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Abstract

In this paper we compute and continue meromorphically to the whole complex plane the zeta function
for twisted modular curves. The twist of the modular curve is done by a mod p representation of the
absolute Galois group.

2000 Mathematics subject classification: primary 11G18, 11R42, 11R65.

1. Introduction

In Chapter 7 of his book [9], Shimura computed the zeta function for modular curves
and modular abelian varieties by relating the Frobenius morphism with Hecke opera-
tors using some congruence relations. We will use some of his ideas to compute the
zeta function of the curves that we will define below. When the mod p representation
is associated to a rational elliptic curve, such a twisted modular curve was defined and
used in a paper by Wiles [12, Remark 2]. Let X(p)/Q be the modular curve of the
principal congruence subgroup F(p) oiSL^iT) for a prime p > 7 (we do not consider
5 > p, since for these values, the modular curve has genus 0), which is a geometrically
disconnected curve whose connected components are p — 1 copies of the half upper
plane quotient out by V(p). Let X(p) be the compactification of X{p). The curve
X(p) has an action of GL2(S-/ pT) as specified later (see Section 2.1). For a number
field F we denote by GF the Galois group Gal(Q/F). We consider a continuous
Galois representation p : GQ —>• GLxil/pZ), and let X'(p)/Q be the curve obtained
from X(p)/Q via twisting by p composed with the action of GLi(l/pT) on X(p)
(see Section 2.2 for the definition of X'(p)).
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90 Cristian Virdol [2]

Let F(p) be the adelic principal congruence subgroup of level p in
where Af is the finite part of the adele ring AQ of Q. Let n = nf <g> n^ be a cuspidal
automorphic representation of G Z ^ A Q ) , where nf and n^, are representations of
GLqiAf) and GL2W, respectively. If K is an open compact subgroup of GLaiAf), let
itf denote the space of A'-fixed vectors of nf. One can associate to a representation n
an L-function L(s, n) which has an analytic continuation to the whole complex
plane as an entire function and verifies a functional equation: 5 *+ 1 — s (see [2,
Theorems 6.15 and 6.16]).

We fix an isomorphism j : Qt —>• C and from now on we identify these two fields.
Let pxj : GQ ->• GLviQi) = GLa(€), I prime, / ^ p be the two dimensional contin-
uous Galois representation associated to the cuspidal automorphic representation n.
Define

where

Lq{s) := det(l - j (/5

and Frob, is a Frobenius element at q, lq is the inertia group at q and V is the
space corresponding to pnj. Then L(s, pnJ) has an analytic continuation to the whole
complex plane as an entire function and verifies a functional equation: s <-> 2 — s.

As Shimura proved, we have L(s — \/2,n) = L(s,pnj). From the work of
Shimura and others (see [9, Theorems 7.11 and 7.13]), we know that the / / ' part of
the Hasse-Weil zeta functions of X(p) is given by

\dimn f

where the cuspidal automorphic representations n that appear in the product are of
weight 2, satisfy 7if(p) ̂  0 and are cohomological, which means that

/ / ' (£/2(R), S02(R);7Too) / 0.

Here, //'(g/2(R), 502(K);^0o) is the Lie algebra cohomology group with respect to
g/2(R) relative to the maximal compact subgroup 5O2(R).

The group GLiiJLIpT) acts on the modular curve X(p). The composition of this
action with p gives us an action of GQ on X(p). Taking complex points of X(p) we
get that GQ acts on X(p)(C) through this geometric action on X(p). Thus GQ acts
on H[(X(p), €). Using this commutativity of this action and of the Hecke operators
outside p we obtain the representation <pn o p of GQ on n/p) (see the beginning of
Section 2.6 for the definition of $„).
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Let

Us, Pn.i <2> (<Pn o p)) : =
i

where we denote

L'q{s) :=det(l - j (pXJ(Frdbq)\vl, ® f e

and U is the space corresponding to ipn op.
We have two curves X(p)/Q and the twisted one X'(p)/Q. Their jacobians J

and J' are identical over Q, but the Galois actions on J and J' are different. The
difference is described by the representation ipn o p. Then we go through Shimura's
computation of the zeta function of X(p) modifying the Galois action by $„ o p
and we obtain the first part of the following theorem (which is a consequence of
Proposition 2.2):

THEOREM 1.1. We have

) Y\ Us, Pn,i ® (fc, o p)),

vv/iere f/ie cuspidal automorphic representations it's that appear in the product are
of weight 2, verify 7r̂ <p> ^ 0 and are cohomological. If the representation p factors
through the Galois group of a solvable Galois extension of a totally real field (that
is, the field K :~ (Q)ker(p> is a solvable extension of a totally real field), then the
L-function L(s, X'(p)) has a meromorphic continuation to the whole complex plane
and verifies a functional equation.

In this theorem L{s, X'(p)) represents the / / ' part of the zeta function of X'(p).
Meromorphic continuation is done combining the technique of Artin-Brauer with a
recent result of Taylor [11] and the GZ^-base change for cyclic extensions proven by
Langlands [6]. We shall compute the L-function in the following section and prove
the meromorphic continuation in Section 3.

2. Computation of the zeta function

2.1. Known facts Let us recall some known facts (see [3] or [5]) which will be used
in the proof of Theorem 1.1. Let /V be a positive integer with N > 2, S a scheme, and
E/S an elliptic curve over S. If N : E —* E is the multiplication by N, then the kernel
of this morphism E[N]/S = ker|W] is a locally free group scheme of rank N2 over S.
A level N-structure is by definition a group scheme isomorphism <p : (2/NZ)2/S —>
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E[N]/S. Let SCH be the category of schemes and SETS be the category of sets. We
consider the following functor €N : SCH / Spec(l[l/N]) ->• SETS:

eN(S) = [(£, (j>)/S | E/S an elliptic curve, <f> a level N structure],

where '[•]' means the set of isomorphism classes of the objects in the brackets. Two
structures (E, <p) and (£", 0') are isomorphic by <p : E —>• £" if <p is an isomorphism
and <p o<p = </>'. It is known that the functor eN is representable over Spec(2[l/N])
by an affine curve X(N). There is a natural action of GLz(Z/NZ) on eN which is
given by (E, <t>) -»• (£ , 0 o g), if g e G^Z/NZ). The action of - 1 € GL^il/Nl)
is trivial because —1 : £ — > £ • induces an isomorphism (E,(p) = (E,(p o (—1)).
Since €N is representable by X(N) over Spec(Z[l/N]), the group GL2(2/ArZ) acts
onX(AO/Spec(Z[l/JV]).

It is known also that (see [5, Lemma 10.3.2]):

PROPOSITION 2.1. The group GL^iZ/NZ) acts on the compactified modular curve

X(N).

2.2. Construction of the twisted curve We fix a continuous representation

p : GQ -

where p is a prime number. Let K be the finite Galois extension of Q defined by
K := (Q)ker(')).

Suppose that a group G acts on an affine scheme X = Spec(R). Then G determines
an action on R. If we consider Rc = [r e R | gr = r, Vg e G], then /? c is a ring.
We have that Spec(/?c) = Spec(/?)/G as a geometric quotient if /? /# G is etale (see
[3, Proposition 1.8.4]). If X is not affine and we can cover X by affine schemes that
are stable under G, we similarly obtain a geometric quotient X/G.

Let X' = X(p) xSpec(Z(i/prf]) Spec(OK[l/pd]), where OK is the ring of integers
of K, d is the discriminant of K/Q, and OK[\/pd] is the sub-ring of K in which
pd is inverted. The group GLziZ/pZ) acts on X(p). Since p : Gal(A"/Q) <^
GLi(l/pT), the group Gal(AVQ) acts on X{p). The Galois group Gal(AVQ) has a
natural action on Spec(O*[1 /pd]) and we can descend via the quotient process X' to
X'(p)/ Spec(Z[l/pd]) using the diagonal action

Gal(AVQ) 3 a -* p(a) <g> a

on X'. Thus, we obtain a smooth projective curve X'(p)/ Spec(Z[l/pd]). This is the
twisted curve that we mentioned in the title. If we do descend as above the jacobian
ofX(p)/Spec(I[l/pd]), we obtain the jacobian of X'(p)/Spec(Z[l/pd]).
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[5] Zeta functions of twisted modular curves 93

2.3. Zeta Function for curves We recall briefly the definition of the / / ' part of
the Hasse-Weil zeta function of a smooth projective curve X over S = Spec(Z[l/Af])
where N is a positive integer. We hereafter call the Hl part, the zeta function of X
for simplicity. First let us consider Fp a finite field of characteristic p and / / F p an
abelian variety. Let J[ln] the /"-torsion points for a prime number I ^ p. The Galois
group Gal(Fp/Fp) acts on J[l"] for all natural numbers n and taking the limit

wegettheGal(F^/Fp)-module7K7). We write p, : Gal(F^/Fp) -* GL(T,(/)) for the
resulting representation. Let LP(T) = det(l — p,(<pp)T), where 4>p is the Frobenius
element

Gal(ir7/Fp) 3 (* -+ x").

The polynomial LP(T) e T[T] does not depend on /.
Now, let X be a smooth proper curve over S = Spec (Z [ 1 / N ]), and J be the j acobian

of X. Then J is an abelian scheme over 5 = Spec(Z[l/N]). We denote

J{1) = J XSpec(Z[l/JV])SpeC(F,),

for / prime, / \ N. We define the zeta function of X over S = Spec(Z[l/W]) as the
product

Here the definition of the zeta function is given up to the factors at / | N.

2.4. Twisted Galois action on J To simplify the notations we regard our curves
X(p) and X'(p) as curves over Spec(Q). Let J and J' be the jacobians of X(p) and
X'(p) respectively.

We obtained X'(p) from X(p) first tensoring by Spec(OK[l/pd]) and then making
the diagonal quotient. The difference of the action of G Q on the Tate modules 7} (J) and
Tt(J') can be described in the following way: As Z,-modules, we have 7](J) = T,{J'),
but the Galois action is different. We write the Galois action of a e GQ on Ti(J) as
x —> x". We want to describe the action of GQ on Tt(J') in terms of the action of GQ

on Ti(J) and
p : GQ ->• GL2(l/pl).

The Galois representation p composed with the action of GL2(1/pi) on X(p) induces
a representation

p" : GQ -> Aut(T,(J)).

PROPOSITION 2.2. The action of a e GQ on Ti(J') is given by x H* p"(a)x".
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PROOF. Let p' : GQ ->• Aut(X(/?)) be the composition of p : GQ

and of the action of GL2(1/pi) on X(p). Let W = X(p) xSpec(Q) Spec(Q). We have

W(Q) = HomSpec(Q)(Spec(Q), X{p)) x HomQ(Q, Q).

An element r e GQ acts on W(Q) by

where (*, g) € W(Q). This is the diagonal action on W(Q) that we use to do descent.
In this circumstance, we can realize the descent as a geometric quotient of W by the
action of GQ.

Since X'ip) is obtained from X{p) xSpec(Q)Spec(AT)byatwistofGal(^/Q)-action,
we have

X(p) Xspec(Q) Spec(A') = X'(p) xSpec(Q) Spec(tf).

Thus, we get X(p)(Q) = X^p)(Q). Let u = [(JC, 1)] e X'(p)(Q) = X(p)(Q) be a
class of the quotient of W(Q), determined by the above action. The group GQ acts
through its arithmetic action on Xip)(Q) sending u —• u" — [ixa, 1)]. Then we
describe the action of GQ on X'(p)(Q) in terms of the action of GQ on X(/?)(Q):

« ->«" ' = [(JC, l ) f = [ix\ o)} = [a-\p\a)xa, 1)]

= [ip'io)x\ 1)] = p\a)[{x", 1)] = p'ia)u\

where we attach a ' to a to indicate when we refer to the action of GQ on X'(p)iQ).
Thus a e GQ acts on X'(p)iQ) by sending u —> p'io)u"'. We explained above

the action of GQ on X'(/?)(Q) in terms of the action of GQ on X(p)(Q). We obtain
the action in the proposition replacing Xip) and X'ip) by their jacobians and by their
Tate modules. •

2.5. Complex points on the modular curve We have

Xip)(Q = GL2
+(Q)\GL2

+(AQ)/f (p)5O2

where

GL2
+(Q) = {ge GL2iQ) \ det# > 0},

the ring AQ is the adele ring of Q and GL$(AQ) = GL2(A/)GL^(K), Af is the finite
part of the adele ring AQ, and

with 1 = nplp.
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The group GL2(Z/pI.) acts on X(p)(C). This action can be described in terms of
the following action: GLiiJLp) °->- GLziAo) by a i->- ( 1 , . . . , a, 1, . . . , 1) (a is the p
component). Using the isomorphism GL2CE./pT) = GLi(I.p)/r(p)p, where

we get the action of g € GLziTLp) on X(p)(C) which is given by the left multiplication
at the p component.

2.6. The zeta function of the twisted curve Let n = nf <8> 7100 be a cuspidal
automorphic representation of GLI{AQ), where nf and 7 ^ are representations of
GLtihf) and GLi(W), respectively. Let

P*.i • GQ - • GLiW) = GLiiQ,

I prime, / ^ p be the two dimensional continuous Galois representation associated to
n. If K is an open compact subgroup of GLa(Af), let nf denote the space of Affixed
vectors of Tif.

We write nr/p) = nu'*»GL2ai) (8) nr
p
{p)p. By the work of Shimura and others we

know that

L(X{p), s) =

where the n's that appear in the product are of weight 2, verify 7r|(p> ^ 0 and are

cohomological, that is, / / ' (g/2(R), 5O2(K);7roo) # 0.
We consider the decomposition of the cohomology with compact support of X(p):

where the n's that appear in the product are of weight 2, verify 7Tjip) =̂ 0 and are co-

homological. The space //'(g/2(IR), 5O2('R);7roo) is a 2-dimensional complex vector

space. On each of the above summands, GL2(l/pi) acts through a representation of

the form 1 ® <p~', where <pn is a representation of GZ^(2//?2) on 7r^(''>. The space

Hx
el{X(p), Q|) has a decomposition of the same form as H^(X(p), C):

^ ) , Q,) = e,f/Q,(7r) ®5( i?; ( p ) ,

where the 7r's that appear in the product are of weight 2, verify nr
f
ip) •£ 0 and are

cohomological, £/Q,(7T) is the Q,-space of dimension 2 and ir^(/') is a Qrspace. The

group GQ acts on each summand of H*t(X(p), Q() by a representation of the form
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'p~\ ® 1. We denote by ipn the representation on 7fJ<p) that corresponds to <px. Since
Hx

el{X(p), Q/) = T,(jy (8>z, Q, (here T,(J)V is the dual space of T,(J)) we obtain
a decomposition of the same form as above for V = Tt(J) <g>z, Q; and write V[n]
(see the above decomposition) for the n component. By the result of Shimura and the
irreducibility oi'p^,, (the irreducibility of pnJ is proved in Section 3.2) and multiplicity
one of n combined, V[rc] is isomorphic to pn4 <g> <pn as (GQ, GL^Cl/pl))-modu\e.
For the twist J' of J we put V" = Ti(J') ®z, Qz. Then by Proposition 2.2, the action
of GQ on V'[n] is given by p*j ® (<px o p). Thus, we get

Us, X'(p)) = I { L(s, pxJ <g> (& o p)).

Hence, we proved the following result, which is the first part of the main theorem
from the introduction:

PROPOSITION 2.3. The zeta function of the curve X'(p) that is obtained from the
compactified modular curve X(p) via twisting by a continuous Galois representation
p : GQ -*• GLqiZ/pZ) composed with the natural action ofGLi(7L/p~l) on X(p) is
equal to

Y[ Us, Pn.i ® ($„ o p)),

where the n's that appear in the product are of weight 2, with n^(p) ^ 0 and are
cohomological.

REMARK 1. Here we have used the fact that L(s,pnJ) = Us - l/2,n) by the
solution of the local Langlands conjecture for GLi. We computed the zeta function of
X'{p) only up to Euler factors at the prime numbers / | pd, where d is the discriminant
of K/Q.

REMARK 2. We can replace p and X(p) in the proof of the theorem by an arbitrary
positive integer N and X(N) and obtain essentially the same result.

Actually we studied the twisted curves slightly different from those used in [12] in
order to treat the general p. The Galois representation p that Wiles used in [ 12] comes
from an elliptic curve over Q. Thus its action on Q ( ^ ) is given by detp composed
with the cyclotomic character (1/pZ)* = Gal(Q«/ , ) /Q) . Thus the action coincides
with the action of GL2(I/pl) C Aut(X(p)) on Q(£,,); so, we can actually make
quotient of X(p) ®Spec(Q(f,» Spec(AT) by the diagonal action. The new curve thus
obtained, slightly different from the one we studied, is the curve Wiles used whose
zeta function can be computed in the same manner as we described.
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3. Meromorphic continuation

Now we try to continue meromorphically the zeta function L(s, X'(p)) to the whole
complex plane. Since

~Qn OP)),

it is sufficient to continue meromorphically the function L(s,co® pt), where p( is the
Galois representation

Pl '. C/Q —• LrLqCUli) = Lrl^2\ti-),

I prime, / ^ p associated to a cuspidal automorphic representation n of weight 2,
with 7if(p) ^ 0 and co: GQ -> GLN(C) is an Artin representation.

Let Qf := Q(a(q) | q prime, q \ Ip), where a{q) := Tr(p/(Frob,)) if q \ Ip,
and Frob, is the Frobenius element at q (pi is unramified outside Ip). If we change
the prime /, then we obtain also the value of a(l). It is known that Qf is a finite
extension of Q. The field Qf is the minimal field of rationality of n. Let Of be
the integer ring of Qf and O\ the \ completion of Of for a prime factor I of / in
Qf. Then, p, : GQ -*• GLa{O{) is continuous, unramified outside Ip and satisfies
Tr(p,(Frob,)) = a(q) and det(p;(Frob,)) = e(q)q for q prime, «j f Ip, where e is
a Dirichlet character. Strictly speaking, we should have written p( instead of p;, but
we keep the symbol p( to simplify our notation. We say that n is of CM type if
the associated representation p, is an induced from a Galois character of GM for a
quadratic imaginary extension M/Q.

Define K to be the fixed field of Ker(&>).

3.1. CM case First we consider the case when n is of CM type. By the work of
Langlands and Jacquet (see [2, Theorem 7.4]) for any number field E, one can find
an automorphic representation <p of GLZ(^E) and a place A. of the minimal field of
rationality of <p above / such that pv-k ~ P/|c£- We take the number field £ to be a
Galois extension of Q that contains K.

By Brauer's theorem (see [8, Theorems 16 and 19]), we can find Ft C £ such that
Gal(£/F,) is solvable and the characters Xi '• Gal(£/F;) -»• Cx and the integers m,
such that the representation

co : Gal(£/Q) - • Gal(tf/Q) -+ GLN(Q,

can be written as
i=k

CO =

i = \
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as a virtual sum. We denote also by Xt the corresponding character of adele class
group &Fi/F* by class field theory. We know (see [6, Lemma 11.6]) that there is a
cuspidal automorphic representation <pt of GLi(AFj) and a prime k\ above / such that

Pi\cF, ~ Pv,,k,- Then we have

c \m '

which is a product of L-functions that have a meromorphic continuation to the whole
complex plane and verify a functional equation. Thus L(s, p: (g> co) can be meromor-
phically continued to the whole complex plane when n is of CM type.

3.2. Solvable extension of a totally real field and non CM case We consider the
case when K/Q is a solvable extension of Galois totally real field F and n is not of
CM type. We prove in this case that L(s, pt <8)<w) has a meromorphic continuation and
verifies a functional equation. Let e, be the /-adic cyclotomic character: e; : G F —>• Z*
for / a prime number and F a number field. We want to use the following theorem of
R. Taylor:

THEOREM 3.1 (Taylor, [11]). Suppose that I is an odd prime and that k/$i is a
finite extension. Let F be a totally real field and p' : GF —» GLi(k) a continuous
representation. Suppose that the following conditions hold:

(1) The representation p' is irreducible.
(2) For every place v of F above I, we have

XvA *
0 Xv,2

where Gv is the decomposition group above v and Xv.i ond Xv.2 finitely ramified
characters.
(3) For every complex conjugation c, we have det p'{c) — — 1.

Then there is a finite Galois totally real extension E/F in which every prime of F
above I splits completely, a cuspidal automorphic representation <p ofGLa(AF) and a
place k' of the minimal field of rationality of <p above I such that pv_y — P'\GC, where
P<p.k- '• GE —> GLi(Mk) is the continuous irreducible representation associated to <p,
the field M is the minimal field of rationality of <p and pvy is the reduction of pvy
modulo X'.
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Moreover, if p'(A>) does not consist of scalar matrices for every place v' of E
above I (/„- is the inertia group at v'), then the representation <p can be chosen such
that

P^'IG, - y 0 ^

where Gv> is the decomposition group above v' and the characters /v.1 and [iv\i are
the lifts of Xv,\ and Xv,2 respectively, ifv' devides v.

This statement is a combination of Theorem 1.6 and Corollary 1.7 of [ 11 ] (in [ 11,
Theorem 1.6 and Corollary 1.7] the representation p'|Gi, verifies detp'|Ci, = e(, but
this condition was imposed only to simplify some notations). In our case where the
field F is a Galois extension of Q, one can prove that the field E that appears in the
above theorem can be taken to be Galois over Q by the following argument. By a
M-HBAV over a field E we mean a triple (A, i, j), where

(1) A/E is an abelian variety of dimension [M : Q];
(2) j : OM <-»• End(A/£) (algebra homomorphism which takes 1 to identity);
(3) j is an OM-polarization (see [11, page 133] for details).

In his paper ([11, page 136]), Taylor finds a prime p, a totally real field M, a Galois
totally real extension E/F in which every place above / and p splits completely, a
quadratic extension L/ F in which every place above / and p splits and a M-HBAV
(A, /, j)/E such that the representation of GE on A[X] is equivalent to p'\cE, and the
representation of GE on A[p] is equivalent to Ind^ i/r |CE for some character \jrofGL.
Here X and p are primes of M over / and p. Taking the Galois closure £gal of £ , the
primes above p and / in F also split completely in £gal and the above proprieties are
verified for M-HBAV (A, i, j ) / £ g a l . Thus we obtain the result that we wanted.

We shall now verify the conditions of Theorem 3.1 for some prime number / and
p' := PI\CF. We remark that in order to find a M-HBAV (A, i, j) as above, in [11]
it was assumed that the image of the representation p' is not solvable, but using
Proposition 6 below, we can assume this fact.

For / rational prime we say that n is /-ordinary if a{l) is a unit in O\. We have the
following proposition (see [1, Proposition 2.2]):

PROPOSITION 3.2 (Serre). Any cuspidal automorphic representation n of weight 2

as above is I-ordinary for a set of primes of density 1.

Using the same notations as above, we know by the work of Deligne, Mazur and
Wiles the following theorem (see [4, Theorem 3.26]):

THEOREM 3.3 (Deligne, Mazur-Wiles). Ifa{l) is a unit in O\ for a prime factor I
of I, then pi\G, — ("Q2

 {*), where Gt is the decomposition group at I, the character 5,
is unramified and 82 is finitely ramified.
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We remark that we can use Proposition 3.2 to find a prime / and a prime ideal I,
such that a(l) is a unit in O\. Thus, the conditions of Theorem 3.3 are verified and we
can choose / such that p,|Cf verifies condition (2) of Theorem 3.1. Also, it is known
that detp((c) = - 1 , so we have detpi\Cf(c) = — 1 for all complex conjugations c,
thus we verified condition (3) of Theorem 3.1.

We now verify condition (1) of Theorem 3.1, that is, the irreducibility of p;|Gf.
Let F,r be the residue field of O[ mod the maximal ideal and p; be the reduction of

Pi : GQ —*• GLi(0{). By a nice result of Ribet (see[7, Section 4]) we have:

PROPOSITION 3.4 (Ribet). For all but finite I, the representation p, is full if n is not
of CM type, that is, SẐ >(F/) C Pi(GQ).

Actually Ribet proved a slightly stronger result concerning 5L2(i>) for an explicit
0 < s < r. Thus we can choose an odd prime / such that SZ^F,) c PI(GQ). We
prove the following proposition:

PROPOSITION 3.5. For all but finite I, the representation P/lc£ is full and hence
irreducible for any totally real extension E/ F.

PROOF. Using Proposition 3.4 we may assume that / is odd and that SẐ CF,) c
PI(GQ). For any x e GQ, JCCJC"1 fixes E, because E is totally real. Since im(p;)
contains SZ^F;), we have that im(p,|C£) contains all the SZ^CF,) conjugates of p;(c).
We can choose a basis for p, such that p,(c) is the diagonal matrix with diagonal
entries 1 and - 1 . Let (° J) € SZ^F/). Then we have that

(a b\(\ 0 \ (a b\~l _/a b\(l 0\(d -b\
\c d)\0 -l)\c d) ~\c d)\0 -l)\-c a)

ad+be -lab
led -bc-d

For a = d = 1 and c = 0 we get that (o-b\) 6 im(P/lc£)- Thus, we have

(\ -2b\(\ 0 \ (\ -2b

Since 2 is invertible in F; and b is an arbitrary element of F,, we get that im(p,|Gf)
contains all the elements of the form (l

0 _f,) with e e F,. For a = d = 1 and b = 0
we get (2'(. _

0,) €im(p,|Ct). Thus,

1 0 \ / I 0
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and we obtain that im(p";|G£) contains all the elements of the form (} °) for / e F,.
But the elements (Q *) and ( } ?) with e, f € F; generate SL^i^i), so p";|G£ is full.
Thus, p, |G c is irreducible. D

So we proved that we can find / such that pi\Gr is irreducible and verifies condi-
tions (2) and (3) of Theorem 3.1. We fix an / that verifies these proprieties. Thus, we
can conclude using Theorem 3.1, that there is a Galois totally real extension E of Q,
which contains F, a cuspidal automorphic representation <p' of GL2(AE) and a place
X' of the field of coefficients of <p' above / such that p^x ~ PI\GE-

Now we use the following theorem (this is [10, Theorem 5.1]):

THEOREM 3.6. Let F be a totally real number field and let p : Ga l (F /F) -+
GLviQt) be a representation satisfying:

(1) p is continuous and irreducible;
(2) p is unramified at all but a finite number of finite places;
(3) det p(c) = — 1 for all complex conjugations c;
(4) detp = i/€h where t/r is a character of finite order;

(5) p\D. ~ ( *Q' * ), with i/rjl/. having finite order, where D,, for i = 1, . . . , t are

the decomposition groups at the places V\, ... ,v, of F dividing I and /, C Dt are the

inertia groups;

(6) p is irreducible and p \ D i ~ ( *' * 1, i = 1 , . . . , t, with x\ ¥^ X2 ana" X'2 = "^2

mod X;
(7) there exists an automorphic representation TXQ of GLI{AF) and a prime Xo of

the field of coefficients ofn0 above I such that pno^ — p and P^0.X0ID, — ( 0' 1 ).

i = \, ... ,t, and x2 = $2 m o ^ ^•

Then we have p ~ pn,X] for some automorphic representation n and some prime X\
of the field of coefficients ofn above I.

We show now, that the representation p/ |C £ verifies all the conditions of the The-
orem 4: the representation p/|G£ is irreducible, since we have chosen / so that pi\Gc

is irreducible; conditions (l)-(4) are verified (see the beginning of Section 2); condi-
tion (5) is proved by Theorem 3.3 out of our choice of/; condition (6) is satisfied also
(for a big /), since we proved that p,|C(r is irreducible by our choice of/ and (using the
notations of Theorem 3.3) we have etS2 mod X ^ Si mod X for / sufficiently large,
since <52 is a finite character independent of/ and £/(/,) increases linearly with /, while
51 is unramified; condition (7) is satisfied by Theorem 3.1 by our choice of /. Thus
we can choose / such that Theorem 3.6 is verified.

Hence we can apply Theorem 3.6 to find an automorphic representation <p of
GL2(AE) and a place X of the field of coefficients of <p above / such that p ^ ~ p/ |Gt..
The field K is a Galois solvable extension of F, so the field KE is a Galois solvable
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extension of E. By Langlands base change for Galois cyclic extensions (see [6,
Proposition 11.5]), we get a automorphic representation <p" of GL2(AKE) and a place
A." of the field of the coefficients of (p" above A. such that p¥»,x" ~ PI\GKE-

Thus we proved the following theorem, which is a combination of the above
discussion and the beginning of Section 3.1:

THEOREM 3.7. If n is a cuspidal automorphic representation of G Z ^ A Q ) , of
weight 2 and K is a solvable extension of a totally real field, then there is a solvable
extension of a totally real field K' that contains K and an automorphic representa-
tion <p" ofGLjihic) and a prime A." of the field of coefficients of<p" above I such that

In order to prove the meromorphic continuation of L(s, pt <g> OJ) we can use the
same method as in Section 3.1. To find <p, as in Section 3.1 out of <p" (in Section 3.1
the representation was <p), we use the result of Langlands (see [6, Lemma 11.6])
that <p" descends to <p,, because K E/Fj is a solvable Galois extension. We deduce
that L(s, pi <g> a>) can be meromorphically continued to the whole complex plane and
verifies a functional equation when K is solvable extension of a totally real field and n
is not of CM type.

Combining this section where we treated non CM type case and Section 3.1 (read
the last sentence of Section 3.1) where we treated the CM type case, we can conclude
in particular that when the field AT is a solvable extension of a Galois totally real
field, L(s, X'(p)) has a meromorphic continuation to the complex plane and verifies
a functional equation. Thus, we proved the second part of the main theorem from the
introduction.
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