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MINIMALLY GENERATED MODULES 

BY 

W. H. R A N T 

ABSTRACT. A non-zero module M having a minimal generator set 
contains a maximal submodule. If M is Artinian and all submodules 
of M have minimal generator sets then M is Noetherian; it follows 
that every left Artinian module of a left perfect ring is Noetherian. 
Every right Noetherian module of a left perfect ring is Artinian. It 
follows that a module over a left and right perfect ring (in particular, 
commutative) is Artinian if and only if it is Noetherian. We prove 
that a local ring is left perfect if and only if each left module has a 
minimal generator set. 

In this paper rings have unity and modules are unitary. 
It is well-known that any non-zero finitely generated module contains a 

maximum submodule. 

THEOREM I. If a module M ^ {0} has a minimal generator set then M contains 
a maximum submodule, and hence M^ Rad M. 

Proof. Let {mt} be a minimal generator set for M. The submodule T 
generated by {mt \ i ̂  /} is proper. By Zorn's lemma there is a maximal proper 
submodule of M containing T. 

THEOREM 2. Let N0 = M, Ni+1 = Rad Nt. If M is Artinian and if each Nt (in 
particular, if each submodule of M) has a minimal generator set, then M is 
Noetherian. 

Proof. Since Nt = Ni+1 = Rad Nt for some i, ^ = { 0 } by Theorem 1. Since 
Rad(iVp/Np+1) = {0} and Np/Np+1 is Artinian, Np/Np+1 has finite length, and 
since Nt = {0}, we have a composition series for M, so M is Noetherian. 

THEOREM 3. Every left module of a left perfect ring has a minimal generator 
set, so every left Artinian module is Noetherian. 

Proof. Let M be a left A-module and let R = Rad A. Since A/R is semi-
simple, M/RM is a direct sum of simple modules and so it has a minimal 
generator set {mi + RM}. Clearly {mj is a minimal generator set for the module 
it spans, N Since M = N + JRM, M/N = R(M/N), and since R is left T-
nilpotent, M/N = {0} (see 1, Lemma 2.6, p. 473), so M = N and M has a 
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minimal generator set. From Theorem 2 every left Artinian module is Noeth-
erian. 

LEMMA 1. If M is a Noetherian module and all non-zero quotient modules of 
M have non-zero socles, then M is Artinian. 

Proof. Let S0 = Soc M and Si+1ISi = Soc(M/S4). Since S 1 ç S 2 ç . . . , w e have 
Sk^Sk+i for some k. Since Soc(M/Sk) = Sk+JSk ={0} and non-zero quotient 
modules have non-zero socles, we have M = Sk. Now SJS0, S 2 /S i , . . . , JVf/Sk_! 
are semi-simple, and since M is Noetherian, they are finitely generated so they 
have finite length. Thus we have a composition series for M, hence M is 
Artinian. 

THEOREM 4. Every right Noetherian module of a left perfect ring is Artinian. 

Proof. From [1, Theorem P] each right module of a left perfect ring has a 
non-zero socle. 

COROLLARY 1. A module of a left and right perfect ring is Artinian if and only 
if it is Noetherian. 

THEOREM 5. A local ring is left perfect if and only if each left module has a 
minimal generator set. 

Proof. If A is left perfect each left module has a minimal generator set by 
Theorem 3. For the converse, let M be a flat left module with minimal 
generator set {mt}. Let F be a free module with {xt} as a basis, and let K be the 
kernel of the homomorphism from F to M sending £ at*i to £ <kmv H 
k =X aixi e K, then £ o,i^i = 0; and since {m(} is minimal, each ax is a non-unit 
and so ai G R, the maximal ideal of A ; Thus K^RF. Now M^F/K, and since 
M is flat, RFPiK = RK, and since K^RF, K = RK. If {fcj is a minimal 
generator set for K, since K = RK, kt=Y, r^ for some r, e R, so k* = 
(1 — Ti)-1 XJ-^J Tjkj. Since {kj is minimal we have ^ = 0 if / '#i , so k j=0, thus 
K = {0} and M is free. From [4, Theorem 1] JR is left T-nilpotent, so A is a left 
perfect ring. 

COROLLARY 2. A commutative ring is perfect if and only if each left module 
has a minimal generator set. 

Proof. Theorem 3 and Theorem 5. 

THEOREM 6. Let A be any ring and M an A-module. If K^ Rad M and K is 
a minimally generated and infective, then K = {0}. 

Proof. Let M = N(BK. Since M/N — K, M/N has a minimal generator set. 
But M = N + RadM, so Rad(M/N) = M/N and by Theorem 1, M = N, so 
K = {0}. 
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COROLLARY 3. If M is a left module of a left perfect ring, Rad M does not 
contain a non-zero injective submodule. 

COROLLARY 4. If M has no proper maximal submodules, then M does not 
contain a non-zero minimally generated, injective submodule. 
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