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1. Introduction

Let W be a finite Weyl group of typeB,, C,, or D,. In this paper we correct
Theorems 4.2 of [Mc1] and 2.1 and 2.2 of [Mc2], which are false as stated. We
also give corrected proofs of the results of [Mc1] and [Mc2] depending on these
theorems. In so doing we will also prove a more precise version of Theorem 4.3 of
[Mc1]: we will show how to write down explicit bases of the irreducible consituents

of a left or right cellC of W in terms of the Kazhdan-Lusztig basis®itself. More
precisely, givene, a right cellR meetingC, and a representation appearing in
bothCe andCR, we will construct a weighted su®, of Kazhdan—Lusztig basis
vectorsC, for x € € N R such that the right or lefi-submodule generated by

R, is irreducible andW acts on it byo. All coefficients in the weighted sun®,

will be &1 and we will give a simple rule for deciding which are positive. This
rule is the ‘new result on signs’ promised in the title; it sharpens Theorem 4.3 of
[Mc1]. If we then holdC ando fixed and let® run through the right cells o#

such thato appears inCR, we obtain a basis for the-isotypic component of

Ce, which is irreducible. Using this basis one can compute Langlands parameters
in the Barbasch—Vogan character formulas for special unipotent representations
of complex groups and extend these formulas to certain representations of real
classical groups. As in [Mc1, Mc2], the main tool is the ordered pair of standard
domino tableaux of the same shape attached by Garfinkle to everyW [G1],

which determinesv uniquely.
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2. lIsotypic Basis Vectors

Retain the above notation and @tresp..R be a left resp. right cell ofV. Assume
that ¢ and R are contained in a common double c&l| so that the intersection
C N R is nonempty. It is well known that the complex spabe, CR of C, R
in CW are multiplicity-free asw-modules (forw classical) and the number of
their common constituents equals the cardinality of the interse¢tion®. More
precisely and generally, for any pa®;, G, of left cells in any finite Weyl group,
the cardinality of the intersectio@; N @2‘1 equals the dimension of the space of
W-homomorphisms fronCC; to CC». In the classical case, there is a bit more
structure: the set&}, {R} of irreducible representations & appearing inCe,
CR themselves have the structure of elementary abelian 2-groups, as does their in-
tersectiofCNR} := {C}N{R}[Lul, Lu2]. Given an element of CNR, we may
parametrize and compu{€ N R} as follows. Start with the paitT; (w), Tz (w))
of standard domino tableaux attachedwtoRecall thatT; (w) does not depend on
C alone, but there is a unique tableau of special shape in the sense of [G1] attached
to 7T, (w) which is a complete invariant a® [G1, G3, G4]. Following [G1], we
group the dominos of; (w) into cycles, some open and the others closed, and we
do the same fofk (w). In typesB andC our convention here differs from that of
[G1, G2]: in these cases we call a cycle open only if does not involve the square in
the upper left corner of the tableau. Given any Batf open cycles il (w), we
may moveT; (w) throughX; this involves changing the positions of the dominos in
the cycles inx but no others [G1, G2]. Our convention on open cycles guarantees
that moving through any set of them does not change the type of the tableau, if
this is B or C. Similarly, we may movedi (w) through any set of its open cycles,
subject to the convention above. We now recall from [G2] the notion of extended
open cycles ofl; (w) relative toTk (w). These are just the minimal nonempty sets
> of open cycles off; (w) such that movingl; (w) through X yields a tableau
Ts of the same shape as moviffig(w) through some set afs open cycles. Now,
following [Lul], we have shown in [Mc1, Thm 3.2] how to map tableau shapes or
partitions to elements diV in such a way that the shapes Bf parametrize the
elements of G N R} asX runs through the extended open cycledpfw) relative
to Tx (w). This parametrization is one-to-one in typ@sndC; in type D it is two-
to-one unless the double ced containing® and R corresponds to a very even
partition, in which case it is one-to-one.

We can now state our rule for constructing e Denote the Kazhdan—Lusztig
basis ofCW by {C,,}. Fix somex € € N R arbitrarily. Let the shape af (or either
of the corresponding shapes in typ¢ be obtained from the special shape corres-
ponding toC (or either special shape in ty@e) by moving through the extended
open cycles, ..., ¢. Givenw € C N R, let T (w) be obtained fron¥y (x) by
moving through the extended open cyclés. .., f;. Puto, = +1 according as
an even or odd number of; appear among the;. SetR, = ), _cnz OwCu-
ThenR, has the desired property; note that its definition depends on the choice of
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x only up to sign. IfW is replaced by the set of double cosetd¥inof a suitable
parabolic subgroup, then oRy, coincides up to scalar with the, defined in [BV]

for certain left cells and generalized to certain others in [Jo]. Before we can prove
our main result, we need a technical fact abBisequivariant maps between left
cells and the element’, .

LEMMA 1. LetC, €’ be two left cells lying in the same double c@l] and leto be

a representation lying in bothe} and{C’}. Then there is & -equivariant mapr,

from Ce to C¢’ sending basis vectors to sums of basis vectors which is injective
on the copyE, of o in CC. The mapr, sendsCe N CR to CC’ N CR for any

right cell R lying in D, and wheneves is a representation lying in all three of
{€C}, {C'}, {R}, thenn, sends theR, defined above fo€ N R to that forC’' N R

up to a sign

Proof. Brian Hopkins has shown that whenever two elemenishave the same
right tableauTy, then each can be obtained from the other by a composition of
certain mapg/; [Ho]. The mapsT; are not defined on all of, but whenever;
is defined on an element, it is defined on any other element with the same
left tableau asv and moreover the left tableaux 6f(w) and7; (w’) are the same,
as are the right tableaux af, T; (w), andT; (w’). Thus the map§; preserve right
cells and map left cells to left cells. Whenever the nMfasends the left cele;
to C,, there is a corresponding leffii-equivariant mag¥; defined on the complex
spanC €, of ¢, and mapping it taC C,. It sends basis vectors @C; either to
basis vectors or to sums of two basis vectors. It is ¥éfequivariant because it
acts by right multiplication by a suitable simple reflection (in the coherent con-
tinuation representation) followed by projection@a®,. The map</; are just the
wall-crossing operator$,g, Ta/ﬂ, Tp of [Mc1,Mc2], together with four additional
operators defined in [Ho]. Note that the left and right tableaux of a tyficat),
unlike those off; (w), depend on the typ8, C, or D in which w lives and not just
on the left and right tableaux af. In particular the map#; differ in typesC and
D even though the map sendingto (7. (w), Tr(w)) is the same for both of these
types. Now the map$; come as close to being isomorphisms as possible. More
precisely, the wall-crossing operatfys of [Mc1, Mc2] restricts to an isomorphism
on the complex span of any left cell for which it is defined. The ofheend spans
C ¢, of left cells to spang” @, of cells such that the cell®; and @, are adjacent
in the sense of [Mc2], so that exactly half of the representations appear®@;in
also appear if©C,. Then the restriction df; to any simple constituent ¢, is an
isomorphism if this constituent has an isomorphic cop{ @ and is identically O
otherwise.

Under the hypotheses of the lemma, we know from Theorem 3.2 of [Mc1] that
there are elements, y lying respectively inC N R, ¢’ N R whose left or right
tableau shapes correspond to the representatiam the sense of [Mcl]. Then
there is a composition of mag¥ sendingx to y. Taking the composition of the
corresponding mapk, we find that it send€,, to the unique copyt’ of o lying
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in C ¢’ isomorphically. It only remains to verify the last assertion. This follows
from the description of the magg on the level of tableaux in [G2] and [HO]:
when restricted to the nonempty intersectid(C N R) of (the spans of) any left
and right cell on which they are defined, they act by moving through fixed sets of
extended open cycles depending only@andR. O

THEOREM 1.With notation as above, the right or I8ff-submodule generated by
R, isirreducible andW acts on it byo .

Proof. Let T, be the unique element &¢ N CR such thatT, satisfies the
conclusion of Theorem 1 and the basis veadfqrappears with coefficient one
in T,. Then we must show thak, = T,. Note first thatT, also generates an
irreducible rightW-submodule acted on hy (as claimed in the Introduction); this
is an elementary fact about group algebras, or more generally semisimple Artinian
rings.

Next we observe that the subgrod: := Je-1, Of the asymptotic Hecke
algebraJ of W is an elementary abelian 2-group acting transitively®m R
by right multiplication [Lu2, Lu3]. It also act® -equivariantly onC ¢ and in fact
spans the full endomorphism algebra of this ftmodule. It follows that the,
span the common eigenlines of this action, so that one of them is the sum of the
C, for w € € N R while the others are alternating sums@f. We also see that
the 7, form an orthogonal basis fdtC N CR if we regard the latter as an inner
product space by declaring that the basis veafréorm an orthonormal basis.

We now show thaiR, = T, by induction on the complexity of, as defined
in the proof of [Mc1, Thm 4.3]. The only with complexity zero is the special
representation, whose corresponding (tableau) shape is also special. In this case,
the theorem says that the coefficient of every basis vecta@t is one, which is
indeed the case (as remarked at the end of [Mc2]). We next claim thiat,# T,
for some cell intersectio®’ N R’ with o € {€' N R’} then this equality continues
to hold for every cell intersectio®” N R” with o € {€” N R"}. This follows at
once from Lemma 1 and its analogue for right cells (which uses the right analogues
of the map«; mentioned in the proof of Lemma 1), applied firstdg ¢” and then
to R, R".

Now we can complete the induction: assume tRat= 7, whenevery has
complexity less tham:, and letc have complexityn. Write m = ¢t + u and let
o correspond to a su+ r as in the proof of [Mcl, Thm 4.3]. Then it is easy
to construct a left cel’ and a right cellR’ such thatr is the unique element of
{C¢’'N R’} of largest complexity, which is:. Since eaclT, agrees with somg,, for
{¢'NR'},andR, =T, forall y € {€"N R’} except possibly, we see that in fact
R, =T, for &' N R’ as well, using the orthogonality of tHg noted above. By the
preceding paragraph, we deduce that this equality remains true for the intersection
C N R. This completes the proof. O

Theorem 1 is a sharper version of Theorem 4.3 of [Mcl]. Theorems 4.2 of
[Mcl1] and 2.1, 2.2 of [Mc2] are false as stated but become correct if ‘sequence
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of maps..." is replaced throughout byW-equivariant map’. For Theorem 4.2
of [Mc1], let u be the union of extended open cycles®f relative to R such
that moving the left tableali; (w,) throughu gives a tableau of the same shape
asT; (w»). Then define the map froi(C; N R) to C(C, N R) on the level of
tableaux of basis vectors by first moving the left tableau through the cycles in
then moving the right tableau through the corresponding set of its open cycles,
and then finally sending the resulting pé&if, T’) of tableaux of the same shape
to the unique paiKT; (y), Tz (y)) of left and right tableaux with this shape of an
elementy in C;N R. A similar argument proves Theorems 2.1 and 2.2 of [Mc2] as
amended above. More precisely, one can show thadtrezjuivariant maps of the
aforementioned theorems of [Mc1, Mc2] can be taken to be linear combinations
of compositions of the magg occurring in the proof of Lemma 1. The amended
versions of these theorems now suffice to make the proofs of Theorem 5.1 of [Mc1]
and 3.2 of [Mc2] go through. The other results of [Mc1] and [Mc2] are correct as
stated.

We conclude by remarking that one can use Theorem 1 to derive a somewhat
more explicit version of Theorem Il of [BV] in the classical case and to extend it
under certain additional hypotheses to real classical groups.
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