
Compositio Mathematica117: 117–121, 1999.
© 1999Kluwer Academic Publishers. Printed in the Netherlands.

117

Errata and a New Result on Signs

WILLIAM M. McGOVERN ?

Department of Mathematics, Box 354350, University of Washington, Seattle, WA 98195, U.S.A.;
e-mail: mcgovern@math.washington.edu

(Received: 4 February 1998; accepted in final form: 20 May 1998)

Abstract. We correct the errors in [Compositio Math. 101 (1996), 77–98] and [Compositio Math.
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1. Introduction

Let W be a finite Weyl group of typeBn, Cn, or Dn. In this paper we correct
Theorems 4.2 of [Mc1] and 2.1 and 2.2 of [Mc2], which are false as stated. We
also give corrected proofs of the results of [Mc1] and [Mc2] depending on these
theorems. In so doing we will also prove a more precise version of Theorem 4.3 of
[Mc1]: we will show how to write down explicit bases of the irreducible consituents
of a left or right cellC ofW in terms of the Kazhdan–Lusztig basis ofC itself. More
precisely, givenC, a right cellR meetingC, and a representationσ appearing in
bothCC andCR, we will construct a weighted sumRσ of Kazhdan–Lusztig basis
vectorsCx for x ∈ C ∩ R such that the right or leftW -submodule generated by
Rσ is irreducible andW acts on it byσ . All coefficients in the weighted sumsRσ
will be ±1 and we will give a simple rule for deciding which are positive. This
rule is the ‘new result on signs’ promised in the title; it sharpens Theorem 4.3 of
[Mc1]. If we then holdC andσ fixed and letR run through the right cells ofW
such thatσ appears inCR, we obtain a basis for theσ -isotypic component of
CC, which is irreducible. Using this basis one can compute Langlands parameters
in the Barbasch–Vogan character formulas for special unipotent representations
of complex groups and extend these formulas to certain representations of real
classical groups. As in [Mc1, Mc2], the main tool is the ordered pair of standard
domino tableaux of the same shape attached by Garfinkle to everyw ∈ W [G1],
which determinesw uniquely.
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2. Isotypic Basis Vectors

Retain the above notation and letC resp.R be a left resp. right cell ofW . Assume
that C andR are contained in a common double cellD , so that the intersection
C ∩ R is nonempty. It is well known that the complex spansCC, CR of C,R
in CW are multiplicity-free asW -modules (forW classical) and the number of
their common constituents equals the cardinality of the intersectionC ∩R. More
precisely and generally, for any pairC1,C2 of left cells in any finite Weyl group,
the cardinality of the intersectionC1 ∩ C−1

2 equals the dimension of the space of
W -homomorphisms fromCC1 to CC2. In the classical case, there is a bit more
structure: the sets{C}, {R} of irreducible representations ofW appearing inCC,
CR themselves have the structure of elementary abelian 2-groups, as does their in-
tersection{C∩R} := {C}∩{R} [Lu1, Lu2]. Given an elementw of C∩R, we may
parametrize and compute{C ∩R} as follows. Start with the pair(TL(w), TR(w))
of standard domino tableaux attached tow. Recall thatTL(w) does not depend on
C alone, but there is a unique tableau of special shape in the sense of [G1] attached
to TL(w) which is a complete invariant ofC [G1, G3, G4]. Following [G1], we
group the dominos ofTL(w) into cycles, some open and the others closed, and we
do the same forTR(w). In typesB andC our convention here differs from that of
[G1, G2]: in these cases we call a cycle open only if does not involve the square in
the upper left corner of the tableau. Given any set6 of open cycles inTL(w), we
may moveTL(w) through6; this involves changing the positions of the dominos in
the cycles in6 but no others [G1, G2]. Our convention on open cycles guarantees
that moving through any set of them does not change the type of the tableau, if
this isB or C. Similarly, we may moveTR(w) through any set of its open cycles,
subject to the convention above. We now recall from [G2] the notion of extended
open cycles ofTL(w) relative toTR(w). These are just the minimal nonempty sets
6 of open cycles ofTL(w) such that movingTL(w) through6 yields a tableau
T6 of the same shape as movingTR(w) through some set ofits open cycles. Now,
following [Lu1], we have shown in [Mc1, Thm 3.2] how to map tableau shapes or
partitions to elements of̂W in such a way that the shapes ofT6 parametrize the
elements of{C ∩R} as6 runs through the extended open cycles ofTL(w) relative
to TR(w). This parametrization is one-to-one in typesB andC; in typeD it is two-
to-one unless the double cellD containingC andR corresponds to a very even
partition, in which case it is one-to-one.

We can now state our rule for constructing theRσ . Denote the Kazhdan–Lusztig
basis ofCW by {Cw}. Fix somex ∈ C∩R arbitrarily. Let the shape ofσ (or either
of the corresponding shapes in typeD) be obtained from the special shape corres-
ponding toC (or either special shape in typeD) by moving through the extended
open cyclese1, . . . , et . Givenw ∈ C ∩R, let TL(w) be obtained fromTL(x) by
moving through the extended open cyclesf1, . . . , fs. Putσw = ±1 according as
an even or odd number offi appear among theej . SetRσ := ∑

w∈C∩R σwCw.
ThenRσ has the desired property; note that its definition depends on the choice of
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x only up to sign. IfW is replaced by the set of double cosets inW of a suitable
parabolic subgroup, then ourRσ coincides up to scalar with theRσ defined in [BV]
for certain left cells and generalized to certain others in [Jo]. Before we can prove
our main result, we need a technical fact aboutW -equivariant maps between left
cells and the elementsRσ .

LEMMA 1. LetC,C ′ be two left cells lying in the same double cellD , and letσ be
a representation lying in both{C} and{C ′}. Then there is aW -equivariant mapπσ
fromCC to CC ′ sending basis vectors to sums of basis vectors which is injective
on the copyEσ of σ in CC. The mapπσ sendsCC ∩ CR to CC ′ ∩ CR for any
right cell R lying in D , and wheneverσ is a representation lying in all three of
{C}, {C ′}, {R}, thenπσ sends theRσ defined above forC ∩R to that forC ′ ∩R
up to a sign.

Proof. Brian Hopkins has shown that whenever two elementsx, y have the same
right tableauTR, then each can be obtained from the other by a composition of
certain mapsTi [Ho]. The mapsTi are not defined on all ofW , but wheneverTi
is defined on an elementw, it is defined on any other elementw′ with the same
left tableau asw and moreover the left tableaux ofTi(w) andTi(w′) are the same,
as are the right tableaux ofw, Ti(w), andTi(w′). Thus the mapsTi preserve right
cells and map left cells to left cells. Whenever the mapTi sends the left cellC1

to C2, there is a corresponding leftW -equivariant mapT̃i defined on the complex
spanCC1 of C1 and mapping it toCC2. It sends basis vectors inCC1 either to
basis vectors or to sums of two basis vectors. It is leftW -equivariant because it
acts by right multiplication by a suitable simple reflection (in the coherent con-
tinuation representation) followed by projection toCC2. The mapsT̃i are just the
wall-crossing operatorsTαβ, T ′αβ, TD of [Mc1,Mc2], together with four additional
operators defined in [Ho]. Note that the left and right tableaux of a typicalT̃i(w),
unlike those ofTi(w), depend on the typeB,C, orD in whichw lives and not just
on the left and right tableaux ofw. In particular the maps̃Ti differ in typesC and
D even though the map sendingw to (TL(w), TR(w)) is the same for both of these
types. Now the maps̃Ti come as close to being isomorphisms as possible. More
precisely, the wall-crossing operatorTαβ of [Mc1, Mc2] restricts to an isomorphism
on the complex span of any left cell for which it is defined. The otherT̃i send spans
CC1 of left cells to spansCC2 of cells such that the cellsC1 andC2 are adjacent
in the sense of [Mc2], so that exactly half of the representations appearing inCC1

also appear inCC2. Then the restriction of̃Ti to any simple constituent ofCC1 is an
isomorphism if this constituent has an isomorphic copy inCC2 and is identically 0
otherwise.

Under the hypotheses of the lemma, we know from Theorem 3.2 of [Mc1] that
there are elementsx, y lying respectively inC ∩ R,C ′ ∩ R whose left or right
tableau shapes correspond to the representationσ in the sense of [Mc1]. Then
there is a composition of mapsTi sendingx to y. Taking the composition of the
corresponding maps̃Ti , we find that it sendsEσ to the unique copyE′σ of σ lying
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in CC ′ isomorphically. It only remains to verify the last assertion. This follows
from the description of the maps̃Ti on the level of tableaux in [G2] and [Ho]:
when restricted to the nonempty intersectionC(C ∩R) of (the spans of) any left
and right cell on which they are defined, they act by moving through fixed sets of
extended open cycles depending only onC andR. 2
THEOREM 1.With notation as above, the right or leftW -submodule generated by
Rσ is irreducible andW acts on it byσ .

Proof. Let Tσ be the unique element ofCC ∩ CR such thatTσ satisfies the
conclusion of Theorem 1 and the basis vectorCx appears with coefficient one
in Tσ . Then we must show thatRσ = Tσ . Note first thatTσ also generates an
irreducible rightW -submodule acted on byσ (as claimed in the Introduction); this
is an elementary fact about group algebras, or more generally semisimple Artinian
rings.

Next we observe that the subgroupGC := JC−1∩C of the asymptotic Hecke
algebraJ of W is an elementary abelian 2-group acting transitively onC ∩ R
by right multiplication [Lu2, Lu3]. It also actsW -equivariantly onCC and in fact
spans the full endomorphism algebra of this leftW -module. It follows that theTσ
span the common eigenlines of this action, so that one of them is the sum of the
Cw for w ∈ C ∩R while the others are alternating sums ofCw. We also see that
theTσ form an orthogonal basis forCC ∩ CR if we regard the latter as an inner
product space by declaring that the basis vectorsCw form an orthonormal basis.

We now show thatRσ = Tσ by induction on the complexity ofσ , as defined
in the proof of [Mc1, Thm 4.3]. The onlyσ with complexity zero is the special
representations, whose corresponding (tableau) shape is also special. In this case,
the theorem says that the coefficient of every basis vector inTs is one, which is
indeed the case (as remarked at the end of [Mc2]). We next claim that, ifRσ = Tσ
for some cell intersectionC ′ ∩R′ with σ ∈ {C ′ ∩R′}, then this equality continues
to hold for every cell intersectionC ′′ ∩R′′ with σ ∈ {C ′′ ∩R′′}. This follows at
once from Lemma 1 and its analogue for right cells (which uses the right analogues
of the maps̃Ti mentioned in the proof of Lemma 1), applied first toC ′,C ′′ and then
to R′,R′′.

Now we can complete the induction: assume thatRµ = Tµ wheneverµ has
complexity less thanm, and letσ have complexitym. Write m = t + u and let
σ correspond to a sum̀+ r as in the proof of [Mc1, Thm 4.3]. Then it is easy
to construct a left cellC ′ and a right cellR′ such thatσ is the unique element of
{C ′∩R′} of largest complexity, which ism. Since eachTσ agrees with someRµ for
{C ′ ∩R′}, andRγ = Tγ for all γ ∈ {C ′ ∩R′} except possiblyσ , we see that in fact
Rσ = Tσ for C ′ ∩R′ as well, using the orthogonality of theTσ noted above. By the
preceding paragraph, we deduce that this equality remains true for the intersection
C ∩R. This completes the proof. 2

Theorem 1 is a sharper version of Theorem 4.3 of [Mc1]. Theorems 4.2 of
[Mc1] and 2.1, 2.2 of [Mc2] are false as stated but become correct if ‘sequence
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of maps. . .’ is replaced throughout by ‘W -equivariant map’. For Theorem 4.2
of [Mc1], let u be the union of extended open cycles ofC1 relative toR such
that moving the left tableauTL(w1) throughu gives a tableau of the same shape
asTL(w2). Then define the map fromC(C1 ∩ R) to C(C2 ∩ R) on the level of
tableaux of basis vectors by first moving the left tableau through the cycles inu,
then moving the right tableau through the corresponding set of its open cycles,
and then finally sending the resulting pair(T , T ′) of tableaux of the same shape
to the unique pair(TL(y), TR(y)) of left and right tableaux with this shape of an
elementy in C2∩R. A similar argument proves Theorems 2.1 and 2.2 of [Mc2] as
amended above. More precisely, one can show that theW -equivariant maps of the
aforementioned theorems of [Mc1, Mc2] can be taken to be linear combinations
of compositions of the maps̃Ti occurring in the proof of Lemma 1. The amended
versions of these theorems now suffice to make the proofs of Theorem 5.1 of [Mc1]
and 3.2 of [Mc2] go through. The other results of [Mc1] and [Mc2] are correct as
stated.

We conclude by remarking that one can use Theorem 1 to derive a somewhat
more explicit version of Theorem III of [BV] in the classical case and to extend it
under certain additional hypotheses to real classical groups.
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