(23)  Nosoer 2Ge = Go.
First we prove that
MNozozr 3Go = Go.
For this we apply Lemma 1 to the function

F(z,x) = 273 ++ t(16x* — 12x% 4+ 1)z
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Froore H

where (/5 4+ 1)/4 < x £ 1 and the arc

g = e 7/6 < arccos 34/3 — t(16x" — 12x* + 1) < ¢
< arc cos 34/1 + t(16x* — 12x% + 1) < w/3}

is taken for v,. Condition (10) turns out to be equivalent to
(8x% — 3)1t(16x* — 12x2 + 1) — 3 cosde} > 0

which is easily verified.
Next we observe that

Go C lw: lw] £ (1 — 50T + 5t}

Clw: |w £ 1 — t16x* — 12x2 + 1|} C Go

if 0 <cosf =x = (/5 + 1)/4, which completes the proof of (23).
Thus we have the following.

THEOREM 7. The trinomial 3 — w,2* + 12°, 0 <t £ 1/5 is univalent in |z| < 1
if and only if

ay € %G()
where G 15 the region determined by the curve
w(p) = e7*% + Hle'e, ¢ € [0, 2]

and containing the origin.
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COROLLARY 3. If the trinomial z 4+ «z* + (2%, 0 < t < 1/5 1s univalent in
ls| < 1 then

las] = $(1 — 56)+/1 + 5t

3. Remarks and applications.

3.1. So far we have restricted ourselves to the trinomials of small degree.
In general it is very difficult to say anything more than what is given in
Theorem 1. Just as the special case ¢ = 2p — 1 was handled by Ruscheweyh
and Wirths [12] and by Rahman and Szynal [11] we can extend our earlier
reasoning to the cases ¢ = 3p — 2; 9 = 4p — 3. Infact,if ¢ — p = I(p — 1),
where [ = 2, 3, 4, etc., then the region G, appearing in (6) is determined by
the curve

w(y) =¥ + t%‘%i:e““, v € 0,27

and for / = 2 and 3 the determination of the coefficient region for «, can be
carried out in much the same way as in 2.1 and 2.3.

3.2. In situations where the coefficient region D(f, p, g) has been satisfac-
torily determined we can find the Koebe constant of the family of univalent
polynomials (5) by calculating the distance between the boundary of D(¢, p, q)
and the curve

w(e) = e~V 4 16te, € [0, 2],

3.3. Our reasoning can be used to determine the coefficient region for
meromorphic univalent trinomials of the form

27U A4 aps? + azt

Instead of Theorem A of the Introduction we will have to use Lemma B of
[4] where the corresponding criterion for w,(z) = 7' + a1z + ... 4+ «,2" to be
univalent in 0 < [z < 1 is given.

3.4. It is an open question if for every function f(z) = z 4+ a2* + ...
univalent in |z| < 1 the integral

en 2 [ pou

is also univalent in |z| < 1. In [8] the answer was shown to be affirmative for
polynomials of degree at most 5. Our study of the coefficient region of (a,, ¢,)
for univalent trinomials of the form

f@@) =z4+ @2 + a2l p<gq

helps us to answer the above question for such functions.
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THEOREM 8. If f(3) 15 « normalized univalent trinomial in the unit disk then
so1s (24).

Proof. In view of Theorem 3 in [8] we may assume ¢ = 6. Clearly we may
suppose 0 < t = a, £ 1/q. Then we have to prove

¢

2 2t
"—""”Df, y C———D(__—_v ’ )
P+1(Pq)_ PR L
It is certainly enough to prove that

1 2tq
25) 71T max |w| = min w| = — (1 — ——~———) .
(25) ?+ 1uwantino el wedD(21/(a+Dp,0) el P

Using the crude upper estimate 2/p for
(26)  maXyeantip,olwl

we see that (25) holds for p =2 5and p = 4, ¢ 2 9.
In case p = 3, ¢ = 7 we may use

sin (w/q)/sin (37/q) (< %)

as an upper bound for (26) to get through.

If p = 2, g = 6 we consider two cases:

Case (i). 0 <t = 1/q(g — 3). The inequality (25) holds if we again use
2/p as an upper bound for (26).

Case (ii). 1/q(q — 3) < t < 1/q. In this case the curve

W(e) = e + tgetr=2', ¢ € [0, 2]

cuts itself since 1/(¢ — 2) < lg, and as an upper estimate of (26) we may take
3 [cos g9 + 1g cos (¢ — 2)¢0],

where ¢¢ € (7/2(q — 2), /(g — 2)) is the unique root of the equation
Im W(e) = 0.

Since cos (¢ — 2)¢po < 0 we have 3 [cos ¢y + tg cos (¢ — 2)po] < 5 and (25)
is easily seen to hold if we take 3 as an upper bound for (26).

By a relatively careful study of the coefficient region D(¢, p, ¢) in cases
(p=3,qg=06),(p =4,9qg=06),(p =4,q = 8) we see that as upper estimates
for (26) we may take v/2/3, \/3/4, \/37/16 respectively and (25) holds.

The last case p = 4, ¢ = 7 can be settled by essentially the same reasoning
as used in [8] for the proof of Theorem 3.

In fact if f(z) = 3 4+ as* + 27 is univalent in |z, < 1 then
sin 460 a4 sin 76

sin 60 2§+—sin0

KP#0 inlf <1
for0 <6 < n/2.

F(£,0) =142

Now taking ¢g(¢) = 1 4+ 2 - 2 + 1¢? which does not vanish in || < 1 we see
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by a well known result (see [9], Corollary (16, 1¢) on p. 66) that the polynomial

1sin 46 1sin 76
P 9-2-Z= ! et
F@, 0)xe(f) = 1 5 siné ) a8 4 sin 6 1

does not vanish in [{| < 1for0 £ 8 < 7/2. Hence also

2 sin 40 { sin 70 4
+ no ¢ & + 4sing ®
does not vanish in |z < 1 for 0 < § < 7/2. By the Dieudonné criterion the

polynomial

2 4.t 7_2f2
etz +gs =1 | fO)d
is univalent in |z < 1.

From

in conjunction with (25) and

min w| < min |w]
wedD(2¢/(g+1),p,0) wedD(1/q,p, )

it follows that

—D(t b, q)CD( ' b 9)
and hence we also have the following.

TuHEOREM 9. If the trinomial f(z) = 2z + a,2” + 2% p < q is uniwalent in
|z| < 1 then so is
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