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Abstract

Within an anticipative stochastic calculus framework, we study a market game with
asymmetric information and feedback effects. We derive necessary and sufficient criteria
for the existence of Nash equilibria and study how general welfare is affected by the level
of information. In particular, we show that, under certain conditions in a competitive
environment, an increased level of information may in fact lower the level of general
welfare, leading to the so-called Hirshleifer effect (see Hirshleifer (1971)). Finally, we
determine equilibrium prices for particular pieces of information, by extending our market
game with a pre-stage, in which information is traded.
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1. Introduction

In the classical Black–Scholes model and in fact in most other continuous-time financial
market models it is assumed that agents’ behavior does not influence asset prices and all agents
possess the same level of information. These models have been very successfully applied
to classical questions such as the pricing of options and derivatives as well as optimal asset
allocation. However, these models are not suitable to explain how the level of information
influences the general performance of the stock market or how and for what price information
may be exchanged between individual agents in the market. There is no doubt that in real-world
markets agents possess different levels of information and that it is important to understand what
value particular pieces of information have and how general welfare is affected by these. In the
first part of this paper, we set up a continuous-time market model in which agents are assumed to
influence asset prices and are exposed to different information flows. The framework is that of
a stochastic differential game with anticipative strategy sets. We derive necessary and sufficient
conditions for the existence of Nash equilibria for this game and characterize these for various
levels of information asymmetry. Furthermore, we study the consequences an increased level
of information has on general welfare. Information asymmetry is not a contradiction to the
efficient market hypotheses, as the agents may indeed learn all the necessary information by
carefully studying the market, if they invest enough effort to do so. However, the emphasis here
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is in the effort. Different agents invest different amounts of effort or capital in order to obtain
information, which may enable them to trade more successfully. Information is costly, and in
the second part of this paper we study the aspect of pricing information within a competitive
market. To illustrate this, let us consider the following three scenarios. In scenario 1 a private
investor may start buying stocks or funds without knowing anything about the market and not
intending to learn anything about it, simply because he/she has read an advertisement in their
local bank. In scenario 2 a private investor is strongly engaged in monitoring his/her individual
portfolio, buying financial newspapers, investing time to watch business channels, etc. Finally,
in scenario 3, a big company who represents a significant market player may invest large sums in
hiring a consulting company, which essentially provides it with key information on the market.
All three scenarios present different aspects under which information may be traded between
market players. In the first scenario the exchange of information is costless for the investor while
the bank bears costs due to the advertisement campaign. Obviously, there is a matter of trust
here, but we leave this issue aside. In scenario 2 the investor invests money and time to obtain
information on the market, essentially to trade more successfully and outperform other market
participants. The exchange of information in this case is costly for the private investor, while
the seller of information, i.e. financial press, media, but also financial institutions, which often
provides media with important information on their business strategies, gain from this sale. The
situation in the third scenario is very similar to that in the second scenario, as far as the investor is
concerned. Here, again, the investor invests to obtain information from the consulting company,
with the exchange of information being costly. There is a significant difference in this scenario
however, and this reflects the point of view of the seller of information. While in the second
scenario the private investor is assumed to be a price taker and has no influence on market prices,
a major company which owns large portfolios represents a trader, which has market impact and
may influence market prices due to the mechanisms of supply and demand. The consulting
company, which is also engaged in the market, must bear in mind the consequences that giving
information to a large trader may change prices and, therefore, affect the value of their own
portfolios, when considering whether or not and for which price to sell information. The first
scenario more or less represents a problem in finding the right advertisement strategy for the
bank and can be addressed in the general context of advertisement. A situation as described
in scenario 2 has been addressed in continuous-time diffusion-type market models, complete
and incomplete, by various authors, for example, Karatzas and Pikovsky (1996), Corcuera et
al. (2004), Imkeller (2003), León et al. (2003), and Ewald (2005). In this context the value
of additional information is determined from the point of view of a representative uninformed
agent. This agent would buy the information for any price P such that

u(x, π̂∗) ≤ u(x − P, π∗),

where π∗ and π̂∗ denote the optimal portfolios under additional and, respectively, no additional
information. Here u denotes expected utility from terminal wealth while x and x − P respec-
tively denote the different levels of initial wealth. The owner of the information would sell
for any price, as he/she does not fear for any consequences on the market. Any positive price
offer for the information would give an incentive to sell, and in the presence of many possible
information providers, the seller’s price reduces to 0. In the third scenario, which is the focus of
this paper, the situation is more complex, as the seller of the information must take the buyers
market impact into account. Selling information comes with the risk that the buyer may use the
information in a way that changes market prices to the disadvantage of the seller. This situation
has not been studied before in a continuous-time diffusion-type financial market model. The
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framework we consider is most general. We study a market model in which two agents use
information flows modeled by filtrations G1 and G2 in order to buy or sell assets, whose prices
they may influence depending on their current position in the market. These filtrations are
assumed to satisfy the usual conditions; see Karatzas and Schreve (1988, p. 10). The technical
framework of the second part of this paper is an extension of the market game studied in the
first part, including two initial stages in which information can be traded for monetary units.
We solve for the Nash equilibria of this game and in this way determine competitive prices for
the pieces of information sold. In both cases, extended and original market games, agents face
continuous-time investment decisions. Trading strategies need to be integrated with respect to
price processes in order to compute returns. In diffusion-type models integration with respect
to price processes is essentially the same as integration with respect to Brownian motion. The
standard stochastic integral, which is the Itô integral, does not allow the integrand to depend
on more information than revealed by the Brownian motion itself. In our framework, where
agents have asymmetric information, which may exceed the level of information revealed by the
underlying Brownian motion, the Itô integral is too restrictive. In order to avoid these problems,
we use an anticipative stochastic calculus which has been developed in the last two decades.
We use the technical framework based on the forward integral as found in Kohatsu-Higa and
Sulem (2006). In order to provide analytically tractable examples, we also make use of the
classical technique of enlargement of filtration, developed originally by Jacod (1985), which is
nowadays used throughout the literature.

The paper is organized as follows. We give a short introduction of anticipative stochastic
calculus in Section 2, while in Section 3 we set up our market model and compute Nash
equilibrium strategies. In this section we also study the questions of how these equilibria
change with respect to changes in the information level and how general welfare is affected by
this. In Section 4 we extend the game with a prestage in which information may be exchanged
in return for monetary units and determine equilibrium prices for the information. Section 5
contains the main conclusions from the paper.

2. A brief review of anticipative stochastic calculus

In this section we introduce some preliminaries about anticipative stochastic calculus, which
is in fact strongly related to what is called Malliavin calculus. A standard reference for this
is Nualart (1995). Let us consider the set S of cylindrical functionals F : � → R, given
by F = f (W(t1), . . . , W(tl)), where f ∈ C∞

b ((Rn)l) is a smooth function with bounded
derivatives of all orders and (W(t)) denotes an n-dimensional Brownian motion on �. We
define the Malliavin derivative operator on S via

DsF :=
l∑

i=1

∂f

∂xi

(Wt1(ω), . . . , Wtl (ω))1[0,ti ](s),

where ∂f /∂xi denotes the gradient of f with respect to its ith n-dimensional argument. This
operator and the iterated operators Dk are closable and unbounded from Lp(�) into Lp(� ×
[0, T ]k, R

n) for all k ≥ 1. Their respective domains are denoted by D
k,p and obtained as the

closure of S with respect to the norms defined by

‖F‖p
k,p = ‖F‖p

Lp(�) +
k∑

j=1

‖DjF‖p

Lp(�×[0,T ]j ,Rn)
.
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The adjoint of the Malliavin derivative operator D : D
1,2 → L2(� × [0, T ], R

n) is called
the Skorokhod integral and denoted with δ. This operator has the property that its domain
contains the class L2

a(� × [0, T ], R
n) of square integrable adapted stochastic processes and

its restriction to this class coincides with the Itô integral. We will make use of the notation
δ(u) = ∫ T

0 ut dWt . The Malliavin derivative operator and the Skorokhod integral are related
by the following integration by parts formula:

E(δ(u)F ) = E

(∫ T

0
DtFu(t) dt

)
for any F ∈ D

1,2. (1)

The following proposition is used to calculate the logarithmic derivative, often called informa-
tion drift in information theory. It will prove particularly useful in our examples in the next
section. The result is well known in the case where the underlying process X is a Brownian
motion. Even though this is precisely the case which we refer to in our application, we include
a more general result here, where X is assumed to be a general time-homogeneous diffusion.
This proves to be useful in the framework of stochastic volatility models, where additional
information is determined by the level of volatility in the future; see, for example, Ewald (2005).

Proposition 1. Suppose that X = X(T0), T0 ≥ T , where X solves the stochastic differential
equation

dX(t) = b(X(t)) dt + σ(X(t)) dW(t),

with W(t) a one-dimensional Brownian motion. We assume that the transition density p(t, u,

x, y) is two times continuously differentiable with respect to x and one time continuously
differentiable with respect to t . (Conditions for this in terms of the Malliavin derivative are
given in Theorem 2.1.4 and Corollary 2.1.2 of Nualart (1995).) Then

W̃(t) = W(t) −
∫ t

0
σ(X(u))∂x log(p(u, T0, X(u), X(T0))) du

is a Brownian motion with respect to G = (Gt ) with Gt = Ft ∨ σ(X(T0)) for t ≤ T .

Proof. Let f be a smooth function, and let M be an Fs-adapted random variable. Then

E((W(t) − W(s))Mf (X(T0))) = E(E((W(t) − W(s))Mf (X(T0)) | Ft ))

= E

(
(W(t) − W(s))M

∫
f (y)p(t, T0, X(t), y) dy

)

= E

(
δ(1(s,t](u))M

∫
f (y)p(t, T0, X(t), y) dy

)

= E

(∫ t

s

Du

(
M

∫
f (y)p(t, T0, X(t), y dy

)
du

)
.

Because M is adapted to Fs , we haveDuM = 0 for u > s. Applying first the product rule to
M

∫
f (y)p(u, T0, X(u), y) dy) and then Fubini’s theorem, we obtain

E((W(t) − W(s))Mf (X(T0))) = E

(∫ t

s

M

∫
f (y)Dup(t, T0, X(t), y) dy du

)

= E

(∫
f (y)M

∫ t

s

Dup(t, T0, X(t), y) du dy

)
.
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It follows from the Itô formula that

Dup(t, T0, X(t), y)

= Du

{
p(s, X(s), y) +

∫ t

s

[
∂p(v, T0, X(v), y)

∂v
+ b(X(v))

∂p(v, T0, X(v), y)

∂x

+ 1

2
σ 2(X(v))

∂2p(v, T0, X(v), y)

∂x2

]
dv

+
∫ t

s

σ (X(v))
∂p(v, T0, X(v), y)

∂x
dW(v)

}
.

From the Kolmogorov backward equation we can conclude that the expression in the square
brackets is 0. Furthermore, Dup(s, X(s), y) = 0 for the reason that u ≥ s implies that
p(s, X(s), y) is Fu-adapted. We therefore find that E((W(t) − W(s))Mf (X(T0))) is given by
the expression

E

(∫
f (y)M

∫ t

s

Du

[∫ t

s

σ (X(v))
∂p(v, T0, X(v), y)

∂x
dW(v)

]
du dy

)
.

Applying the Malliavin derivative operator to the expression in the square brackets leads to,
according to Nualart (1995, Lemma 1.3.4),

E((W(t) − W(s))Mf (X(T0)))

= E

(∫
f (y)M

∫ t

s

(
σ(X(u))

∂p(u, T0, X(u), y)

∂x

+
∫ t

u

Du

[
σ(X(v))

∂p(v, T0, X(v), y)

∂x

]
dW(v)

)
du dy

)
.

Using the Fubini theorem to interchange the order of integration and taking expectations inside
the integral, and, furthermore, realizing that the expectation of an Itô integral with respect to
Brownian motion is always 0, we obtain

E((W(t) − W(s))Mf (X(T0))) = E

(∫
f (y)M

∫ t

s

σ (X(u))
∂p(u, T0, X(u), y)

∂x
du dy

)
.

Another application of Fubini’s theorem and the fact that, for a positive differentiable function
α(x), we have (∂ log(α(x))/∂x)α(x) = ∂α(x)/∂x yields

E((W(t) − W(s))Mf (X(T0)))

= E

(∫ t

s

(∫
f (y)Mσ(X(u))

∂ log p(u, T0, X(u), y)

∂x
p(u, T0, X(u), y) dy

)
du

)
.

By the definition of the transition density function we conclude that

E((W(t) − W(s))Mf (X(T0)))

= E

(
f (X(T0))M

∫ t

s

σ (X(u))
∂ log p(u, T0, X(u), X(T0))

∂x
du

)
.
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A density argument then establishes that

E

(
W(t) − W(s) −

∫ t

s

σ (X(u))
∂ log p(u, T0, X(u), X(T0))

∂x
du

∣∣∣∣ Gs

)
= 0. (2)

Now, by the definition of W̃(t), the last equality is equivalent to

E(W̃(t) − W̃(s) | Gs) = 0,

and (W̃(t))[0,T ] is therefore a continuous martingale with respect to the filtration G. Its quadratic
variation is given by 〈W̃(t)〉 = t for t ∈ [0, T ]. Hence, by Lévy’s theorem, (W̃(t))[0,T ] is a
Brownian motion with respect to Gt .

Example 1. Assume that Xi(T0) = Wi (T0), i = 1, . . . , n, such that

Gt = Ft ∨ σ(X1(T0)) ∨ · · · ∨ σ(Xn(T0)).

We can then explicitly write down the transition probability density of Xi(T0) conditional on Ft :

p(t, T0, Xi(t), y) = 1√
2π(T0 − t)

exp

(
− (y − Xi(t))

2

2(T0 − t)

)
.

Then

σ(Xi(u))∂x log(p(u, T0, Xi(u), X(T0)) = Xi(T0) − Xi(u)

T0 − u
= Wi (T0) − Wi (u)

T0 − u
,

and

W̃i (t) = Wi (t) −
∫ t

0

Wi (T0) − Wi (u)

T0 − u
du

is a G-Brownian motion, noting that

E(Xi(t) − Xi(s) | Gs) = E(Xi(t) − Xi(s) | Fs ∨ σ(Xi(s))).

In the following section we will use the so-called forward integral, which allows us more
flexibility in the choice of stochastic integrands. For details, see, for example, Russo and Valois
(1993).

Definition 1. Let ϕ : z[0, T ] × � → R
n be a measurable process. The forward integral of ϕ

with respect to W(t) is defined by

∫ T

0
ϕ(t) · d−

W(t) = lim
ε→0

∫ T

0
ϕ�(t) · W(t + ε) − W(t)

ε
dt, (3)

if the limit exists in probability.

The forward integral is related to the Skorokhod integral in the following way. Suppose that
ϕ is R

n-valued as in Definition 1 with ϕ ∈ D
1,2 satisfying

E

(∫ T

0
|ϕ(t)|2

)
dt + E

(∫ T

0

∫ T

0
‖Dsϕ(t)‖2

)
ds dt ≤ ∞,
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where ‖ · ‖ denotes the Euclidean matrix norm. Moreover, assume that

tr(Dt+ϕ(t)) := lim
s→t+

tr(Dsϕ(t))

exists in L2([0, T ] × �). Then ϕ is forward integrable and

∫ T

0
ϕ(t) · d−

W(t) = δ(ϕ(t)) +
∫ T

0
tr(Dt+ϕ(t) dt. (4)

A proof of this result can be found in, for example, Russo and Valois (1993) or Kohatsu-Higa
and Sulem (2006). Taking into account the fact that the expectation of a Skorokhod integral
always vanishes, we obtain

E

(∫ T

0
ϕ(t) · d−

W(t)

)
= E

(∫ T

0
tr(Dt+ϕ(t) dt

)
. (5)

Furthermore, it can be shown that if ϕ is forward integrable and càglàd (i.e. left continuous
with left limits) and 
 := {0 = t0 < t1 < · · · < tn = T } is a sequence of partitions such that

n := supi=0,··· ,n−1{ti+1 − ti} goes to 0 when n → ∞, then

∫ T

0
ϕ(t) · d−

W(t) = lim

n→0

n−1∑
i=0

ϕ�(ti) · (W(ti+1) − W(ti)) (6)

if the limit exists in probability. Taking the latter into account we can indeed argue that the
forward integral is predestined to model financial markets in continuous time when allowing
trading strategies to depend on a more general information structure. It also follows from the
latter equation that in the case where W remains a semimartingale when changing the filtration,
the forward integral coincides with the Itô integral for semimartingales.

3. Continuous-time market games with heterogeneous information

We consider a market with a finite time horizon [0, T ] and agents which are heterogeneously
informed. For simplicity, we restrict the number of agents to two. Our analysis however can
easily be modified to model the case of arbitrarily many agents. Assets include one riskless
asset, which we call the bond and denote with B(t), and n risky assets, which we think of
as stocks and denote with Si(t). The different levels of information are modeled using four
different filtrations throughout the remainder of this paper. These are G1 = (G1

t ) for agent
number one, G2 = (G2

t ) for agent number two, F = (Ft ), the σ -algebra generated by the
underlying noise process, which we assume to be a Brownian motion W(t), and, finally, the
filtration G = (Gt ) for the coefficients of the underlying model. We assume that Ft ⊆ G

p
t ⊆ FT

for p = 1, 2 and Ft ⊆ Gt ⊆ G1
t ∩G2

t for t ∈ [0, T ]. The latter relationship guarantees that even
though agents may have different levels of information, they both understand how the market
works and how other agents’ behavior affects the market. At the current moment we do not
impose any further relationships between G1 and G2. The agents’ investments are described by
their individual portfolio processes πp = (πi

p(t))1≤i≤n, where πi
p(t) denotes the proportion of

wealth of agent p which at time t is invested in stock i = 1, . . . , k, while the remaining portion
π0

p(t) is assumed to be invested in the bond. We will later model the process of selling pieces
of information from one agent to another. In order that the selling agent is not indifferent to
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giving away information to another agent for free, we need to assume that the agents’ behavior
affects asset prices. More precisely, we assume the following dynamics for assets:

dB(t) = r(t)B(t) dt, B(t) = 1,

dS(t) = diag(S(t)){µ(t, π1(t), π2(t)) dt + σ(t) d−
W(t)}, S(0) > 0,

(7)

where diag(S(t)) is the n×n matrix with diagonal elements Si(t) and 0s elsewhere. We assume
that the following conditions hold for the coefficients.

(C1) µ(t, x, y) = (µi(t, x, y)1≤i≤n) is a G-adapted process with values in C(Rn × R
n, R

n),
r(t) is a G-adapted and real-valued stochastic process, σ(t) = (σij (t))1≤i,j≤n is a
G-adapted and R

n×n-valued stochastic process.

(C2)
∫ T

0 (|r(t)| + |µ(t, x, y)| + ‖σ(t)σ�(t)‖) dt < ∞ almost surely (a.s.) for all x, y ∈ R
n.

(C3) σ(t) is forward integrable and càglàd.

The chosen dynamics (7) incorporate a supply and demand feature, in which agents’ current
positions influence the growth rates of the asset prices. A similar dynamic for the case of
a representative agent has been used in Kohatsu-Higa and Sulem (2006). We denote with
Xp(t, π1, π2) the discounted wealth process corresponding to agent p given chosen investment
strategies π1 and π2. The wealth processes also depend on the initial endowments of the
agents, but, for the moment, we omit this from the notation. The stochastic differential equation
governing the evolution of the wealth processes is given by

dXp(t, π1, π2) = Xp(t, π1, π2)(π
�
p (t)(µ(t, π1(t), π2(t)) − r(t)) dt + π�

p (t)σ (t) d−
W(t)),

(8)
with initial condition Xp(0) = xp. Note that this equation presents a stochastic differential
equation with anticipating coefficients. Nevertheless, the Itô formula for the forward integral
(see Russo and Vallois (2000)) implies that (8) is satisfied by

Xp(t, π1, π2) = xp exp

(∫ T

0
(π�

p (s)(µ(s, π1(s), π2(s)) − r(s))

− 1

2
π�

p (s)σ (s)σ�(s)πp(s)) ds +
∫ T

0
π�

p (s)σ (s) d−
W(s)

)
. (9)

For technical reasons, we have to impose certain restrictions on our portfolio strategies which
guarantee that the solution above is well defined.

Definition 2. We call a pair of portfolio strategies (π1, π2) admissible and write (π1, π2) ∈ A
if the following conditions are satisfied.

(i) Xp(t, π1, π2) > 0 for all t ∈ [0, T ].
(ii) πp(t) is càglàd and π�

p (t)σ (t) is forward integrable. Moreover,

∫ T

0
{|π�

p (t)µ(t, π1(t), π2(t)) − r(t)| + |π�
p (t)σ (t)σ�(t)πp(t)|} dt < ∞.

(iii) For any bounded càglàd process π̃ such that π̃�(t)σ (t) is forward integrable, there exists
a γ > 0 such that the families

{|M1(T , π1 + επ̃, π2)|}0≤ε≤γ and {|M2(T , π1, π2 + επ̃)|}0≤ε≤γ
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are uniformly integrable, where

Mp(t, π1, π2) := E

(∫ t

0
(µ(s, π1(s), π2(s)) − r(s) + J

πp
µ (s)πp(s)

− σ(s)σ�(s)πp(s)) ds +
∫ t

0
σ(s) d−

W(s)

∣∣∣∣ G
p
t

)
. (10)

Here J
πp
µ (s) is the Jacobian matrix of µ with respect to πp evaluated at time s.

We assume that our agents are risk averse and that their objective is to maximize the expected
utility from discounted terminal wealth. In order to obtain analytically tractable results, we use
logarithmic utility. Taking this into account, the payoffs for the agents in our market game are
given by

up(π1, π2) := E(ln(Xπ1,π2
p (T ))) (11)

for p = 1, 2. We note that the payoffs up also depend on the initial endowments x1 and x2,
but we omit this in our notation. In this setup the optimization objective for both agents is
identical and, therefore, asymmetry effects concerning the level of risk averseness are left out
in our discussion. The asymmetry arising in our model comes from the fact that the strategies
of the individual players rely on different information and that they may effect the market in
different ways. We consider the market to be in equilibrium if the strategy pair (π∗

1 , π∗
2 ) ∈ A

constitutes a Nash equilibrium, i.e.

u1(π
∗
1 , π∗

2 ) = sup
π1∈A1(π

∗
2 )

E(ln(X
π1,π

∗
2

1 (T ))),

u2(π
∗
1 , π∗

2 ) = sup
π2∈A2(π

∗
1 )

E(ln(X
π∗

1 ,π2
1 (T ))),

with A1(π
∗
2 ) = {π1 | (π1, π

∗
2 ) ∈ A} and A2(π

∗
1 ) = {π2 | (π∗

1 , π2) ∈ A}. The following the-
orem provides necessary and sufficient conditions on the existence of a Nash equilibrium for
the market game above in terms of a martingale condition.

Theorem 1. Under the assumptions stated in the preceding paragraph, the following state-
ments hold.

(i) If (π∗
1 , π∗

2 ) constitutes a Nash equilibrium for the market game then Mp(t, π∗
1 , π∗

2 ) for
t ∈ [0, T ] is a martingale with respect to the filtration Gp for p = 1, 2.

(ii) If (π∗
1 , π∗

2 ) ∈ A and M(t, π∗
1 , π∗

2 ), t ∈ [0, T ], is a martingale with respect to the
filtration Gp and up(π1, π2) is concave with respect to πp for p = 1, 2, then (π∗

1 , π∗
2 )

constitutes a Nash equilibrium for the market game.

Proof. (i) If (π∗
1 , π∗

2 ) constitutes a Nash equilibrium for the market game then, for bounded
θ1 as in Definition 2(iii), we have

u1(π
∗
1 , π∗

2 ) ≥ u1(π
∗
1 + εθ1, π

∗
2 ) (12)

for all ε in an open neighborhood of 0. This implies that the partial directional derivative of u1
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along the direction θ1 evaluated at π∗
1 is 0, i.e.

0 = d

dε
u1(π

∗
1 + εθ1, π

∗
2 )

∣∣∣∣
ε=0

= E

(∫ T

0
θ�

1 (t)(µ(t, π∗
1 (t), π∗

2 (t)) − r(t) + J
π∗

1
µ (t)π1(t) − σ(t)σ�(t)π∗

1 (t)) dt

+
∫ T

0
θ�

1 (t)σ (s) d−
W(s)

)
. (13)

Note that the differentiation and the integral can be interchanged because our admissibility
definition implies that {|M1(T , π∗

1 + εθ1, π
∗
2 )|}0≤ε≤γ is uniformly integrable. Let us now

consider the particular process θ1(u) = θ(t)1(t,t+h](u), h > 0, 0 ≤ t ≤ T , where θ(t) is a
bounded, R

n-valued, and G1
t -measurable random variable. Thus, (13) can be written as

0 = E

(
θ�(t)

(∫ t+h

t

(µ(u, π∗
1 (u), π∗

2 (u)) − r(u) + J
π∗

1
µ (u)π1(u)

− σ(u)σ�(u)π1(u)) du +
∫ t+h

t

σ (u) d−
W(u)

))
. (14)

Since (14) holds for all such θ , we conclude that

0 = E

(∫ t+h

t

(µ(u, π∗
1 (u), π∗

2 (u)) − r(u) + J
π∗

1
µ (u)π1(u) − σ(u)σ�(u)π1(u)) du

+
∫ t+h

t

σ (u) d−
W(u)

∣∣∣∣ G1
t

)
. (15)

Using the definition of Mp(t, π1, π2), we obtain

E(M1(t + h, π∗
1 , π∗

2 ) − M1(t, π
∗
1 , π∗

2 ) | G1
t ) = 0. (16)

An analogous argumentation using u2(π
∗
1 , π∗

2 ) ≥ u2(π
∗
1 , π∗

2 + εθ2) establishes

E(M2(t + h, π∗
1 , π∗

2 ) − M2(t, π
∗
1 , π∗

2 ) | G1
t ) = 0. (17)

From (16) and (17), we infer that Mp(t, π∗
1 , π∗

2 ) is a Gp-martingale for p = 1, 2.
(ii) Let us now assume that there exists a pair (π∗

1 , π∗
2 ) such that M1(t, π

∗
1 , π∗

2 ) is a
G1-martingale and M2(t, π1, π2) a G2-martingale. Therefore, (16) and (17) hold simulta-
neously. Let us consider the optimization problem for agent 1. Equation (16) implies that (15)
holds; hence, (14) holds for θ(t) bounded, R

n-valued, and G1 measurable. Inductively, we see
that (13) holds for processes of the form

θ̃1(u) =
n−1∑
i=0

θ1(ti)1(ti ,ti+1](u), 0 = t0 < t1 · · · < tn = T ,

where the θ1(ti) are bounded, R
n-valued, and G1

ti
-measurable random variables. Here we use

the equality ∫ T

0
θ̃�

1 (t)σ (t) d−
W(t) =

n−1∑
i=0

∫ ti+1

ti

θ�
1 (ti)σ (u) d−

W(u).
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We find that (13) is true for all simple processes θ̃1(u) and a density argument establishes that
(13) holds for all processes θ1 as in Definition 2(iii). This implies that

d

dε
u1(π1 + εθ1, π2)

∣∣∣∣
ε=0

= 0. (18)

On the other hand, using the fact that up(π1, π2) is concave in each πp, we obtain

1

ε
(u1(π1 + εθ1, π2) − u1(π1, π2))

= 1

ε

(
u1

(
(1 − ε)

π1

1 − ε
εθ1, π2

)
− u1(π1, π2)

)

≥ 1

ε

(
(1 − ε)u1

(
π1

1 − ε
, π2

)
+ εu1(θ1, π2) − u1(π1, π2)

)

= 1

ε

(
u1

(
π1

1 − ε
, π2

)
− u1(π1, π2)

)
+ u1(θ1, π2) − u1

(
π1

1 − ε
, π2

)
.

Taking the limit as ε → 0, and taking into account the fact that

lim
ε→0

1

ε

(
u1

(
π∗

1

1 − ε
, π∗

2

)
− u1(π

∗
1 , π∗

2 )

)
= 0,

as the latter is basically the directional derivative of u1 along π∗
1 , which by (18) must be 0, we

obtain 0 ≥ u1(θ1, π
∗
2 ) − u1(π

∗
1 , π∗

2 ). As θ1 can be chosen within the set A1(π
∗
2 ), we obtain,

by formally setting θ1 = π1,

u1(π
∗
1 , π∗

2 ) ≥ u1(π1, π
∗
2 ) for all π1 ∈ A1(π

∗
2 ). (19)

Analogously, we obtain

u2(π
∗
1 , π∗

2 ) ≥ u2(π
∗
1 , π2) for all π2 ∈ A2(π

∗
1 ). (20)

This means that (π∗
1 , π∗

2 ) is a Nash equilibrium for the market game.

In the following we discuss how we can use the criterion presented in Theorem 1 in order
to identify Nash equilibria for our market game with heterogeneous information.

Lemma 1. Assume that (π∗
1 , π∗

2 ) is a Nash equilibrium for our market game. Then the
process ε �→ E(

∫ t+ε

t
σ (u) d−

W(u) | G
p
t ) has absolutely continuous paths for p = 1, 2 and

the derivative

Ip(t) := d

dε
E

(∫ t+ε

t

σ (u) d−
W(u)

∣∣∣∣ G
p
t

)
(21)

exist a.s. for p = 1, 2. Furthermore, the following equation holds for p = 1, 2:

E(µ(t, π∗
1 (t), π∗

2 (t)) − r(t) + J
π∗

p
µ (t)πp(t) − σ(t)σ�(t)πp(t) | G

p
t ) + Ip(t) = 0. (22)

Under the concavity assumption for the utilities in Theorem 1(ii), condition (22) is a sufficient
condition for a pair (π∗

1 , π∗
2 ) ∈ A to constitute a Nash equilibrium.

Proof. These statements follow from (15) when dividing the latter by h and taking the limit
as h → 0, Theorem 1, and Definition 2.
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For the choice of µ, various specifications appear to be reasonable. However, to obtain
tractable dynamics and analytical results, we focus on the linear form

µ(t, π1, π2) = µ(t) + a(t)π1 + b(t)π2.

For the general case, the latter should be considered as a first-order approximation. In order to
satisfy condition (C1), we need to assume that the processes µ(t), a(t), and b(t) are G-adapted.
In order to apply the second part of Theorem 1, it is important to note that, under our assumptions,
a sufficient criterion for concavity of up(π1, π2) is the following.

Assumption 1. Suppose that (a(t) + a�(t)) − σ(t)σ�(t) and (b(t) + b�(t)) − σσ�(t) take
values in the set of negative definite matrices.

The latter assumption can be interpreted in a way that the influences of both agents’portfolio
strategies on expected returns are embedded in the noise. Otherwise, the agents may drive
the stock prices arbitrarily high just by buying and selling large volumes to obtain a high
return. Obviously, embedded does not mean without effect. We will assume from now on that
Assumption 1 is satisfied. For notational reasons, let us define the matrix-valued function

 : Mn×n → Mn×n, y �→ σσ� − 2y.

Using this specification, we obtain the following characterization of a Nash equilibrium.

Proposition 2. If the system of equations

π∗
1 (t) = −1(a(t))[µ(t) − r(t) + I1(t) + b(t) E(π∗

2 (t) | G1
t )],

π∗
2 (t) = −1(b(t))[µ(t) − r(t) + I2(t) + a(t) E(π∗

1 (t) | G2
t )]

admits a solution (π∗
1 , π∗

2 ) ∈ A, then (π∗
1 , π∗

2 ) constitutes a Nash equilibrium for our market
game.

Proof. This follows directly from Lemma 1, noting that J
π1
µ = a(t), J

π2
µ = b(t), and that

all coefficients are measurable with respect to G
p
t , p = 1, 2.

To better understand how the equilibrium strategies are constructed, we study how they
change, while changing the complexity of the model, starting with the standard Black–Scholes
model, in which we have standard information and no market impact, i.e. Gp

t = Ft for t ∈ [0, T ]
and a(t) = b(t) = 0. In this case I1(t) = I2(t) = 0, as the expectation of an Itô integral is
always 0 and, therefore, the equilibrium strategies are just the Merton rule. If we allow for
market impact but no nonstandard information, we will still have I1(t) = I2(t) = 0; however,
the equilibrium strategies now adjust for the actions of the opponent. In this case agents have
complete information about the opponent’s strategies and the Nash equilibrium is given by

π∗
1 (t) = −1(a(t))[µ(t) − r(t) + b(t)π∗

2 (t)],
π∗

2 (t) = −1(a(t))[µ(t) − r(t) + a(t)π∗
1 (t)].

Now, in the presence of nonstandard, possibly asymmetric information two things occur.
First, the agents are no longer able to fully reflect on their opponent’s strategy and instead
have to take expectations based on their current level of information. This amounts to taking
conditional expectations in Proposition 2. Furthermore, additional Ip(t) terms occur. These
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can be interpreted as information drifts and adjust the strategy for a differently perceived growth
rate of the underlying asset.

The particular form of the equilibrium strategies in Proposition 2 is implicit and has been
chosen in order to understand how agents react and adjust to their opponent’s strategies.
Substituting the formula for π∗

2 (t) into the formula for π∗
1 (t), and vice versa, it is possible

to obtain an explicit form. Note that in order to obtain explicit formulae for the strategies, it is
only necessary to give explicit formulae for the conditional expectations on the right-hand sides
of the expressions in Proposition 2. Such expressions are derived in the following proposition.

Proposition 3. Assume that (π∗
1 , π∗

2 ) constitutes a Nash equilibrium for our market game. Then
the conditional expectations E(π∗

1 (t) | G2
t ) and E(π∗

2 (t) | G1
t ) in Proposition 2 are explicitly

given by the formulae

E(π∗
1 (t) | G2

t )

= (1 − −1(a(t))b(t)−1(b(t))a(t))−1

× {−1(a(t))(µ(t) − r(t) + Ĩ1(t)) + −1(a(t))b(t)−1(b(t))(µ(t) − r(t) + Ĩ2(t))},
E(π∗

2 (t) | G1
t )

= (1 − −1(b(t))a(t)−1(a(t))b(t))−1

× {−1(b(t))(µ(t) − r(t) + Ĩ2(t)) + −1(b(t))a(t)−1(a(t))(µ(t) − r(t) + Ĩ1(t))},
where Ĩ1(t) = E(I1(t) | G2

t ) and Ĩ2(t) = E(I2(t) | G1
t ) denote the information drift of the

individual agents as perceived by the opposite agent.

Proof. The proof follows from Proposition 2 by substituting the equation for π∗
2 (t) into

the equation for π∗
1 (t), and vice versa, and then taking conditional expectations on G1

t and,
respectively, G2

t .

For the case of nonstandard homogeneous information, we obtain the following corollary.

Corollary 1. Assume that both agents have the same level of information, i.e. G1 = G2. If the
system of equations

π∗
1 (t) = −1(a(t))(µ(t) − r(t) + I (t) + b(t)π∗

2 (t)),

π∗
2 (t) = −1(b(t))(µ(t) − r(t) + I (t) + a(t)π∗

1 (t)),

where I (t) = I1(t) = I2(t), admits a solution (π∗
1 , π∗

2 ) ∈ A, then (π∗
1 , π∗

2 ) constitutes a Nash
equilibrium for the corresponding market game.

Proof. Symmetry of information implies that the conditional expectation in Proposition 2
can be replaced by the actual strategies. Furthermore, from the definition, it is clear that
I1(t) = I2(t).

In the case above explicit solutions can be obtained simply by substituting the expressions
for π∗

2 and π∗
1 into π∗

1 and π∗
2 , respectively, and solving out. Let us now assume that the agents

do not only have the same level of information, but also that the market impact of both agents
is the same. This relates to choosing a(t) = b(t). In this case we are particularly interested in
symmetric Nash equilibria.

Corollary 2. Under symmetric information and the same market impact factors a(t) = b(t),
a symmetric Nash equilibrium (π∗, π∗) of our market game is given by

π∗(t) = (1 − −1(a(t))a(t))−1 · −1(a(t))(µ(t) − r(t) + I (t)).
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Proof. The proof follows by straightforward computation from Corollary 1.

In the following we study the welfare implications of information in our market game. By
welfare implications we mainly mean whether the market is better of with more information
or not. Doing an analysis starting with a representative agent model, such as in the classical
literature Karatzas and Pikovsky (1996), Corcuera et al. (2004), Imkeller (2003), León et al.
(2003), and Ewald (2005), the answer to this question is trivial: yes! In our framework the
analysis however is different, in the way that given more information the agents may be able to
outperform and in fact harm each other, with more severe consequences. We will derive explicit
conditions on the model parameters which determine whether general welfare is improved or
worsened by adding more information. In order to proceed with this, we need the following
technical lemma.

Lemma 2. Assume that a Nash equilibrium for our market game exists. Then
∫ t

0 σ(s) d−
W(s)

is a Gp-semimartingale for p = 1, 2. Furthermore, if, additionally, the matrix-valued process
σ(s) is invertible a.s. then W is a Gp-semimartingale.

Proof. Under our assumption that the process σ(s) is G-adapted, we find that the forward
integral

∫ t

0 σ(s) d−
W(s) is G

p
t -adapted. From (10) we obtain

∫ t

0
σ(s) d−

W(s) = Mp(t, π1, π2)

− E

(∫ t

0
(µ(s) + a(s)π1(s) + b(s)π2(s) − r(s) + a(s)πp(s)

− σ(s)σ�(s)πp(s)) ds

∣∣∣∣ G
p
t

)
.

By separating the positive and negative parts of the integrands in the conditional expectation, the
latter can clearly be written as the difference of two nondecreasing Gp-adapted processes. On
the other hand, it follows from Proposition 1 and (10) that Mp(t, π1, π2) is a continuous mar-
tingale. According to Definition 3.1 of Karatzas-Schreve (1988),

∫ t

0 σ(s) d−
W(s) is therefore

a continuous semimartingale.

For the following discussion, we assume that G = F . Let us consider a filtration H = (Ht )

such that Gt ⊂ Ht for all t ∈ [0, T ]. Denote Nash equilibria of our market game corresponding
to the setup G1 = G = G2 by (π̂∗

1 , π̂∗
2 ) and Nash equilibria corresponding to the setup G1 =

H = G2 by (π∗
1 , π∗

2 ).

Definition 3. The information H = (Ht ) is welfare increasing, if the payoffs from (π∗
1 , π∗

2 )

Pareto dominate the payoffs from (π̂∗
1 , π̂∗

2 ). Here H is called welfare decreasing if the opposite
is true. Furthermore, we define the information welfare impact of H as the vector

iwi(H) =
(

u1(π
∗
1 , π∗

2 ) − u1(π̂
∗
1 , π̂∗

2 )

u2(π
∗
1 , π∗

2 ) − u2(π̂
∗
1 , π̂∗

2 )

)
.

Clearly, the information welfare impact does not depend on the initial wealth, and information
is welfare increasing if both components are positive and welfare decreasing if both components
are negative. We have the following proposition, which provides necessary and sufficient
conditions depending on the various parameters of the game, whether or not information is
welfare increasing.
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Proposition 4. Writing W(t) = Ŵ(t) − ∫ t

0 α(s) ds according to Lemma 2 with Ŵ(t) an
H -Brownian motion and using the notation

1 = (a(t)) − b(t)(b(t))−1(a(t)),

2 = ((t)) − b(t)(b(t))−1(a(t)),

the two components of the information welfare impact of H are explicitly given as

iwi(H)1 = E

(∫ T

0
((−1

1 σ(t)α(t))�a−1
1 σ(t)α(t) + (−1

1 σ(t)α(t))�b−1
2 σ(t)α(t)

− 1
2 (−1

1 σ(t)α(t))�σ(t)σ (t)�−1
1 σ(t)α(t)

+ (−1
1 σ(t)α(t))�σ�(t)α(t)) dt

)
,

iwi(H)2 = E

(∫ T

0
((−1

2 σ(t)α(t))�a−1
1 σ(t)α(t) + (−1

2 σ(t)α(t))�b−1
2 σ(t)α(t)

− 1
2 (−1

2 σ(t)α(t))�σ(t)σ (t)�−1
2 σ(t)α(t)

+ (−1
2 σ(t)α(t))�σ�(t)α(t)) dt

)
.

Proof. Using Corollary 1, we can easily derive the following two equations for the equilib-
rium strategy (π∗

1 , π∗
2 ) under information H :

π∗
1 = −1

1 (µ(t) − r(t)) + −1
1 I (t), π∗

2 = −1
2 (µ(t) − r(t)) + −1

2 I (t).

The equilibrium strategies without additional information are given by the market impact
adjusted Merton rules:

π̂∗
1 = −1

1 (µ(t) − r(t)), π̂∗
2 = −1

2 (µ(t) − r(t)).

Substitution of these strategies into the utility function leads to the following expression for the
first component of iwi(H):

E

(∫ T

0

(
−1

1 (µ(t) − r(t))(a(t)−1
1 I (t) + b(t)−1

2 I (t)) + (−1
1 I (t))�(µ(t) − r(t))

+ (−1
1 I (t))�(a−1

1 (µ(t) − r(t)) + a−1
1 I )

+ −1
1 I (b−1

2 (µ(t) − r(t)) + b−1
2 I ) − 1

2 (−1
1 I )�σ(t)σ (t)�−1

1 I

− 1
2 (−1

1 I )�σ(t)σ (t)�−1
1 I − 1

2 (−1
1 I )�σ(t)σ (t)�(−1

1 (µ(t) − r(t)))�
)

dt

+
∫ T

0
(−1

1 I ) d−
W(t)

)
.

A similar expression can be derived for the second component. Under our assumptions, it
follows from Lemma 2 and Biagini and Oksendal (2005, p. 178) that

E

(∫ t

0
g(a(s), b(s), µ(s) − r(s))I (s) ds

)
= 0

for any bounded function g. Using this relationship, it can be verified that the long expression
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above simplifies to

E

(∫ T

0

(
(−1

1 σ(t)α(t))�a−1
1 σ(t)α(t) + (−1

1 σ(t)α(t))�b−1
2 σ(t)α(t)

− 1
2 (−1

1 σ(t)α(t))�σ(t)σ (t)�−1
1 σ(t)α(t) + (−1

1 σ(t)α(t))�σ�(t)α(t)
)

dt

)
.

The analysis of the second component is completely analogous.

The expressions for the information welfare impact are quite lengthy. For the one-dimen-
sional case, we are able to derive the following corollary.

Corollary 3. Under the assumptions that there is only one stock traded at the market, the
market parameters are given as µ(t) ≡ µ, a(t) ≡ a, and b(t) ≡ b with constants µ, a, b ∈ R,
and that min := min{1, 2} > 0, the information H = (Ht ) is welfare increasing if

1 + a

1
+ b

2
≥ σ 2

2min

and welfare decreasing if

1 + a

1
+ b

2
≤ σ 2

2max
,

with max := max{1, 2}.
Proof. Under the assumptions in the corollary, it is easy to verify that the components of

the information welfare impact vector in Proposition 4 simplify to

iwi(H) =

⎛
⎜⎜⎜⎝

1

1

(
a

1
+ b

2
+ 1 − σ 2

21

)
E

(∫ t

0
α2(t) dt

)

1

2

(
a

1
+ b

2
+ 1 − σ 2

22

)
E

(∫ t

0
α2(t) dt

)

⎞
⎟⎟⎟⎠ .

The information is welfare increasing if both components of this vector are positive and welfare
decreasing if both components are negative. Obviously, we have E(

∫ t

0 α2(t) dt) ≥ 0. The
conditions for positivity and, respectively, negativity are therefore exactly as stated in the
corollary.

The corollary above specifies a certain region of the parameter space consisting of feasible
parameters (a, b, σ 2) in which information is welfare increasing. Figure 1 shows this region
for the example of initially enlarged filtration.

Note that some of the points in the welfare increasing region may not satisfy the concavity
condition, which in this case would correspond to 2 max{a, b} ≤ σ 2. However, the concavity
condition is not necessary for the existence of Nash equilibria, which in our definition of
welfare increasing is implicitly assumed. It is worth mentioning though that, in general, the
intersection between those points in the welfare increasing region and those points which satisfy
the concavity condition is not empty.

In order to demonstrate how our results apply to the classical case of enlarged initial filtration,
we include the following example.
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Figure 1: Welfare increasing region.

Example 2. Let us study the implications of the various statements above for the case of
initially enlarged filtration.

(i) Consider, for T0 > T , the initially enlarged filtrations Gp = (G
p
t ) with

G
p
t = Ft ∨ σ(Wν

p
1
(T0)) ∨ · · · ∨ σ(Wν

p
kp

(T0))

for t ∈ [0, T ], where {νp
1 , . . . , ν

p
kp

} for p = 1, 2 are subsets of {1, . . . , n}. Denote

the intersection {ν1
1 , . . . , ν1

k1
} ∩ {ν2

1 , . . . , ν2
k2

} by {ν1, . . . , νt }. This set may possibly be
empty. We have

Ip(t) = d

dε
E

(∫ t+ε

t

σ (u) d−
W(u)

∣∣∣∣ G
p
t

)∣∣∣∣
ε=0

= d

dε
E

(∫ t+ε

t

σ (u) dW̃(u) +
∫ t+ε

t

σ (u)
W(T0) − W(u)

T0 − u
du

∣∣∣∣ G
p
t

)∣∣∣∣
ε=0

= σ(t)αp(t),

with

α
p
i (t) =

⎧⎨
⎩

Wi (T0) − Wi (t)

T0 − t
, i ∈ {ν1

1 , . . . , ν
p
kp

},
0, otherwise.

This implies that

Ĩ1(t) = E(I1(t) | G2(t)) = σ(t)α(t) = E(I2(t) | G1(t)) = Ĩ2(t)

with

αi(t) =
⎧⎨
⎩

Wi (T0) − Wi (t)

T0 − t
, i ∈ {ν1, . . . , νt },

0, i �∈ {s1, . . . , st }.
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Substitution of these expressions into the corresponding expressions from Proposition 2
and Proposition 3 leads to analytical formulae for the Nash equilibrium. If the additional
information is strictly complementary, i.e.

{ν1
1 , . . . , ν1

k1
} ∩ {ν2

1 , . . . , ν2
k2

} = ∅,

we find that α = 0 and the equilibrium strategies simplify slightly. Such a case is
particularly interesting to study from the point of view of cooperative game theory.

(ii) Consider the case where G2 = F and G1 is given as the initially enlarged filtration,
i.e. G1

t = Ft ∨ σ(W1(T0)) ∨ · · · ∨ σ(Wn(T0)) for all t ∈ [0, T ] and T0 > T . This
distribution of information leads to the Nash equilibria

π∗
1 (t) = (a(t))−1

(
µ(t) − r(t) + b(t)π∗

2 + σ(t)
W(T0) − W(t)

T0 − t

)
,

π∗
2 (t) = �−1(µ(t) − r(t)) + �−1a(t)(a(t))−1(µ(t) − r(t)),

where � = (b(t)) − a(t)(a(t))−1b(t). In the case that agent 1 is small and does not
have any market impact, i.e. a(t) = 0, the latter Nash equilibrium simplifies to

π∗
1 (t) = −1

(
µ(t) − r(t) + b(t)π∗

2 + σ(t)
W(T0) − W(t)

T0 − t

)
,

π∗
2 (t) = −1(µ(t) − r(t)).

(iii) Assuming symmetric information and initially enlarged filtrations G1 = G2 = H with

Ht := Ft ∨ σ(W1(T0)) ∨ · · · ∨ σ(Wn(T0)), T0 ≥ T ,

as well as symmetric market impact a(t) = b(t), we obtain from the discussion above
and Corollary 2 that a symmetric Nash equilibrium is given by

π∗
1 (t) = −1(a(t))

(
µ(t) − r(t) + σ(t)

W(T0) − W(t)

T0 − t
+ b(t)π∗

2 (t)

)
,

π∗
2 (t) = −1(b(t))

(
µ(t) − r(t) + σ(t)

W(T0) − W(t)

T0 − t
+ a(t)π∗

1 (t)

)
.

As indicated before, in this case an explicit solution can be obtained by substitution of
the second strategy into the first strategy and vice versa, and solving out.

4. Trading of information

In the preceding section we studied how different levels of information affect the equilibrium
of the market. While it was assumed that agents have different levels of information, they were
not supposed to exchange and share their private information. In this section we will extend our
market model in the way that agents are allowed to sell there own private information to their
opponent and/or buy the private information of their opponent. For this reason, we extend our
original game, which represents a continuous-time sequential game, by two additional stages,
which occur before agents invest in the market. For reasons of simplicity, we only treat the case
where one of the agents, say agent 1, is better informed than the other agent, i.e. G2

t ⊂ G1
t for
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all t ∈ [0, T ]. In the first stage agent 1 announces a price P for which he/she would be willing
to sell the information G1 to his/her opponent. In the second stage agent 2 decides whether to
buy or not to buy the information offered for the price announced by agent 1. If agent 2 decides
to buy information, he/she faces two consequences. First his/her initial wealth is lowered by
the amount he/she has to pay for the information. Second, in order to trade on the market and
choose a portfolio, agent 2 can now make use of the increased level of information, which is
then represented by the information flow G1 rather than G2. From the perspective of agent 1,
the situation looks as follows. If he/she sells the information, his/her initial wealth will be
raised by the amount he/she charges for this information, but he/she faces, as a consequence,
his/her opponent now being able to use the increased level of information to decide on his/her
individual investment strategy. In a model where agents’ behavior does not influence asset
prices, the latter would not really lead to consequences and agent 1 would be willing to give
away information for free. However, in a model where prices are not determined exogenously,
the seller of information has to fear that the buyer of information may use this information in a
way that affects asset prices to his/her disadvantage. Summarizing, there are two factors which
have to be taken into account in our extended market game when determining the equilibrium
and the equilibrium price for the information.

1. Buying information for price P lowers initial wealth from x to x − P , but provides
the buyer with an increased level of information, which he/she may use to improve his
investment strategy and obtain a higher expected return.

2. Selling information for price P increases initial wealth from x to x +P , but the agent has
to face possible consequences on his/her own optimal investment strategy and expected
return due to the increased level of information of his/her opponent.

Both agents have to weigh up the benefits and losses in order to make their decisions.

Definition 4. A price P ∗ is called an equilibrium price for the information H = (Ht ) if the
sequential game described above with the choice of G1 = H has a Nash equilibrium of the type

({P ∗, π∗
1 }, {‘buy only if the price is less than or equal to P ∗’, π∗

2 }).

The definition above guarantees that, if the information is offered at the equilibrium price, it
will indeed be traded at that price. In the following we compute equilibrium prices for the case
that agent 1 is better informed but does not necessarily have the same market impact. This is the
typical setup when a consulting company sells their information and expertise to a client which
presents a major market maker. Criteria 1 and 2 above still apply for this setup. In order to solve
our extended market game, we apply backward induction. In the previous section we studied
the third stage and have identified equilibrium strategies for general levels of information. We
found that the equilibrium strategies do not depend on initial wealth. This feature depends on
our choice of utility function as the logarithm, but is also observed with other utility functions
such as exponential utility. Note, however, that even though the equilibrium strategies are
unaffected by the initial wealth, the amount of utility obtained from following these strategies
is affected. Using this fact, we find that in the last stage two scenarios are possible. Scenario
one occurs if information is traded within the first two stages. In this case both players have
the same level of information G1 in the last stage. We denote the equilibrium strategies for the
corresponding subgame starting in stage 3 with (π∗

1 , π∗
2 ). If information is not traded within

the first two periods then agents possess asymmetric information in the third stage. In this case
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we denote the equilibrium for the corresponding subgame by (π̂∗
1 , π̂∗

2 ). These equilibria can
be computed with the methods presented in the previous section.

Proposition 5. Let P ∗ be a solution of the system

u
x2−P ∗
2 (π∗

1 , π∗
2 ) = u

x2
2 (π̂∗

1 , π̂∗
2 ), u

x1+P ∗
1 (π∗

1 , π∗
2 ) ≥ u

x1
1 (π̂∗

1 , π̂∗
2 ).

Here the upper indexes on the utilities denote the agents’ initial endowment. Then P ∗ is an
equilibrium price for the information G1 in the extended market game illustrated above. In
particular, an equilibrium price is unique.

Proof. The proof follows mainly from the discussion above and the definition of an equi-
librium price. As the maximal expected utility depends monotonically increasing on the initial
wealth and the price P ∗ of the information is added to agent 1’s initial wealth x1, agent 1
is trying to set the price as high a possible. Agent 2 has to wager whether to buy or not
to buy the information for this price. Obtaining more information raises his/her maximum
expected utility, but the price of the information P ∗ is subtracted from his/her initial wealth.
The first equality in Proposition 5 sets the price in a way that agent 2 is indifferent about
buying or not buying. Even though agent 2 would be willing to buy for a price which
satisfies the first equality, it is not a priori clear that agent 1 would sell for this price, as
he/she has to wager the consequence of having an opponent on the market which is better
informed than original, against the immediate prospect of more initial wealth. This decision
is reflected by the inequality in Proposition 5. Using these arguments, it then follows from
backward induction that ({P ∗, π∗

1 }, {‘buy only if the price is less than or equal to P ∗’, π∗
2 }) is

a sequential Nash equilibrium and, therefore, that P ∗ is an equilibrium price.

Definition 5. The price P ∗ is called a feasible price if

u
x2−P ∗
2 (π∗

1 , π∗
2 ) ≥ u

x2
2 (π̂∗

1 , π̂∗
2 ), u

x1+P ∗
1 (π∗

1 , π∗
2 ) ≥ u

x1
1 (π̂∗

1 , π̂∗
2 ).

By definition, an equilibrium price is feasible. Feasibility of a price ensures that information
is traded under this price; however, the selling agent may perform suboptimally. In the presence
of many information providers, feasible prices other than the equilibrium price may occur. It is
straightforward to verify that the two inequalities in Definition 5 are equivalent to the following
two inequalities:

P ∗ ≥ x1 exp

{
E

(∫ T

0

[
π∗

1 (t)(µ(t, π∗
1 , π∗

2 ) − r(t)) − π̂∗
1 (t)(µ(t, π̂∗

1 , π̂∗
2 ) − r(t))

− 1
2 ((π∗

1 (t))2 − (π̂∗
1 (t))2)σ 2(t)

]
dt

+
∫ T

0
(π∗

1 (t) − π̂∗
1 (t))σ (t) d−

W(t)

)}
− x1,

P ∗ ≤ x2 exp

{
E

(∫ T

0

[
π∗

2 (t)(µ(t, π∗
1 , π∗

2 ) − r(t)) − π̂∗
2 (t)(µ(t, π̂∗

1 , π̂2
∗
) − r(t))

− 1
2 ((π∗

2 (t))2 − (π̂∗
2 (t))2)σ 2(t)

]
dt

+
∫ T

0
(π∗

2 (t) − π̂∗
2 (t))σ (t) d−

W(t)

)}
− x2.
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Note that we can evaluate the contribution of the forward integral by means of (4):

E

(∫ T

0
(π∗

1 (t) − π̂∗
1 )σ (t) d−

W(t)

)
= E

(∫ T

0
Dt+((π∗

1 (t) − π̂∗
1 (t))σ (t)) dt

)
.

For an equilibrium price, the second inequality has to be satisfied as an equality. The computa-
tion of the price of the information in general can now be done along the following lines. Use
the formulae for the equilibrium strategies from the previous sections, substitute these into the
formulae above, solve the second formula for P ∗, and see whether the solution verifies the first
inequality. If this is the case, P ∗ is the equilibrium price for the information specified. In the
following we consider the case of initially enlarged filtration. More precisely, we consider the
case of a single stock, and choose G1

t = Ft ∨ σ(WT0) for T0 > T and G2
t = Ft for t ∈ [0, T ].

It follows from Example 2(ii) and (iii) that

π∗
1 (t) = σ 2(t) − b(t)

σ 4(t) − 2(a(t) + b(t))σ 2(t) + 3a(t)b(t)

[
µ(t) − r(r) + σ(t)

WT0 − Wt

T0 − t

]
,

π∗
2 (t) = σ 2(t) − a(t)

σ 4(t) − 2(a(t) + b(t))σ 2(t) + 3a(t)b(t)

[
µ(t) − r(r) + σ(t)

WT0 − Wt

T0 − t

]
,

π̂∗
1 (t) = σ 2(t) − b(t)

σ 4(t) − 2(a(t) + b(t))σ 2(t) + 3a(t)b(t)
[µ(t) − r(r)]

+ σ(t)

σ 2(t) − 2a(t)

WT0 − Wt

T0 − t
,

π̂∗
2 (t) = σ 2(t) − a(t)

σ 4(t) − 2(a(t) + b(t))σ 2(t) + 3a(t)b(t)
[µ(t) − r(r)].

Substituting these strategies into the inequalities above, while using the fact that, for any
bounded and measurable function f ,

E

(∫ T

0
f (µ(t), r(t), σ (t))

WT0 − Wt

T0 − t
dt

)

= E
∫ T

0
f (µ(t), r(t), σ (t)) dW̃(t) − E

(∫ T

0
f (µ(t), r(t), σ (t)) dW(t)

)

= 0,

we obtain

P ∗ ≥ x1 exp

{
E

(∫ T

0

((
a(t)

(
σ 2(t) − b(t)

k

)2

+ b(t)
(σ 2(t) − a(t))(σ 2(t) − b(t))

k2

− a(t)

(σ 2(t) − 2a(t))2

)

− 1

2

((
σ 2(t) − b(t)

k

)2

−
(

1

σ 2(t) − 2a(t)

)2)

+
(

σ 2(t) − b(t)

k
− 1

σ 2(t) − 2a(t)

))

× σ 2(t)

(
WT0 − Wt

T0 − t

)2

dt

)}
− x1,
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P ∗ ≤ x2 exp

{
E

(∫ T

0

((
a(t)

σ 2(t) − b(t)

σ 2(t) − a(t)
+ b(t) − σ 2(t)

2

)
(σ 2(t) − a(t))2

k2

+ σ 2(t) − a(t)

k

)
σ 2(t)

(
WT0 − Wt

T0 − t

)2

dt

)}
− x2.

Depending on the complexity of the model, the values on the right-hand side of the equalities
can either be computed in closed form, using numerical methods, or Monte Carlo valuation.
Figures 2– 4 present cases for which we computed feasible price areas under the assumptions
above. The equilibrium prices are represented by the upper border of the feasible price areas.
The ask price represents the minimum price for which the informed agent would be willing
to sell the information, the offer price is the maximum price the uninformed agent would be
willing to pay for the information. The feasible price region is indicated with dots. We see
that, for the case where the uninformed agent has no market impact, the informed agent would
actually be willing to give the information away for free.

1.3 1.4 1.5 1.6 1.7 1.8
0

20

40

60

80

100
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140
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Figure 2: Feasible price area for a = 0 and b = 0.5.
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Figure 3: Feasible price area for a = 0.5 and b = 0.
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Figure 4: Feasible price area for a = 0.5 and b = 0.5.

As we can see in Figures 2–4, the volatility parameter σ 2 plays an interesting role. It can
either increase or decrease the size of the range of feasible prices.

5. Conclusion

We have studied a continuous-time financial market game in which agents possess different
levels of information within an anticipative stochastic calculus framework. Technically, our
game represents an anticipative stochastic differential game. To the best of the authors’
knowledge, such games have not been studied before. We derived necessary and sufficient
conditions for the existence of Nash equilibria in this game and studied the impact the level of
information has on the Nash equilibria and on general welfare. In the second part we extended
the game with two prestages in which information can be traded among the agents. The question
of pricing information has so far only been studied in a representative agent framework. We
introduced the notion of an equilibrium price for specified information and derived a certain
set of inequalities which characterize it. Various examples for the case of initially enlarged
filtration were given.
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