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ZERO-DIMENSIONAL COMPACTIFICATIONS OF 
LOCALLY COMPACT SPACES 

R. GRANT WOODS 

1. Introduction. Let X be a locally compact Hausdorff topological space. 
A compactification of X is a compact Hausdorff space which contains J as a 
dense subspace. Two compactifications aX and yX of X are equivalent if 
there is a homeomorphism from aX onto yX that fixes X pointwise. We shall 
identify equivalent compactifications of a given space. If Ĵ ~ is a family of 
compactifications of X, we can partially order Ĵ ~ by saying that aX ^ yX 
if there is a continuous map from yX onto aX that fixes X pointwise. This map 
is necessarily unique, and will be called the connecting map from yX onto aX. 
The family of all compactifications of X will be denoted by J ^ ( X ) ; it is a 
complete lattice under the above partial order (see [8]). The Boolean algebra 
of all open-and-closed ("clopen") subsets of a space X will be denoted by 
38 (X). 

If aX £ J^(X), we say that aX is a zero-dimensional compactification of X 
if aX — X has a basis of clopen sets. The family of all zero-dimensional 
compactifications of X will be denoted by J^o(X). I t is partially ordered (as 
noted above) and has a largest member, the Freudenthal compactification of 
X (denoted FX). We shall be interested in the family L(38 (FX - X)) of 
all subalgebras of 38 (FX — X). When partially ordered by inclusion, L (38 (FX 
— X)) is a complete lattice. 

Let S? (X) denote the Boolean algebra of regular closed subsets of X, let 
D(X) denote the subalgebra of Si (X) consisting of members of 3? (X) with 
compact boundaries, and let K(X) denote the collection of compact members 
of 3t(X). Lety(X) be the family of all subalgebras s/ of & (X) such that 
K(X) Ç se Ç D(X), and partially order Sf (X) by inclusion. Note that each 
9/ in Sf (X) is a base for the closed subsets of X. 

We prove two main results in this paper. First, we show that if X is a 
locally compact Hausdorff space, then J^ 0 (X) is a complete lattice and is 
lattice-isomorphic to L(38 (FX — X)). It follows from this that if X and Y 
are locally compact Hausdorff spaces, then J^0(X) and J ^ 0 ( F ) are lattice-
isomorphic if and only if FX — X and FY — Y are homeomorphic. This result 
is similar in spirit to results of Magill [8] and Thrivikraman [14], and should 
be compared to the theorem of Thrivikraman that if a0X and y0Y are com­
pactifications of the locally compact Hausdorff spaces X and F, then a0X — X 
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and To F — Y are homeomorphic if and only if {a X £ tf (X) : a X ^ a0 X\ 
and {7 Y ^J^(Y) : y Y ^ y0 Y] are lattice-isomorphic. 

Second, we show that if X is a locally compact Hausdorff space, then ^ (X) 
is a complete lattice and is lattice-isomorphic to jfo(X). This generalizes a 
result of Magill and Glasenapp [9]. In the process of obtaining this result, we 
obtain information about the relationship between J^0(X) and J^o(E(X)), 
where E(X) denotes the projective cover of X. 

2. Preliminary results. All topological spaces considered in this paper will 
be assumed to be locally compact Hausdorff spaces (and hence completely 
regular). Notation and terminology pertaining to topological concepts may be 
found in [4]; those pertaining to Boolean algebras may be found in [12]. 

A subset A of a topological space X is regular closed if it is the closure of its 
interior. The family Si (X) of all regular closed subsets of X, partially ordered 
by inclusion, is a complete Boolean algebra under the following operations: 

VaAa = clx[U«-4«] 
AaAa = c l x i n t x [ n « 4 J ((Aa) C@{X)) 

A' =dx(X -A) 

(here A' denotes the Boolean-algebraic complement of the element A of 

If 5 is a subset of a Boolean algebra B, we denote by (S) the subalgebra of 
B generated by S; this, by definition, is the intersection of all subalgebras of 
B that contain S. 

A topological space X is called zero-dimensional if £8 (X) is a base for the 
open (and closed) subsets of X. In the next few paragraphs we outline a 
portion of the well-known ''Stone duality theory" of the relationship between 
Boolean algebras and compact zero-dimensional Hausdorff spaces. A treatment 
of this topic may be found in [12]. 

If U is a Boolean algebra, let S(U) denote the family of all ultrafilters on U. 
For each b £ U, put \(b) = {a £ S(U) : b £ a}. Then S(U), topologized by 
letting {\(b) : b Ç U) be a base for the open sets of S(U), is a compact zero-
dimensional Hausdorff space called the Stone space of U. The map b —̂> X(6) 
is a Boolean algebra isomorphism from U onto â${S(U)). If F is a subalgebra 
of U, and a G S(U), then « H F ^ f F ) , and each ultrafilter on V is of this 
form. The function k from S(U) to 5 (F ) defined by 

k(a) =aC\V (a € S(U)) 

is a continuous map from S(JJ) onto S(V). We call k the dual map of the 
inclusion map from V into U. 

2.1 LEMMA. If V is a subalgebra of the Boolean algebra U, then {k*~[B]: 
B G â${S(V))) — {\{v):v 6 V\. (here X is the isomorphism from U onto 
&(S(U)). 

Proof. It follows from the above remarks that if B 6 &(S(V)), then there 
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exists v G V such that B = {a G S(V): v G a]. Hence from the definition of 
k, it follows that 

k"[B] = Î7 6 5 ( t / ) : fl G T H V] 

= { 7 € 5 ( C 7 ) : Î ; 6 7} 

= A(w). 

Conversely, if 1/ G V, then X(») = jfe*"[{a G 5 ( F ) : » G a}] G {£*"[£]: 5 G 
^ ( 5 ( 7 ) ) ] , and the lemma follows. 

If K is a compact zero-dimensional space, then the function &: K —>S(38(K)) 
defined by 

h(x) = {B G 38 (K) : x G B} (x G K) 

is a homeomorphism from K onto S(38 (K)). With this we end our discussion 
on Stone duality theory. 

Let X be a locally compact zero-dimensional Hausdorff space, and let 
^ o ( X ) be the family of all subalgebras of 38 (X) that contain {38 (X) C\ K(X)) 
(note that {38 (X) C\ K(X)) is the smallest subalgebra of 38(X) that is a base 
for the open sets of X\ see [9, Lemma 2.4]). If s/ G y*(X) and a G 5 ( J / ), 
we call a & fixed ultrafilter on se if Pi « ^ 0. If x G X, put a(x) = [A £ s/ : 
x G ^4}. Then {«(*) : x Ç I J is the set of all fixed ultrafilters onJ^/. Let r ( s / ) 
be an index set for S{s/ ), with the convention that for each x £ X, the index 
of a (x) is the point*. Thus S(s/) = {a(p) : p £ T(s/ )}. Topologize r ( j / ) 
by letting {{£ G T ( J / ) : A £ a(p)} : A G sé\ be a base for the open sets of 
T(s/ ). Then the map p t—» a{p) is a homeomorphism h^ from r ( j ^ ) onto 
S{s/ ) , and X is a dense subspace of r ( s / ) whose subspace topology coincides 
with the original topology on X. Thus T(s/ ) G J^o(X). This construction is 
discussed by Magill and Glasenapp in [9, 3.6]. 

In Theorem 3.6 of [9], Magill and Glasenapp prove the following result. 

2.2 THEOREM. Let X be a locally compact zero-dimensional space. Partially 
order S^o(X) by inclusion. Then s/ —» r \ s é ) is an order isomorphism from 
3^o(X) onto {a X G J^(X) : a X is zero-dimensional} and S^o(X) is a complete 
lattice. 

2.3 LEMMA. Let X be a locally compact zero-dimensional space and let aX G 
3^{X). Then aX is zero-dimensional if and only if aX G 3^Q(X). 

Proof. Obviously if aX is zero-dimensional then aX G Jfo(X). Conversely, 
if aX — X is zero-dimensional and if C is connected component of aX con­
taining more than one point, then C cannot lie entirely in aX — X. Let p and 
q be distinct points of C, and let p G X. As X is locally compact and zero-
dimensional, there is a compact member of 38 (X) such that p G B and 
q £ B. Now B G 38{aX)y so {C C\ B, C - B] is a disconnection of C. The 
lemma follows. 
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It is worth noting that the local compactness of X is essential in the above; 
the one-point compactification of the space of real numbers is a compactifi-
cation aQ of the zero-dimensional space 0 of rational numbers, and aQ — Q 
is zero-dimensional while aQ is connected. 

The proof of Theorem 3.6 of [9] can be modified, with the aid of 2.3 but with 
essentially no other changes, to a proof of the following generalization of 2.2. 

2.4 THEOREM. Let X be a locally compact, zero-dimensional space, and let 
j / « e y o ( 4 Then the restriction of Y to [se Ç y0(X) : se Ç j / 0 } is a 
lattice-isomorphism onto {aX £ J^ 0(X) : aX ^ T(&/o)}. 

A perfect map k from a space X onto a space F is called irreducible if proper 
closed subsets of X are mapped onto proper closed subsets of F by k. We need 
the following result which, we believe, has the status of a "folk theorem". We 
include a proof for the sake of completeness. 

2.5 THEOREM. Let kbea perfect irreducible map from X onto Y. Then A •—» k[A] 
is a Boolean algebra isomorphism from 3? (X) onto 3%(Y), and A = clx&^[intF 

k[A]] for each A £ 3$(X). 

Proof. In Lemma 2.1 of [5] it is shown that if V is open in X, then k[V] C 
clF [F - k[X - V]]. Hence if A £ 3?(X), then &[intx,4] C clF [F - k[X -
intx A]]. As k is a closed map, this implies that 

k[A] = k[dx int* A] = clF *[intx -4] Ç clF [F - &[X - intx A]]. 

But F — k[X — intx-4] is open in F and contained in k[A], which is closed. 
Hence k[A] = clF [F - k[X - intx A]] € 3?(Y). 

As k[A U 5 ] = jfe[4] U &[£], & preserves finite suprema. If A £ 31 (X), then 

*|y4'] = fe[clx [X - il]] = clr k[X - A] ç clF [F - jfe[4]] (using 

[5, 2.1]) = (k[A]Y. 

But fc[,4] U k[A'] = F, so clF [F - *[4]] C fe[4']. Thus k[A'] = (fe[4])', and 
our correspondence preserves Boolean-algebraic complements. Hence it is a 
Boolean algebra homomorphism. It is onto, for if 5 G ^ ( 7 ) , then 
c\x &*~[intF B] G ^ (X) and is mapped to 5 by &. Finally, the correspondence 
is one-to-one, for k[A] = 0 if and only if A = 0 . Hence our correspondence is 
a Boolean algebra isomorphism. 

Recall that a Hausdorff space is called extremally disconnected if its open sets 
have open closures. If X is extremally disconnected, then X is zero-dimensional 
and 38 (X) — & (X). Associated with each completely regular Hausdorff space 
X there is an extremally disconnected space E(X), and a perfect irreducible 
map kx : E(X) - > X ; the points of E(X) are the ultrafilters of 39 {X) that 
converge to points of X, and E{X) is given the subspace topology that it 
inherits from S(3t(X)). If a Ç E(X), kx(a) is denned to be C\{A :A£a). 
E(X) is called the projective cover of X, and the above description of it charac­
terizes it up to homeomorphism. See [5; 13], and [15, §1] for further details. 
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Denote 

{cW> kx^[intxA] : A G D(X)\ by r{D{X)). 

Our approach in proving the second of our main results (Theorem 3.7) is as 
follows. If X is a locally compact Hausdorff space, we show t h a t S^(X) is 
lattice-isomorphic with {$/ G ^ o {E (X) ) : s/ C r (D (X) ) } . T h e n using Theorem 
2.4, we show tha t y\x) is lattice-isomorphic to {aE(X) ejf0(E(X)) : 
a £ ( I ) g r ( r(Z>(X)))}. T h e final s tep is to show t h a t FX - X and 
r ( r ( Z ) ( X ) ) ) - E(X) are homeomorphic. 

We shall need the following result abou t Boolean algebras, proved by 
Sachs [11] and Filippov [2]. I am grateful to Professor G. Gràtzer for calling 
it to my a t tent ion . 

2.6 T H E O R E M . Let B\ and B2 be two Boolean algebras, and let L(Bt) denote 
the lattice of subalgebras of Bt (i = 1, 2) . Then B\ and B2 are isomorphic as 
Boolean algebras if and only if L(Bi) and L(B2) are lattice-isomorphic. 

Finally, if X is a locally compact Hausdorff space we describe how to 
construct a member s/X oîJ^0(X) from a member s/ of Sf(X). T h e con­
struct ion is essentially t h a t discussed by Fan and Got tesman in [1], and by 
Njàs tad in [10, §3]. Proofs of the following assertions can be found therein. 
Our terminology differs slightly from t h a t of Njàs tad, bu t can readily be seen 
to be equivalent to his. 

lis/ G Sf{X), call a subfamily a of s/ a maximal binding family if a has 
the finite intersection proper ty (F . I .P . ) and is not contained in any larger 
subfamily of s/ with F . I .P . If x G X then {A £ s/ : x £ A) = a(x) is a 
maximal binding family, and Pi a(x) = {x), a,ss/ forms a base for the closed 
subsets of X. Each maximal binding family with non-empty intersection is 
an a(x) for some x (z X. Let s/X be the collection of all maximal binding 
families of s/. If A G s/, let A* = {a G s/X : A G a}. If A, B G sf then 
A U B G s/ and (A U B)* = A* U B*. Hence {A* :A G s/} forms a base 
for the closed sets of a topology on s/X. T h u s topologized, s/X becomes a 
compact Hausdorff space and {a(x) : x £ X] becomes a dense subspace of 
%?X t h a t is homeomorphic to X. We identify X and {a(x) : x £ X} ; then 

j / X G J f (X) , and it follows from 2.7(c) below t h a t s/X - X is zero-
dimensional. T h u s j / X G J f o P O . If s/ = D(X), then s/X is jus t FX; the 
above construction is similar to t h a t used by Freudentha l in [3] in his original 
construct ion of FX. 

We s ta te below some elementary facts abou t s/X. Proofs of (a) and (b) 
m a y be found (at least implicitly) in [10, §3]. T h e symbol ubdY A" denotes 
the topological boundary in Y of the subset A of the space Y. 

2.7 PROPOSITION. Let A es/ and lets/ G Sf(X). Then: 
(a) c W i = A*. Thus A* G @{s/X). 
(b) int^xA* = s/X - (A')*. Thus { i n W A* : A ^sé\ is a base for the 

open sets of s/X. 
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(c) bd^x ^4* C X. Thus séX — X is zero dimensional. 

Proof of (c): Let a G bd^xA*. By (b), a G (A')* and so A and A1 both 
belong to a. But A C\ A' = bdx^4, which is compact a s s / G S^(X). Hence 
if f| a = 0, there exist Bu . . . , Bn £ a such that 4 H ^4' H [fYS-i ^ J = 0. 
This violates the fact that a has F.I.P. Hence H « ^ 0, and so a £ X (in our 
identification of X with members oiséX with non-empty intersection). Thus 
bd^x A* C -X". Hence {̂ 4* — X : 4̂ G ^ } is a collection of clopen subsets of 
séX — X that form a base for the closed sets of stfX — X, and S$X — X is 
zero-dimensional. 

The final result of this section is new. 

2.8 THEOREM. Let X be a locally compact space and let se G S^(X). Define a 
function g from S(sf ) tos/X as follows: 

g(a) = H{A*:A £a\ (a G S(sf )) . 

Then: 
(a) g is a well-defined continuous function from S(s/ ) ontos/X. 
(b)^ra = i«6 5 ( i ) : n « ^ 0 } . 
(c) 27£e restriction of g to S(s/ ) — ĝ  [X] is a homeomorphism from S(s/ ) — 

g<-[X] ontos/X - X. 

Proof, (a) Let a G 5 ( J ^ ). To show that g is well-defined, wTe must show 
that n {-4* : -4 G a} contains precisely one point of s/X. If C\ {A* : A G a} 
= 0, by the compactness of J ^X there exist Ai, . . . , An G « such that 
{T*=iAt* = 0. By [10, Lemma 6], it follows that n%iAt = 0, which 
contradicts the fact that A*=i A t G a and Al=i 4̂ f Ç Hl=i A{. Hence g (a) ^ 0. 
If £ and g are distinct points of g (a) by 2.7 (b) there exist A, B G ^ such 
t h a t p G int^x^4*, 5 G in t^x^* , and i * n 5 * = 0. As a is an ultrafilter on 
s/, either 4̂ G a or A' G a. If A G a, fchen g (a) C ^4* so g g g (a), which is a 
contradiction. Hence ,4' G a. But p G (4 ' )* (2.7(6)) and so p G g (a). It 
follows that g (a) contains precisely one point of s/X, and so g is well-defined. 

It follows from 2.7(b) that if p É J / Z , then n j i : ^ ^ and 
£ G inW-4*} = {£}. But {A G J^' : fi G inW-4*} is a filter on J / , and so 
is contained in some ultrafilter a onszf. Obviously g (a) = p, and so g maps 
S(s/) o n t o j / Z . 

If a G 5 ( J / ) and V is open in s/X with g (a) G V, then by 2.7(b) and the 
regularity ois/X, there exists A e s/ such that g (a) G i n W A* C ^4* C F. 
Thus g(a) G (4 ' )* so A' G a. Thus A G a, so a G \(A), where X is the 
canonical isomorphism from se onto â?(S(s/ )) . If 7 G X(^4), then i G 7S0 
g(7) G A*. Hence g[\(A)] C F and g is continuous at a. As 0: was arbitrary 
in S(s/ ), g is continuous. 

(b) If H « 5* 0, then Pi M* G j / : .4 G a} = Pi a G X. Conversely, if 
g (a) G X, then I P i D {A* : A G a} 5^ 0. A s I P l i l * = 4 , this means that 
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(c) Evidently the restriction of g to S( se ) — g*~[X] is a perfect map from 
S(s/ ) — g^[X] on to s /X — X, and hence is closed. Thus if g can be shown 
to be one-to-one on S( $tf ) — g*~[X], our assertion will follow. Let a and y be 
distinct members of S(s/ ) — g^[X]. There exists i Ç j / such that A £ a 
and ^4' 6 7. If g (a) = g(y), then 

g(«) e 4* n (4')* = ̂ * n c w (J /X - A*) = bd^A*. 
By 2.7(c), bd^x^4* Q X, and g (a) £ J ^ X — X, so we have a contradiction. 
Hence g is one-to-one on S(sé ) — g*~[X]. 

We remark that the subspace g*"[X] in the above theorem is homeomorphic 
to E(X). A justification of this remark appears in the proof of 3.6. 

3. The main results. Our first goal is to prove Theorems 3.3 and 3.4. We 
need several lemmas. Throughout what follows, X is assumed to be a locally 
compact Hausdorff space. Let a0X be a fixed member of J^Q(X), and let 
2fo(X) = {aX 6 j f o P O : *X £ a0X}. 

3.1 LEMMA. Let aX £J^0(X), let ka be the connecting map from a0X onto 
aX,andseta(aX) = {ka^\E\ : B £ 38 (aX - X)}. Then a(aX) £ L(3g (a,X -
X)) (see 2.6 for notation). 

Proof. AsaX ^ QCQX, the map ka certainly exists: Furthermore, ka^[aX — X] 
= a0X - X. As &a is continuous, if B £ ^ ( a l - X) then *««-[£] G ̂ ( a 0 X -
X) . Obviously cr(aX) is closed under finjite unions and intersections as 3§ (aX — 
X) is. Hence a(aX) £ L(&(a0X - 5) !) . 

_ 3 . 2 LEMMA. 7/ <f G L(^(a0X - X)), then <f = o-(aX) /or some aX £ 
^ o ( X ) . j 

Proof. As <f £ L(&(aoX - X) ) , <f! is a subalgebra of ^ ( a 0 X - X) . L e t / 
denote the dual map from S(0#(ajç - X)) onto S((f). As a0X - X is 
compact and zero-dimensional, 5(3§ (a<y!K — X)) is homeomorphic toa0X — X, 
and so we can regard/ as being a continuous map from a0X — X onto S(<£*). 
Let aX be the free union of X and S(<%). Let &« map a0X onto aX as follows: 
ka\X = lx and ^«hoX — X = / . Givje a l the quotient topology that ka 

induces. Then aX becomes a compact JHausdorff space, and the topology that 
X inherits from aX is identical to the (original topology on X. As X is dense in 
aX, evidently aX £ J f 0 (X) (see [8, Theorem 13], or [7, Theorem 20, Chapter 
5] for details), and aX — X = S((f). M follows from lemma 2.1 that <r(aX) = 
S, and we are done. J 

3.3 THEOREM. The correspondence <jbX —̂> a(aX) is an order isomorphism 
from jf0(X) onto L(&(a0X — X)). lê'enceJf0(X) is a complete lattice and is 
lattice-isomorphic to L(3$ (a^X — X)). 

Proof. If aX ^ yX, with aX, yX £ .''jf0(X), let ka and ky be the connecting 
maps from a0X onto aX and yX resp >ectively. Let g be the connecting map 
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from yX onto aX. As goky and ka agree on X, evidently goky = ka. If 
B e a(aX), thenB = ka^[C] for some C G 38 {aX - X) ;hence£ = K[g*-[C]}. 
But g*~[C] e 38 {yX - X) , so B e <r(yX). Thus aX ^ 7X implies <x(oX) C 
o-(7X). Conversely, if a J and 7X are in j f 0 ( X ) , and a(aX) Ç a(yX), let 
*:5(cr(7X)) ->S((r(aX)) be the dual map. S{a{yX)) and yX - X are 
homeomorphic, as 7X — X is compact and zerodimensional; so are S{a{aX)) 
and aX — X. Thus there is a continuous map & from yX — X onto aX — X. 
A repetition of the argument used to prove 3.2 allows us to conclude that 
aX ^ yX. 

The above remarks show that a is a one-to-one order-preserving map from 

j fo(X) into L{3§{aQX - X)). Lemma 3.2 tells_us that a sendsJf0(X) onto 

L{38{a,X - X)); thus L{38 {a*X - X)) and J f 0 (X) are order-isomorphic. 

As L{38 {a§X — X)) is a complete lattice, so isJf\)(X). 

3.4 THEOREM. Let X and Y be two locally compact Hausdorff spaces. Then 
jfo(X) andJ^o(Y) are lattice-isomorphic if and only if FX — X and FY — Y 
are homeomorphic. 

Proof. By Theorem 3.3, (with a0X = FX, a0Y = FY) J f 0 (X) and J f 0 ( F ) 
are lattice-isomorphic if and only iî L{38 {FX - X)) and L{38 {FY - Y)) are 
lattice-isomorphic. By Theorem 2.6, L{38 {FX — X)) are lattice-isomorphic 
if and only if 38 {FX — X) and 38 {FY — Y) are isomorphic as Boolean algebras. 
As FX — X and FY — Y are compact and zero-dimensional, this occurs if and 
only if FX — X and F F — Fare homeomorphic. 

Next we show that 3f (X) is order-isomorphic withJ^o(X). 

3.5 LEMMA. For each se £ <5^(X), put 

r{s/ ) = {cW> k^[mtxA] : A Ç s/\. 

Then r is an order-isomorphism from Sf (X) onto {$ f y o {E{X)) : S C 
T{D{X))}. Thus S^(X) is a complete lattice. 

Proof. As kx is a perfect irreducible map from E{X) onto X, by Theorem 
2.5 it is evident that the correspondence <o «—» |^X[-E] '> F Ç ^ } is a lattice-
isomorphism from the lattice of subalgebras of 3%{E{X)) { = 38{E{X))) onto 
the lattice of subalgebras of 3?{X), and that r is the restriction of the inverse 
of this correspondence t o J ^ ( X ) . But 

\r{s/) is/ É y ( I ) l = \r{s/)'1K{X) Ç j / ç £ > ( X ) a n d 
s/ <E y(X)\ = {<? 6 yo(E(X)) : T«i£(X)>) Ç <f ç r (P (X) )} . 

Evidently (X(X)) = U G 3?{X): either 4 or clx(X - A) is compact} 
and it follows quickly that r{(K{X))) = {B € J>(£(X)) : either 5 or £ ( X ) -
5 is compact}. Hence T{(K{X))) is the smallest member of y${E(X)) (see 
[9, Lemma 2.10 and Corollary 3.5]). Thus the lemma holds. 

3.6 THEOREM. Lets/ £ Sf(X) and define a map f from Y{T{S/ )) tos/X 
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as follows: 

f(p) = n {(kx[F])*; F 6 a{p)\ (p 6 T(r(sf ))) . 

Then f is a well-defined continuous map from T(T(S/ )) onto seX whose restric­
tion to E(X) is kx and whose restriction to T(r(s/ )) — E{X) is a homeo­
morphism ontos/X — X. 

Proof. From the definition of r it is evident that the map C *-» kx[C] is a 
Boolean algebra isomorphism from T(S/ ) onto s/. I t follows that the map 
k : S(T{S/ )) - > 5 ( J ^ ) defined by «(a) = {kx[C] : C e a} (a G 5 ( T ( J / ))) 
is a homeomorphism from S(T(S/ )) onto S{s/ ) . The map Âr(^) : r ( r ( j ^ )) 
—> S (r ( J^/ )) defined by hr^)ip) = a (£) is, as we have seen, a homeomorphism 
from T(T(S/ )) onto S(j(s/ )). H e n c e / = go kohT{^) is a continuous map 
from r ( r ( J ^ )) onto J^/X, where g is the map defined in 2.8. 

Let p G E(X)\ then hT^)(p) = {C G r ( j / ) : ^ € C} (see the discussion 
preceding 2.2). 
Thus 

&ohrw(p) = [k[C] : C G T ( J ^ ) a n d £ G C} 

= {k[Q : £ ^ Cand C = dE{x) kx*~[mtx A] for some A G J / } 

= {A es/ :Aep}. 

It is straightforward to check that this last subfamily of s/ is an ultrafilter a 
on s/ and hence a point of S(s/ ). As J / is a base for the closed subsets of 
X, and as O « ^ 0, it follows that 

g(a) = n{A es/ :A ep} = n{G e &{x) :G ep} = kx(p). 

Hence f{p) = kx(p), s o / agrees with kx on E(X). 
Since kohT^) is a homeomorphism from r(r(J3^ )) onto S(s/ ), and 

since g restricted to S(s/ ) — £~\X\ is a homeomorphism from S(s/ ) — 
gf~[X] onto J / X — X (2.8), to complete the proof it suffices to show that if 
peT(r(s^))-E(X)1thenkohTM(p) e g~[X]. If peY(r{s/)) - £ ( X ) , then 
hT(rf)(p) is an ultrafilter on T(S/) with empty intersection, and kohT^) 
(a) = j y i ] : A e hT^)(p)}. Note that kx[A] is a regular closed subset of X 
for each A e hTw (p).Hq € X and a G Pi {&x[̂ 4] : 4 G ATo/) (£)}, then there 
exists an ultrafilter 5 on 0t (X) such that C\ <$ = {q} and {kx[A] : A G &T(̂ ) (£)} Q <5 
(note that {kx[A] : A G / W ) (p)}, together with the filter {Fe&(X):qe intx ^ } , 
form a filter base on ^?(X) which will be contained in some ultrafilter; this 
is our ô). Evidently ô e A for each A G hT^){p)1 and so hT^)(p) does not 
have an empty intersection, in contradiction to our assumptions. Hence 
fl [kx[A] : A e hrw(p)} = 0, and so by 2.8(b) kohTM(p) G ^ [ X ] . The 
theorem follows. 

3.7 THEOREM, (a) FX — X awd T(T(D(X))) — E(X) are homeomorphic. 
(b) Sf{X) is lattice-isomorphic toJ^0(X). 
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Proof, (a) As remarked earlier, the compactificationJ^X, whenJ^/ = D(X), 
is FX. Part (a) now follows from 3.6 

(b) By 3.5, y(X) is lattice-isomorphic to {<f g yo(E(X)) : ê C 
r(Z)(X))}. AS £ ( X ) is zero-dimensional, by 2.5 this latter lattice is lattice-
isomorphic to 

\aE(X) eJf0(E(X)) :aX £ T(r(D(X)))}. 

It follows from 3.3 that this lattice is lattice-isomorphic to L{8§ (T(T(D{X))) 

— E(X))), which by part (a) and 2.6 is lattice-isomorphic to L(£# (FX - X)). 
By 3.3 this lattice is lattice-isomorphic to J^Q(X), and the theorem follows. 

We conclude this paper with three remarks. First, the methods of proof 
used above can be adapted, with little change, to prove the following more 
general result: if X is locally compact and s/0 Ç Sf(X), then {s / £ S^(X) : 
S$ Çls/o} is lattice-isomorphic to {aX £ J^oPO : OLX g s/^X}. Second, those 
lattices which are lattice-isomorphic to the lattice of subalgebras of some 
Boolean algebra have been characterized in [6]. Since, given a Boolean algebra 
B, we can find a locally compact space X such that FX — X is homeomorphic 
to S(B) (see [4, 9K]), it follows that we have a lattice-theoretic characteriza­
tion of those lattices that are lattice-isomorphic to jfo(X) for some locally 
compact space X. Third, it follows from 2.5 that 

<& *-» {cW) V ( i n t x A) : A £Jlf} 

is a lattice isomorphism from the lattice & (X) of subalgebras of 8% (X) that 
contain (K(X)) onto S^o(E(X)). Hence we obtain the following result (J3S 
denotes the Stone-Cech compactifkation of the space S). 

3.8 THEOREM. Let X be a locally compact Hausdorff space. 
(a) SP(X) is lattice-isomorphic to L(^(/3E(X) - E(X))). 
(b) If X and Y are locally compact Hausdorff spaces, then &(X) and 8P(Y) 

are lattice-isomorphic if and only if /3E(X) — E(X) and (3E(Y) — E(Y) are 
homeomorphic. 

(c) Assume the continuum hypothesis (Xi = 2Ko). If X is locally compact, 
realcompact and non-compact, and if 8% (X) has cardinality 2Ko, then 8P (X) is 
lattice-isomorphic to ̂ ( N ) , where N is the countably infinite discrete space. 

Proof, (a) This follows from the above remark, and Theorems 2.2 and 3.3. 
(b) This follows from (a) and Theorems 3.3 and 3.4. 
(c) In Theorem 3.2 of [16], it is proved that if X is as described in (c), and 

if the continuum hypothesis is assumed, then (3E(X) — E(X) is homeo­
morphic to $N — N. As N = E(N), our result now follows from (b). 
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