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LOCALIZATION PROBLEM OF THE ABSOLUTE RIESZ
AND ABSOLUTE NORLUND SUMMABILITIES
OF FOURIER SERIES

MASAKO IZUMI AND SHIN-ICHI IZUMI

1. Introduction and theorems.

1.1. Let 3 a, be an infinite series and s, its nth partial sum. Let (p,) be a
sequence of positive numbers such that

P,=po+p1+ ...+ pp—0 asn—c0,

If the sequence
1 n
1) ¢n=ﬁ—2 sy (m=0,1,2,...)
n =0
is of bounded variation, that is, 3 |4, — #—1] < o, then the series 3 q, is

said to be absolutely (R, p,, 1) summable or |R, p,, 1| summable.
Let f be an integrable function with period 2= and let its Fourier series be

(2) fle) ~ tag+ 2 (azcosnx -+ bysinnx) = », A,(x).
n=1 n=0
Dikshit [4] (cf. Bhatt [1] and Matsumoto [7]) has proved the following
theorems.

TuEOREM 1. Suppose that (i) the sequence (p,/P,) is monotone decreasing,
(ii) m, > 0, (iii) the sequence (m,p,/P,) decreases monotonically to zero, and
(iv) the series 3 (mupn/P,) is divergent. If 0 < a < b < 2, there is a funciion
f integrable over the interval (a,b) and vanishing on the intervals (0, a) and
(b, 27) such that the series 3 m,A,(x) is not |R, pn, 1| summable at the origin.

TaEOREM I1. Suppose that (i) the sequence (pn/P,) ts monotone decreasing
and (i1) the sequence (P,/n'*%p,) decreases for a §,0 < 8 < 1. If

©

) (|4n )|/ Pr) < 0,

n==

then the summability |R, pa, 1| of the Fourier series (2) at the point x depends
only on the behaviour of the function f in the immediate neighbourhood of the
point x.

We shall first prove the following theorem.

Received March 28, 1969.
615

https://doi.org/10.4153/CJM-1970-068-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1970-068-6

616 M. IZUMI AND S, IZUMI

TaeorREM 1. Suppose that (p,) is a sequence of positive numbers such thal
P, -0 and (pn/PriP,) is decreasing and the sequence (m,) of positive numbers
1s of bounded variation such that

Mopn/ Pr £ Amonpon/ Pen  for all m

and (m.p,/P,) is monotone decreasing. If

3) > (@i P < o,

then the summability |R, pn, 1| of the series 3 m,A,(x) al the point x depends
only on the behaviour of the function f in the tmmediate netghbourhood of the
point x.

1.2. The nth Nérlund mean of the series Y a, is defined by

1 &
(4) by = ﬁ; ];J Pr—iSks

sz being the kth partial sum of the series. If the sequence (f,) is of bounded
variation, then the series Y a, is said to be absolutely (&, p,) summable or
[N, po| summable.

Daniel [3] has proved the following theorems which are a generalization of
the theorems of Jurkat and Peyerimhoff [6] and Bhatt [2].

THEOREM 11. If the positive sequence (m,) satisfies the conditions

> (my|cos 2nx|/P,) < o
and

then the summability |N, p,| of the series 3 m,A,(x) at the point x 1s not a local
property of f.

THEOREM 1V. Suppose that the sequences (p,) and (m,) are positive monotone
decreasing and that they satisfy the following conditions:

(5) W1/ My = A, uniformly in k <mn, asn-— o0,
1 & my
L
6) nmn,;szA as n— oo,
«Q mna
(7) 7; n_Pn < 0
If
®) 3 (Aal)lm/P) < o,

then the summability | N, p,| of the series 3 m,A,(x) depends only on the behaviour
of f in the immediate neighbourhood of the point x.

We prove the following result.
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THEOREM 2. Suppose that the sequences (p,) and (m,) are positive, monotone
decreasing and
M/ Pr S Aoy Pay  for all n.

If the condition (8) is satisfied, then the summability |N, p,| of the series
> myA,(x) depends only on the behaviour of f in the immediate neighbourhood
of the point x.

Further, we prove the following.

THEOREM 3. Suppose that (m,) is @ positive, monotone decreasing and convex
sequence such that
Am, £ AAms, for all n,

and that the sequence (p,) ts monotone increasing and satisfies the condition

= pn—j - pn—j— < >
;}Si) n=2j+1 P, + 1 forallj = 0.
1An(x)|m, (x)lmn S
(10) Z <o and Y, |A.(x)|Am,logn < oo,
n=1 n=1

then the summabzlzty |N, pal of the series 3 m,A4,(x) depends only on the
behaviour of f in the immediate neighbourhood of the point x.

Theorems 1, 2, and 3 hold also for conjugate series.

2. Proofs of the theorems.

2.1. Proof of Theorem 1. We can suppose that f is even and x = 0. We shall
consider the Riesz means (¢,) of the series ¥ m,a,, then (1) yields

n-—-1

by = lp1 = Pf;n_l I‘Z:;) Pymyi 10541
and then
© o) n—1
(11) Y o=l S 2 | X Pomoin
n=1 n=1 k=0
N P

We can write

—1

(12) T = ZO .Pkmk+1ak+1 =

ERE

f f(t)< Z Pyumyyqcos(k + l)t) di

—1
f(lf)[ Z (Pk_lAmk pkmkH)Dk(t) +P _1mnDn(t) —_ PgmlDo(t):ldIf
where D, (t) is the kth Dirichlet kernel [8], that is,

sin(k + 3)t  sinkt
2sin ¥  2tan it

Dy(t) = + % cos kt.
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Hence we put

n—1 sin k¢ sin nf
(13) Tn== f f(t>[ 2y Paabme = o) g g+ Pty o lt]d”
T n—1
+ 1 f f(lf)[ Z (PrAmy — pimii1) cos kb + Pn_ym, cos né — Poﬂ’h] dt
T Jo k=1

— Tnf + Tnll’
then

n—1

]Tn”] =4 Z:l (Pk—I]Amkl + Pkmk+1)](lk[ + AP, —lmnlanl + 4,

and hence, by (3) and since m; is of bounded variation, we have

n=1 PPn— PPn—

A k; (Pr—1| Amy| + D) Z PP,,_

< A + Z Pk llAm%-'_ pk'ﬂ’lk—}-l laki < w.
k
By (11), (13), and (14), we obtain
3 = ol T
— < Lri=r 1
(15) Z;i te — taa] S 4 + ;1 PP

We shall prove that the last sum is finite except for the terms depending on
the behaviour of f in the interval (0, ¢), e being any positive fixed number.

Now, we define an odd continuous function g, periodic with period 2,
such that

g(t) = 3 cotit in theinterval (e, )

and that g is differentiable at least four times everywhere. If we write

(16) gt) ~ 2 cusinnt,
n=1
then ¢, = O(1/n%) as » — 0. Using this function g(¢), we obtain the following
formula:
an [ O swma= [ 105k - e0) snma
o 2tan 2 tan 3¢

+ wa(t)g(t) sin 7t dt.
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Since the first integral on the right side of (17) depends on the values of f in
the interval (0, ¢), we leave it out of consideration. Hence it is enough to
show that

—1

Z (Pr—1|Amy| + pumyss)

n—1 k=1

(18) Z PnP J:rf(t)g(t) sin k¢ dtl

+ 3 7t [ (060 sinmt dtl: Uiy

is finite. By (16), we obtain

(19) f”f(t)g(t) sin nt dt = i ¢y f f(¢) sin j¢ sin nt dt
0 =1 0
= ;15 Z ¢i(@1s-n) = @yin)
=1
and then
@) Vs4X 5SS el + o = Vit T,
where

(21) =4 Z lc4] Z lau—m]
11(2 mbsyy, 4 5 e, )

=4,
=1 = n=it1 P
<4 % T o+ 3 lol Y Tl al
n=1 n j=n =1 n=1 n
o mnpn —]:_ <) 1_
< co,
by using the monotonicity of the sequence (m,p,/P,) and the condition (3),
and
<O mn " n e
(22) Va=A 2 —P£—< Z + > >IC:'! |@ 4]
n=1 3 j=1 F=n+1
SA% o Z Bl 44 3 Tl S 5
=1 n=7 n j—n+1.7
s4 3 ol 2 Tpl ol + 4 3 Tl
< oo,

by the conditions m,p,/Pn £ Amspan/Pam and (3).
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On the other hand we put

(23) U=s4 Z:; n—an E (Py1|Amy| + pimyi1) Z lesl(Ja1mnt] + lassal)
<4 i": Z"’: P, ]Amk[

+4 Z Zl Pkmk+1< ,21) lensl las| + g entsl lasl

n=1 Pn—an k=1 =
+ ; {¢;] laf+nl>

=W+X+Y+ Z
W is evidently finite. We write

(24) X=43 ol 3 Bl Z Pt

n==gi-1 n—lP
J— n—1
=4 Z la,| E %]Cn};] < Z + Z )pkmk-}-l
n=j+1 4L n—1 k=1 k=3

= X1+ X..

Since the sequence (p,/P,-1P,) decreases as n — 0, we have

o X —2
(25) Xl é A Z lall Z %JE% (Pj_lm,» + Z PkAmk+1 + P()MQ)
n=j+1 L n—3L n k=1

IIA

4 ?; %-{-A g Ia]l;b] Z Pulamn 4 4

4 - P.A 5 _lafle
kz:l kl 7”’Lk+1l]‘=“‘2 -Pj—IPj

IIA

< 0,

and, by the monotonicity of the sequences (p,/P,—1P,) and (m,p,/P,), we
can see that

(26) X, =4 Z ]a:i] Z DiMrs1 Z P____n!Cn—jl
J=0 k=j P -1Pn

n=k+1

Dt 1Ppr1

=42l X 55 G )
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Further we obtain

(27) Y=4 2:: Z Dttt Z lenssl = Z

n n—an k=1

and

(28) Z<4 Z lcs] f p"‘“"“' Z o

<42 ol i Lrlass] <P ma + Py_ymy, + :2? Pk{AmHlI)

j=1 n=1 n~1P

SA oA Y Y el +4 3 el L 1ol

J== n

-

< 0,

by using (22).
Collecting (23)—(28), we can see that U is finite. Combining this with
(18), (20), (21), and (22), we obtain the required result.

2.2. Proof of Theorem 2. We can suppose that f is even and ¥ = 0. Let (¢,)
be the nth Nérlund mean of the series > m,a,, then; by (4),

1 n
n F ; —ksk’ ’

where s;” is the kth partial sum of the series 3, m,a,. Hence

(29) tp—tp1 = P Pn— 2 (OrPr — PuPr) Mg rns

1 x=0

1 n—1
= 7P —1{ Z [P (P — Pk—lmn-k+1)

k=1

— u(Pitny — P k~1mn—k+1)]5n~k

— Mm1(Pppr-1 — PrnsPn)so + ma(poPy — POPn)Sn}

where s, is the #th partial sum of the series }_ a,.
Now, the coefficient of s, in R, is

1
P—_PT—]: {Pn (Pkmn—k - Pk—lmn—k—l—l) - Pn (Pkmn-—k - P}c—lmn—k+1>}

= P ; - {(Pupr — PuPr) My, — Mngr1) + (Proo1pp — Pubr1)Mppia},
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so that
) 1 n—1
60) X RIS D . X Pabe— AP (s — a5
@, n—1
Z_:l P, k; (Popr1 — Prapr)Mo_z41]Sn_z|

=U+4T.

As in the proof of Theorem 1, we define the function g(¢), and we write

U= Z P Pn——l ; (Pabn—s — PaPrj)(my — m 1)
L g -0} s
+ j; f(t)g(¢) sin jt dt] + %a,}
=Us+ U+ U3,

1
V= Z PP E (Pnpn—j—l — P —lpn—j)mﬂ-l

N <o [ 0 0) s

n fo " £ (02 sin jt dt] + %af}‘

=Vi+ Vot Vs
where U; and V, depend only on the value of f in the immediate neighbourhood

of the origin. Thus it is sufficient to show that Us, Us, Vs, and V; are finite.
Since the sequence (p,) decreases monotonically and

o Dnmgmt — Pny o A >
(31) n=zj+1 o =5, for allj = 0,

we have, by (8),

8

@2) V=

Dn—i1 ~ Pu1Pn—s)m s11]ay]

|
-

nt n—1 j=
e - 1 1
Z ]‘H-Ia]l Z (P—l_p— + Pn—i—1<P_— - E))

j=1 n=j+1 n—1
=]
m;la
<4 ¥ mul
= P

< ©0.
We see that (cf. [5, formula (17)])

8

= Pﬂpﬂ— pn n—j
33 S, LrPei T Princi < g,
(33) Wty PuPa
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and thus
= 1
(34) U3 é ; PP . Z (Pn n—3 Pn n—])AmJ{ajl
_ = - Pnpn——j - Pnpn—f
= ;1 Am]lajln__zj;}_l PnPn—l
< 0

By (19) and (33), we obtain

(B5) Us=4 Z

P Pn—l ]}; (Prbn—j — PnPng)Am; Z lex] la—n + aresl

Ms 1

npn—j — pnPn—f
<4 Am; ——
- j=1 ]n=§-1 PnPn—l
<4y Am;
=1
< 0.

Finally we shall estimate V.. We put

[

V. A nZ:l PPn—l ;1 (Pn n—~j—1 P ~1Pn—7)m1+1 Z Ickl(}a“—k'[ + laJ-Hcl)

1 n—1 ©

Z (Pr—j1 = Pu—g)M i1 ,02:1 ]ckl(fah kl{ + Ia.1+k[)

—~1

+4 E PP,,_ E Dr—iM 41 Z {Ck[(lala kl! + [ay+kl)

=X+Y7;
then, by (81) and the assumption of the theorem, we obtain
36) X=X lal 2 (ayul + lasuDmn 20 p&j‘_f)—tp_n_‘]
k=1 j=1 n=j+1 n—1
<4 ) lal 2 TE (eimnl + o))
k=1 =1 J
= k © .
=4 Icki< Z + 2 )ﬂpﬁ-_l (le15-xt] + lasl)
= =l g=Rtl 3
4% el X lal+4 3 ol 2 5 o]
J=1 P k=3 k=1 j=k+1 Pj_]c

+4 Z T £ Jol 2 lex] + A4 2 x| Z ’”2 o

j=1

=4 ]5;1 ]ZP 2 2 = ]a,l +4 Z || Z itk ‘a7+kl
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and further, by (381), we similarly have
@37 Y=4 Z lcx E ma(lar-u] + lasl) 22 %Z‘
7 n=j+1 4L ni n—1

=4 E lex] E B (!alj—kll + lagl)

<,
Combining (36) and (37), we see that V., is finite. By (32)—(33), and the
finiteness of V,, we see that Theorem 2 is proved for 3_ |R,|.
We shall now consider
[ee] oo} m
5 ) - 3, bl

=
By (17), it is sufficient to prove that
@ m,
n=1

Z: o J:rf(t)g(t) sin nt dt| < o0.

This follows from

;::1 % g les] Uapmm| + lamn]) <o (by (19)),

estimated in the same way as (36). Hence we obtain 3. |7,] < . Evidently,
> 1S.| < . Thus the theorem is proved.

2.3. Proof of Theorem 3. The proof is similar to that of Theorem 2. Since (p,)
increases, we obtain by condition (9), instead of (31) (see [8, formula (15)]),
(38) 3 JMJ%;_@&-J < Adlog(j+1) forallj= 0.

n=j+1 nt n—1
We shall only estimate U,, defined in § 2.2, since the others are quite similar,
as in the proof of Theorem 2. By (10), (38), and convexity of the sequence
(m,), we have

iMs

1 n—1
U = A PP Z (Pn n—i — Pu n-—J)Amj Z Ickl(la[k—j[] -+ Iak+al)
=1 nt n—1 j=

<4 >: al 35 108G + Dam el + lovesD
=4 g:l |61c|{ Z::l log(j + D)am;lap—g| + -=§:‘:+1 log(j + 1)Am;la; 4|

+ Z log(j + V)Amylary,| + _;1 log(j + l)Amj[aH,-l}

IA
W

.
i
—

o

ol
+

log(G + 1)Am, Z k3+A Z x|

__,] j=

. log j - Am,la,l

+ A ; log(] + 1)Am; Z Cklak.'_jl + A I(,'k[ .g;i—l log 2] . Am2j‘a2jl

k=§ h—
<4 i logG+1) 4 3

8

-
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