LOCALIZATION PROBLEM OF THE ABSOLUTE RIESZ AND ABSOLUTE NÖRLUND SUMMABILITIES OF FOURIER SERIES

MASAKO IZUMI AND SHIN-ICHI IZUMI

1. Introduction and theorems.

1.1. Let $\sum a_n$ be an infinite series and s_n its *n*th partial sum. Let (p_n) be a sequence of positive numbers such that

$$P_n = p_0 + p_1 + \ldots + p_n \to \infty$$
 as $n \to \infty$.

If the sequence

(1)
$$t_n = \frac{1}{P_n} \sum_{k=0}^n p_k s_k \qquad (n = 0, 1, 2, \ldots)$$

is of bounded variation, that is, $\sum |t_n - t_{n-1}| < \infty$, then the series $\sum a_n$ is said to be absolutely $(R, p_n, 1)$ summable or $[R, p_n, 1]$ summable.

Let f be an integrable function with period 2π and let its Fourier series be

(2)
$$f(x) \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = \sum_{n=0}^{\infty} A_n(x).$$

Dikshit [4] (cf. Bhatt [1] and Matsumoto [7]) has proved the following theorems.

THEOREM I. Suppose that (i) the sequence (p_n/P_n) is monotone decreasing, (ii) $m_n > 0$, (iii) the sequence $(m_n p_n/P_n)$ decreases monotonically to zero, and (iv) the series $\sum (m_n p_n/P_n)$ is divergent. If $0 < a < b < 2\pi$, there is a function f integrable over the interval (a, b) and vanishing on the intervals (0, a) and $(b, 2\pi)$ such that the series $\sum m_n A_n(x)$ is not $|R, p_n, 1|$ summable at the origin.

THEOREM II. Suppose that (i) the sequence (p_n/P_n) is monotone decreasing and (ii) the sequence $(P_n/n^{1+\theta}p_n)$ decreases for $a, 0 < \theta \le 1$. If

$$\sum_{n=1}^{\infty} (|A_n(x)|p_n/P_n) < \infty,$$

then the summability $|R, p_n, 1|$ of the Fourier series (2) at the point x depends only on the behaviour of the function f in the immediate neighbourhood of the point x.

We shall first prove the following theorem.

Received March 28, 1969.

THEOREM 1. Suppose that (p_n) is a sequence of positive numbers such that $P_n \to \infty$ and $(p_n/P_{n-1}P_n)$ is decreasing and the sequence (m_n) of positive numbers is of bounded variation such that

$$m_n p_n / P_n \leq A m_{2n} p_{2n} / P_{2n}$$
 for all n

and $(m_n p_n/P_n)$ is monotone decreasing. If

(3)
$$\sum_{n=1}^{\infty} (|A_n(x)| m_n p_n / P_n) < \infty,$$

then the summability $|R, p_n, 1|$ of the series $\sum m_n A_n(x)$ at the point x depends only on the behaviour of the function f in the immediate neighbourhood of the point x.

1.2. The nth Nörlund mean of the series $\sum a_n$ is defined by

(4)
$$t_n = \frac{1}{P_n} \sum_{k=0}^{n} p_{n-k} s_k,$$

 s_k being the kth partial sum of the series. If the sequence (t_n) is of bounded variation, then the series $\sum a_n$ is said to be absolutely (N, p_n) summable or $|N, p_n|$ summable.

Daniel [3] has proved the following theorems which are a generalization of the theorems of Jurkat and Peyerimhoff [6] and Bhatt [2].

THEOREM III. If the positive sequence (m_n) satisfies the conditions

$$\sum (m_n |\cos 2nx|/P_n) < \infty$$

and

$$\sum (m_n/P_n) = \infty,$$

then the summability $|N, p_n|$ of the series $\sum m_n A_n(x)$ at the point x is not a local property of f.

THEOREM IV. Suppose that the sequences (p_n) and (m_n) are positive monotone decreasing and that they satisfy the following conditions:

(5)
$$m_{n+1}/m_{n+k} \leq A$$
, uniformly in $k < n$, as $n \to \infty$,

(6)
$$\frac{1}{nm_n} \sum_{k=1}^n \frac{m_k}{P_k} \le A \quad as \ n \to \infty,$$

(7)
$$\sum_{n=1}^{\infty} \frac{m_n}{n P_n} < \infty.$$

If

(8)
$$\sum_{n=1}^{\infty} (|A_n(x)| m_n/P_n) < \infty,$$

then the summability $|N, p_n|$ of the series $\sum m_n A_n(x)$ depends only on the behaviour of f in the immediate neighbourhood of the point x.

We prove the following result.

THEOREM 2. Suppose that the sequences (p_n) and (m_n) are positive, monotone decreasing and

$$m_n/P_n \leq A m_{2n}/P_{2n}$$
 for all n .

If the condition (8) is satisfied, then the summability $|N, p_n|$ of the series $\sum m_n A_n(x)$ depends only on the behaviour of f in the immediate neighbourhood of the point x.

Further, we prove the following.

Theorem 3. Suppose that (m_n) is a positive, monotone decreasing and convex sequence such that

$$\Delta m_n \leq A \Delta m_{2n}$$
 for all n ,

and that the sequence (p_n) is monotone increasing and satisfies the condition

(9)
$$\sum_{n=j+1}^{\infty} \frac{p_{n-j} - p_{n-j-1}}{p_{n-1}} \le \frac{A}{j+1} \text{ for all } j \ge 0.$$

If

(10)
$$\sum_{n=1}^{\infty} \frac{|A_n(x)| m_n}{n} < \infty \quad and \quad \sum_{n=1}^{\infty} |A_n(x)| \Delta m_n \log n < \infty,$$

then the summability $|N, p_n|$ of the series $\sum m_n A_n(x)$ depends only on the behaviour of f in the immediate neighbourhood of the point x.

Theorems 1, 2, and 3 hold also for conjugate series.

2. Proofs of the theorems.

2.1. Proof of Theorem 1. We can suppose that f is even and x = 0. We shall consider the Riesz means (t_n) of the series $\sum m_n a_n$, then (1) yields

$$t_n - t_{n-1} = \frac{p_n}{P_n P_{n-1}} \sum_{k=0}^{n-1} P_k m_{k+1} a_{k+1}$$

and then

(11)
$$\sum_{n=1}^{\infty} |t_n - t_{n-1}| \leq \sum_{n=1}^{\infty} \frac{p_n}{P_n P_{n-1}} \Big| \sum_{k=0}^{n-1} P_k m_{k+1} a_{k+1} \Big|$$

$$= \sum_{n=1}^{\infty} \frac{p_n}{P_n P_{n-1}} |T_n|.$$

We can write

$$(12) T_n = \sum_{k=0}^{n-1} P_k m_{k+1} a_{k+1} = \frac{2}{\pi} \int_0^{\pi} f(t) \left(\sum_{k=0}^{n-1} P_k m_{k+1} \cos(k+1) t \right) dt$$

$$= \frac{2}{\pi} \int_0^{\pi} f(t) \left[\sum_{k=1}^{n-1} (P_{k-1} \Delta m_k - p_k m_{k+1}) D_k(t) + P_{n-1} m_n D_n(t) - P_0 m_1 D_0(t) \right] dt,$$

where $D_k(t)$ is the kth Dirichlet kernel [8], that is,

$$D_k(t) = \frac{\sin(k + \frac{1}{2})t}{2\sin\frac{1}{2}t} = \frac{\sin kt}{2\tan\frac{1}{2}t} + \frac{1}{2}\cos kt.$$

Hence we put

(13)
$$T_{n} = \frac{2}{\pi} \int_{0}^{\pi} f(t) \left[\sum_{k=1}^{n-1} \left(P_{k-1} \Delta m_{k} - p_{k} m_{k+1} \right) \frac{\sin kt}{2 \tan \frac{1}{2}t} + P_{n-1} m_{n} \frac{\sin nt}{2 \tan \frac{1}{2}t} \right] dt$$

$$+ \frac{1}{\pi} \int_{0}^{\pi} f(t) \left[\sum_{k=1}^{n-1} \left(P_{k} \Delta m_{k} - p_{k} m_{k+1} \right) \cos kt + P_{n-1} m_{n} \cos nt - P_{0} m_{1} \right] dt$$

$$= T_{n}' + T_{n}'',$$

then

$$|T_n''| \leq A \sum_{k=1}^{n-1} (P_{k-1}|\Delta m_k| + p_k m_{k+1})|a_k| + A P_{n-1} m_n |a_n| + A,$$

and hence, by (3) and since m_k is of bounded variation, we have

$$(14) \sum_{n=1}^{\infty} \frac{p_{n}|T_{n}''|}{P_{n}P_{n-1}} \leq A \sum_{n=1}^{\infty} \frac{p_{n}m_{n}|a_{n}|}{P_{n}} + A \sum_{n=1}^{\infty} \frac{p_{n}}{P_{n}P_{n-1}} + A \sum_{k=1}^{\infty} (P_{k-1}|\Delta m_{k}| + p_{k}m_{k+1})|a_{k}| \sum_{n=k+1}^{\infty} \frac{p_{n}}{P_{n}P_{n-1}} \leq A + \sum_{k=1}^{\infty} \frac{P_{k-1}|\Delta m_{k}| + p_{k}m_{k+1}}{P_{k}}|a_{k}| < \infty.$$

By (11), (13), and (14), we obtain

(15)
$$\sum_{n=1}^{\infty} |t_n - t_{n-1}| \le A + \sum_{n=1}^{\infty} \frac{p_n |T_n'|}{P_n P_{n-1}}.$$

We shall prove that the last sum is finite except for the terms depending on the behaviour of f in the interval $(0, \epsilon)$, ϵ being any positive fixed number.

Now, we define an odd continuous function g, periodic with period 2π , such that

$$g(t) = \frac{1}{2} \cot \frac{1}{2}t$$
 in the interval (ϵ, π)

and that g is differentiable at least four times everywhere. If we write

(16)
$$g(t) \sim \sum_{n=1}^{\infty} c_n \sin nt,$$

then $c_n = O(1/n^3)$ as $n \to \infty$. Using this function g(t), we obtain the following formula:

(17)
$$\int_0^{\pi} \frac{f(t)}{2 \tan \frac{1}{2}t} \sin nt \, dt = \int_0^{\epsilon} f(t) \left(\frac{1}{2 \tan \frac{1}{2}t} - g(t) \right) \sin nt \, dt + \int_0^{\pi} f(t)g(t) \sin nt \, dt.$$

Since the first integral on the right side of (17) depends on the values of f in the interval $(0, \epsilon)$, we leave it out of consideration. Hence it is enough to show that

(18)
$$\sum_{n=1}^{\infty} \frac{p_n}{P_n P_{n-1}} \sum_{k=1}^{n-1} \left| (P_{k-1} | \Delta m_k| + p_k m_{k+1}) \right| \int_0^{\pi} f(t) g(t) \sin kt \, dt$$

$$+ \sum_{n=1}^{\infty} \frac{m_n p_n}{P_n} \left| \int_0^{\pi} f(t) g(t) \sin mt \, dt \right| = U + V$$

is finite. By (16), we obtain

(19)
$$\int_{0}^{\pi} f(t)g(t) \sin nt \, dt = \sum_{j=1}^{\infty} c_{j} \int_{0}^{\pi} f(t) \sin jt \sin nt \, dt$$
$$= \frac{\pi}{4} \sum_{k=1}^{\infty} c_{j} (a_{|j-n|} - a_{j+n})$$

and then

(20)
$$V \leq A \sum_{n=1}^{\infty} \frac{m_n p_n}{P_n} \sum_{j=1}^{\infty} |c_j| (|a_{|j-n|}| + |a_{j+n}|) = V_1 + V_2,$$

where

(21)
$$V_{1} = A \sum_{j=1}^{\infty} |c_{j}| \sum_{n=1}^{\infty} \frac{m_{n} p_{n}}{P_{n}} |a_{|j-n|}|$$

$$= A \sum_{j=1}^{\infty} |c_{j}| \left(\sum_{n=1}^{j} \frac{m_{n} p_{n}}{P_{n}} |a_{j-n}| + \sum_{n=j+1}^{\infty} \frac{m_{n} p_{n}}{P_{n}} |a_{n-j}| \right)$$

$$\leq A \sum_{n=1}^{\infty} \frac{m_{n} p_{n}}{P_{n}} \sum_{j=n}^{\infty} |c_{j}| + \sum_{j=1}^{\infty} |c_{j}| \sum_{n=1}^{\infty} \frac{m_{n} p_{n}}{P_{n}} |a_{n}|$$

$$\leq A \sum_{n=1}^{\infty} \frac{m_{n} p_{n}}{P_{n}} \frac{1}{n^{2}} + A \sum_{j=1}^{\infty} \frac{1}{j^{3}}$$

$$< \infty,$$

by using the monotonicity of the sequence $(m_n p_n/P_n)$ and the condition (3), and

(22)
$$V_{2} = A \sum_{n=1}^{\infty} \frac{m_{n} p_{n}}{P_{n}} \left(\sum_{j=1}^{n} + \sum_{j=n+1}^{\infty} \right) |c_{j}| |a_{j+n}|$$

$$\leq A \sum_{j=1}^{\infty} |c_{j}| \sum_{n=j}^{\infty} \frac{m_{n} p_{n}}{P_{n}} |a_{2n}| + A \sum_{n=1}^{\infty} \frac{m_{n} p_{n}}{P_{n}} \sum_{j=n+1}^{\infty} \frac{1}{j^{3}}$$

$$\leq A \sum_{j=1}^{\infty} |c_{j}| \sum_{n=j}^{\infty} \frac{m_{2n} p_{2n}}{P_{2n}} |a_{2n}| + A \sum_{n=1}^{\infty} \frac{m_{n} p_{n}}{n^{2} P_{n}}$$

$$< \infty,$$

by the conditions $m_n p_n / P_n \le A m_{2n} p_{2n} / P_{2n}$ and (3).

On the other hand we put

$$(23) \quad U \leq A \sum_{n=1}^{\infty} \frac{p_n}{P_{n-1}P_n} \sum_{k=1}^{n-1} \left(P_{k-1} |\Delta m_k| + p_k m_{k+1} \right) \sum_{j=1}^{\infty} |c_j| \left(|a_{|j-n|}| + |a_{j+n}| \right)$$

$$\leq A \sum_{j=1}^{\infty} |c_j| \sum_{k=1}^{\infty} \frac{P_{k-1} |\Delta m_k|}{P_k}$$

$$+ A \sum_{n=1}^{\infty} \frac{p_n}{P_{n-1}P_n} \sum_{k=1}^{n-1} p_k m_{k+1} \left(\sum_{j=0}^{n-1} |c_{n-j}| |a_j| + \sum_{j=1}^{\infty} |c_{n+j}| |a_j| \right)$$

$$+ \sum_{k=1}^{\infty} |c_j| |a_{j+n}|$$

$$= W + X + Y + Z.$$

W is evidently finite. We write

(24)
$$X = A \sum_{j=0}^{\infty} |a_{j}| \sum_{n=j+1}^{\infty} \frac{p_{n}|c_{n-j}|}{P_{n-1}P_{n}} \sum_{k=1}^{n-1} p_{k} m_{k+1}$$

$$= A \sum_{j=0}^{\infty} |a_{j}| \sum_{n=j+1}^{\infty} \frac{p_{n}|c_{n-j}|}{P_{n-1}P_{n}} \left(\sum_{k=1}^{j-1} + \sum_{k=j}^{n-1}\right) p_{k} m_{k+1}$$

$$= X_{1} + X_{2}.$$

Since the sequence $(p_n/P_{n-1}P_n)$ decreases as $n\to\infty$, we have

$$(25) X_{1} \leq A \sum_{j=0}^{\infty} |a_{j}| \sum_{n=j+1}^{\infty} \frac{p_{n}|c_{n-j}|}{P_{n-1}P_{n}} \left(P_{j-1}m_{j} + \sum_{k=1}^{j-2} P_{k}\Delta m_{k+1} + P_{0}m_{2} \right)$$

$$\leq A \sum_{j=0}^{\infty} \frac{p_{j}m_{j}|a_{j}|}{P_{j}} + A \sum_{j=0}^{\infty} \frac{|a_{j}|p_{j}}{P_{j-1}P_{j}} \sum_{k=1}^{j-2} P_{k}|\Delta m_{k+1}| + A$$

$$\leq A + A \sum_{k=1}^{\infty} P_{k}|\Delta m_{k+1}| \sum_{j=k+2}^{\infty} \frac{|a_{j}|p_{j}}{P_{j-1}P_{j}}$$

$$< \infty,$$

and, by the monotonicity of the sequences $(p_n/P_{n-1}P_n)$ and (m_np_n/P_n) , we can see that

(26)
$$X_{2} \leq A \sum_{j=0}^{\infty} |a_{j}| \sum_{k=j}^{\infty} p_{k} m_{k+1} \sum_{n=k+1}^{\infty} \frac{p_{n} | c_{n-j}|}{P_{n-1} P_{n}}$$

$$\leq A \sum_{j=0}^{\infty} |a_{j}| \sum_{k=j}^{\infty} \frac{p_{k} m_{k+1} p_{k+1}}{P_{k} P_{k+1} (k-j+1)^{2}}$$

$$\leq A \sum_{j=0}^{\infty} \frac{|a_{j}| p_{j} m_{j}}{P_{j}}$$

$$< \infty.$$

Further we obtain

$$(27) Y \le A \sum_{n=1}^{\infty} \frac{p_n}{P_{n-1}P_n} \sum_{k=1}^{n-1} p_k m_{k+1} \sum_{j=1}^{\infty} |c_{n+j}| \le A \sum_{n=1}^{\infty} \frac{p_n}{n^2 P_n} < \infty$$

and

$$(28) \quad Z \leq A \sum_{j=1}^{\infty} |c_{j}| \sum_{n=1}^{\infty} \frac{p_{n}|a_{n+j}|}{P_{n-1}P_{n}} \sum_{k=1}^{n-2} p_{k}m_{k+1}$$

$$\leq A \sum_{j=1}^{\infty} |c_{j}| \sum_{n=1}^{\infty} \frac{p_{n}|a_{n+j}|}{P_{n-1}P_{n}} \left(P_{0}m_{2} + P_{n-1}m_{n} + \sum_{k=1}^{n-2} P_{k}|\Delta m_{k+1}| \right)$$

$$\leq A \sum_{j=1}^{\infty} |c_{j}| + A \sum_{n=1}^{\infty} \frac{m_{n}p_{n}}{P_{n}} \sum_{j=1}^{\infty} |c_{j}| |a_{n+j}| + A \sum_{j=1}^{\infty} |c_{j}| \sum_{k=1}^{\infty} |\Delta m_{k+1}|$$

$$< \infty,$$

by using (22).

Collecting (23)–(28), we can see that U is finite. Combining this with (18), (20), (21), and (22), we obtain the required result.

2.2. Proof of Theorem 2. We can suppose that f is even and x = 0. Let (t_n) be the nth Nörlund mean of the series $\sum m_n a_n$, then; by (4),

$$t_n = \frac{1}{P_n} \sum_{k=0}^{n} p_{n-k} s_k',$$

where s_{k}' is the kth partial sum of the series $\sum m_{n}a_{n}$. Hence

$$(29) \quad t_{n} - t_{n-1} = \frac{1}{P_{n}P_{n-1}} \sum_{k=0}^{n} (p_{k}P_{n} - p_{n}P_{k})m_{n-k}a_{n-k}$$

$$= \frac{1}{P_{n}P_{n-1}} \left\{ \sum_{k=1}^{n-1} [P_{n}(p_{k}m_{n-k} - p_{k-1}m_{n-k+1}) - p_{n}(P_{k}m_{n-k} - P_{k-1}m_{n-k+1})]s_{n-k} - p_{n}(P_{k}m_{n-k} - P_{k-1}m_{n-k+1})]s_{n-k} - m_{1}(P_{n}p_{n-1} - P_{n-1}p_{n})s_{0} + m_{n}(p_{0}P_{n} - P_{0}p_{n})s_{n} \right\}$$

$$= R_{n} + S_{n} + T_{n},$$

where s_n is the *n*th partial sum of the series $\sum a_n$. Now, the coefficient of s_{n-k} in R_n is

$$\frac{1}{P_{n}P_{n-1}} \left\{ P_{n}(p_{k}m_{n-k} - p_{k-1}m_{n-k+1}) - p_{n}(P_{k}m_{n-k} - P_{k-1}m_{n-k+1}) \right\}$$

$$= \frac{1}{P_{n}P_{n-1}} \left\{ (P_{n}p_{k} - p_{n}P_{k})(m_{n-k} - m_{n-k+1}) + (P_{n-1}p_{k} - P_{n}p_{k-1})m_{n-k+1} \right\},$$

so that

$$(30) \sum_{n=1}^{\infty} |R_{n}| \leq \sum_{n=1}^{\infty} \frac{1}{P_{n} P_{n-1}} \sum_{k=1}^{n-1} (P_{n} p_{k} - p_{n} P_{k}) (m_{n-k} - m_{n-k+1}) |s_{n-k}|$$

$$+ \sum_{n=1}^{\infty} \frac{1}{P_{n} P_{n-1}} \sum_{k=1}^{n-1} (P_{n} p_{k-1} - P_{n-1} p_{k}) m_{n-k+1} |s_{n-k}|$$

$$= U + V,$$

As in the proof of Theorem 1, we define the function g(t), and we write

$$U = \sum_{n=1}^{\infty} \frac{1}{P_n P_{n-1}} \sum_{j=1}^{n-1} (P_n p_{n-j} - p_n P_{n-j}) (m_j - m_{j+1})$$

$$\times \left\{ \frac{2}{\pi} \left[\int_0^{\epsilon} f(t) \left(\frac{1}{2 \tan \frac{1}{2}t} - g(t) \right) \sin jt \, dt \right] + \int_0^{\pi} f(t) g(t) \sin jt \, dt \right] + \frac{1}{2} a_j \right\}$$

$$= U_1 + U_2 + U_3,$$

$$V = \sum_{n=1}^{\infty} \frac{1}{P_n P_{n-1}} \sum_{j=1}^{n-1} (P_n p_{n-j-1} - P_{n-1} p_{n-j}) m_{j+1}$$

$$\times \left\{ \frac{2}{\pi} \left[\int_0^{\epsilon} f(t) \left(\frac{1}{2 \tan \frac{1}{2}t} - g(t) \right) \sin jt \, dt \right] + \int_0^{\pi} f(t) g(t) \sin jt \, dt \right] + \frac{1}{2} a_j \right\}$$

$$= V_1 + V_2 + V_3.$$

where U_1 and V_1 depend only on the value of f in the immediate neighbourhood of the origin. Thus it is sufficient to show that U_2 , U_3 , V_2 , and V_3 are finite. Since the sequence (p_n) decreases monotonically and

(31)
$$\sum_{n=j+1}^{\infty} \frac{p_{n-j-1} - p_{n-j}}{P_{n-1}} \le \frac{A}{P_j} \quad \text{for all } j \ge 0,$$
 we have, by (8).

$$(32) V_{3} \leq \sum_{n=1}^{\infty} \frac{1}{P_{n} P_{n-1}} \sum_{j=1}^{n-1} (P_{n} p_{n-j-1} - P_{n-1} p_{n-j}) m_{j+1} |a_{j}|$$

$$= \sum_{j=1}^{\infty} m_{j+1} |a_{j}| \sum_{n=j+1}^{\infty} \left(\frac{p_{n-j-1} - p_{n-j}}{P_{n}} + p_{n-j-1} \left(\frac{1}{P_{n-1}} - \frac{1}{P_{n}} \right) \right)$$

$$\leq A \sum_{j=1}^{\infty} \frac{m_{j} |a_{j}|}{P_{j}}$$

$$< \infty.$$

We see that (cf. [5, formula (17)])

(33)
$$\sum_{n=j+1}^{\infty} \frac{P_n p_{n-j} - p_n P_{n-j}}{P_n P_{n-1}} \leq A,$$

and thus

(34)
$$U_{3} \leq \sum_{n=1}^{\infty} \frac{1}{P_{n}P_{n-1}} \sum_{j=1}^{n-1} (P_{n}p_{n-j} - p_{n}P_{n-j}) \Delta m_{j} |a_{j}|$$

$$= \sum_{j=1}^{\infty} \Delta m_{j} |a_{j}| \sum_{n=j+1}^{\infty} \frac{P_{n}p_{n-j} - p_{n}P_{n-j}}{P_{n}P_{n-1}}$$

$$< \infty.$$

By (19) and (33), we obtain

(35)
$$U_{2} \leq A \sum_{n=1}^{\infty} \frac{1}{P_{n}P_{n-1}} \sum_{j=1}^{n-1} (P_{n}p_{n-j} - p_{n}P_{n-j}) \Delta m_{j} \sum_{k=1}^{\infty} |c_{k}| |a_{|k-j|} + a_{k+j}|$$

$$\leq A \sum_{j=1}^{\infty} \Delta m_{j} \sum_{n=j+1}^{\infty} \frac{P_{n}p_{n-j} - p_{n}P_{n-j}}{P_{n}P_{n-1}}$$

$$\leq A \sum_{j=1}^{\infty} \Delta m_{j}$$

$$\leq \infty.$$

Finally we shall estimate V_2 . We put

$$V_{2} \leq A \sum_{n=1}^{\infty} \frac{1}{P_{n}P_{n-1}} \sum_{j=1}^{n-1} (P_{n}p_{n-j-1} - P_{n-1}p_{n-j}) m_{j+1} \sum_{k=1}^{\infty} |c_{k}| (|a_{|j-k|}| + |a_{j+k}|)$$

$$= A \sum_{n=1}^{\infty} \frac{1}{P_{n-1}} \sum_{j=1}^{n-1} (p_{n-j-1} - p_{n-j}) m_{j+1} \sum_{k=1}^{\infty} |c_{k}| (|a_{|j-k|}| + |a_{j+k}|)$$

$$+ A \sum_{n=1}^{\infty} \frac{p_{n}}{P_{n}P_{n-1}} \sum_{j=1}^{n-1} p_{n-j}m_{j+1} \sum_{k=1}^{\infty} |c_{k}| (|a_{|j-k|}| + |a_{j+k}|)$$

$$= X + Y;$$

then, by (31) and the assumption of the theorem, we obtain

$$(36) \quad X \leq \sum_{k=1}^{\infty} |c_{k}| \sum_{j=1}^{\infty} (|a_{|j-k|}| + |a_{j+k}|) m_{j+1} \sum_{n=j+1}^{\infty} \frac{p_{n-j-1} - p_{n-j}}{P_{n-1}}$$

$$\leq A \sum_{k=1}^{\infty} |c_{k}| \sum_{j=1}^{\infty} \frac{m_{j+1}}{P_{j}} (|a_{|j-k|}| + |a_{j+k}|)$$

$$\leq A \sum_{k=1}^{\infty} |c_{k}| \left(\sum_{j=1}^{k} + \sum_{j=k+1}^{\infty} \right) \frac{m_{j+1}}{P_{j}} (|a_{|j-k|}| + |a_{j+k}|)$$

$$\leq A \sum_{j=1}^{\infty} \frac{m_{j+1}}{P_{j}} |a_{k-j}| \sum_{k=j}^{\infty} |c_{k}| + A \sum_{k=1}^{\infty} |c_{k}| \sum_{j=k+1}^{\infty} \frac{m_{j-k}}{P_{j-k}} |a_{j-k}|$$

$$+ A \sum_{j=1}^{\infty} \frac{m_{j+1}}{P_{j}} |a_{j+k}| \sum_{k=j}^{\infty} |c_{k}| + A \sum_{k=1}^{\infty} |c_{k}| \sum_{j=k+1}^{\infty} \frac{m_{2j}}{P_{2j}} |a_{j+k}|$$

$$\leq A \sum_{j=1}^{\infty} \frac{m_{j+1}}{j^{2}P_{j}} + A \sum_{k=1}^{\infty} |c_{k}| \sum_{j=1}^{\infty} \frac{m_{j}}{P_{j}} |a_{j}| + A \sum_{k=1}^{\infty} |c_{k}| \sum_{j=k+1}^{\infty} \frac{m_{j+k}}{P_{j+k}} |a_{j+k}|$$

and further, by (31), we similarly have

(37)
$$Y \leq A \sum_{k=1}^{\infty} |c_{k}| \sum_{j=1}^{\infty} m_{j+1} (|a_{\lfloor j-k \rfloor}| + |a_{j+k}|) \sum_{n=j+1}^{\infty} \frac{p_{n} p_{n-j}}{P_{n} P_{n-1}}$$
$$\leq A \sum_{k=1}^{\infty} |c_{k}| \sum_{j=1}^{\infty} \frac{m_{j+1}}{P_{j}} (|a_{\lfloor j-k \rfloor}| + |a_{j+k}|)$$
$$< \infty.$$

Combining (36) and (37), we see that V_2 is finite. By (32)–(35), and the finiteness of V_2 , we see that Theorem 2 is proved for $\sum |R_n|$.

We shall now consider

$$\sum_{n=1}^{\infty} |T_n| = \sum_{n=1}^{\infty} \frac{m_n |s_n|}{P_n}.$$

By (17), it is sufficient to prove that

$$\sum_{n=1}^{\infty} \frac{m_n}{P_n} \left| \int_0^{\pi} f(t)g(t) \sin nt \, dt \right| < \infty.$$

This follows from

$$\sum_{n=1}^{\infty} \frac{m_n}{P_n} \sum_{j=1}^{\infty} |c_j| (|a_{|j-n|}| + |a_{j+n}|) < \infty \quad \text{(by (19))},$$

estimated in the same way as (36). Hence we obtain $\sum |T_n| < \infty$. Evidently, $\sum |S_n| < \infty$. Thus the theorem is proved.

2.3. Proof of Theorem 3. The proof is similar to that of Theorem 2. Since (p_n) increases, we obtain by condition (9), instead of (31) (see [8, formula (15)]),

(38)
$$\sum_{n=j+1}^{\infty} \frac{P_n p_{n-j} - p_n P_{n-j}}{P_n P_{n-1}} \le A \log(j+1) \quad \text{for all } j \ge 0.$$

We shall only estimate U_2 , defined in § 2.2, since the others are quite similar, as in the proof of Theorem 2. By (10), (38), and convexity of the sequence (m_n) , we have

$$\begin{split} U_2 & \leq A \sum_{n=1}^{\infty} \frac{1}{P_n P_{n-1}} \sum_{j=1}^{n-1} \left(P_n p_{n-j} - p_n P_{n-j} \right) \Delta m_j \sum_{k=1}^{\infty} |c_k| \left(|a_{|k-j|}| + |a_{k+j}| \right) \\ & \leq A \sum_{k=1}^{\infty} |c_k| \sum_{j=1}^{\infty} \log(j+1) \Delta m_j (|a_{|k-j|}| + |a_{k+j}|) \\ & \leq A \sum_{k=1}^{\infty} |c_k| \left\{ \sum_{j=1}^{2k} \log(j+1) \Delta m_j |a_{|k-j|}| + \sum_{j=2k+1}^{\infty} \log(j+1) \Delta m_j |a_{j-k}| \right. \\ & \qquad \qquad + \sum_{j=1}^{k} \log(j+1) \Delta m_j |a_{k+j}| + \sum_{j=k+1}^{\infty} \log(j+1) \Delta m_j |a_{k+j}| \right\} \\ & \leq A \sum_{j=1}^{\infty} \log(j+1) \Delta m_j \sum_{k=\frac{1}{2}j}^{\infty} \frac{1}{k^3} + A \sum_{k=1}^{\infty} |c_k| \sum_{j=k+1}^{\infty} \log j \cdot \Delta m_j |a_j| \\ & \qquad \qquad + A \sum_{j=1}^{\infty} \log(j+1) \Delta m_j \sum_{k=\frac{1}{2}j}^{\infty} c_k |a_{k+j}| + A \sum_{k=1}^{\infty} |c_k| \sum_{j=k+1}^{\infty} \log 2j \cdot \Delta m_{2j} |a_{2j}| \\ & \leq A \sum_{j=1}^{\infty} \frac{\log(j+1)}{j^2} + A \sum_{k=1}^{\infty} \frac{1}{k^3} \\ & < \infty. \end{split}$$

References

- S. N. Bhatt, An aspect of local property of |R, log n, 1| summability of Fourier series, Tôhoku Math. J. (2) 11 (1959), 13-19.
- An aspect of local property of absolute Nörlund summability of a Fourier series, Proc. Nat. Inst. Sci. India Part A 28 (1962), 787-794.
- E. C. Daniel, The non-local character of summability [N, p_n] of a Fourier series with factors, Math. Z. 99 (1967), 392-399.
- 4. G. D. Dikshit, Localization relating to the summability $|R, \lambda_n, 1|$ of Fourier series, Indian J. Math. 17 (1965), 31-39.
- 5. M. Izumi and S. Izumi, The absolute Nörlund summability factors of Fourier series (to appear in Indian J. Math.).
- W. Jurkat and A. Peyerimhoff, Lokalisation bei absoluter Cesàro-Summierbarkeit von Potenzreihen und trigonometrischen Reihen. II, Math. Z. 64 (1956), 151-158.
- K. Matsumoto, Local property of the summability |R, λ, 1|, Tôhoku Math. J. (2) 8 (1956), 354-364.
- 8. A. Zygmund, Trigonometric series, 2nd ed., Vol. I (Cambridge Univ. Press, New York, 1959).

The Australian National University, Canberra (ACT), Australia