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A new lattice Boltzmann model for multicomponent ideal gas mixtures is presented. The
model development consists of two parts. First, a new kinetic model for Stefan–Maxwell
diffusion amongst the species is proposed and realized as a lattice Boltzmann equation on
the standard discrete velocity set. Second, a compressible lattice Boltzmann model for the
momentum and energy of the mixture is established. Both parts are consistently coupled
through mixture composition, momentum, pressure, energy and enthalpy whereby a
passive scalar advection–diffusion coupling is obviated, unlike in previous approaches.
The proposed model is realized on the standard three-dimensional lattices and is validated
with a set of benchmarks highlighting various physical aspects of compressible mixtures.
Stefan–Maxwell diffusion is tested against experiment and theory of uphill diffusion of
argon and methane in a ternary mixture with hydrogen. The speed of sound is measured
in various binary and ternary compositions. We further validate the Stefan–Maxwell
diffusion coupling with hydrodynamics by simulating diffusion in opposed jets and
the three-dimensional Kelvin–Helmholtz instability of shear layers in a two-component
mixture. Apart from the multicomponent compressible mixture, the proposed lattice
Boltzmann model also provides an extension of the lattice Boltzmann equation to the
compressible flow regime on the standard three-dimensional lattice.

Key words: kinetic theory

1. Introduction

The lattice Boltzmann method (LBM) is a recast of fluid dynamics into a fully discrete
kinetic system of designer particles with the discrete velocities ci, i = 0, . . . , Q − 1,
fitting into a regular space-filling lattice, with the kinetic equation for the populations
fi(x, t) following a simple algorithm of ‘stream along links ci and collide at the nodes
x in discrete time t’. Since its inception (Higuera & Jiménez 1989; Higuera, Succi
& Benzi 1989), LBM has evolved into a versatile tool for the simulation of complex
flows including transitional flows (Dorschner, Chikatamarla & Karlin 2017), flows in
complex moving geometries (Dorschner et al. 2016), compressible flows (Yan et al. 2013;
Frapolli, Chikatamarla & Karlin 2016b; Dorschner, Bösch & Karlin 2018; Gan et al.
2018; Lin & Luo 2018), multiphase flows (Mazloomi, Chikatamarla & Karlin 2015, 2017;
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Wöhrwag et al. 2018), rarefied gas (Shan, Yuan & Chen 2006) and nanoflow (Montessori
et al. 2016; Montemore et al. 2017), to mention a few recent instances; see Succi (2018),
Krüger et al. (2017) and Sharma, Straka & Tavares (2020) for a discussion of LBM and its
application areas.

In view of extensive development, it seems surprising that the multicomponent gas
mixtures so far resisted a significant advancement in the LBM context. Importance
of compressible mixtures is hard to overestimate because they are a prerequisite for
combustion applications (Williams 1985). However, incorporating the basic mechanism of
multicomponent diffusion in gases, the Stefan–Maxwell diffusion, remains an essentially
unsolved problem in the LBM context, in spite of the fact that the Stefan–Maxwell
diffusion is itself a derivative of Boltzmann’s kinetic theory (Chapman & Cowling 1990).
It is worth recalling that the Stefan–Maxwell diffusion mechanism is well recognized as a
fundamental feature of gas mixtures, supported by experiment (Toor 1957; Duncan & Toor
1962; Arnold & Toor 1967) and molecular dynamics simulations (Wheeler & Newman
2004; Krishna & van Baten 2005). As highlighted by Krishna & Wesselingh (1997),
the Stefan–Maxwell diffusion is more subtle than the conventional Fick’s model. The
latter implies that any component in a mixture moves from higher to lower concentration
regions. The Stefan–Maxwell model, on the other hand, accounts for binary interaction
between each of the species pairs through pairwise diffusion coefficients and can lead
to counter-intuitive effects such as uphill diffusion when a component in a ternary
mixture moves from the lower to higher concentration region (Toor 1957; Duncan &
Toor 1962; Arnold & Toor 1967). Among applications of Stefan–Maxwell diffusion in
the conventional computational fluid dynamics, we mention recent studies of diffusion in
fuel cells (Hsing & Futerko 2000; Stockie, Promislow & Wetton 2003; Suwanwarangkul
et al. 2003). The Stefan–Maxwell diffusion model is more general in comparison with the
Fick’s diffusion which is strictly valid only for binary mixtures or for the diffusion of a
dilute specie in a multicomponent mixture (Krishna & Wesselingh 1997). A comparative
study by Suwanwarangkul et al. (2003) between the Fick’s, dusty-gas and Stefan–Maxwell
diffusion models to predict the concentration overpotential in the anode of a solid oxide
fuel cell found that the results from the dusty-gas and the Stefan–Maxwell model agree
better with the experiment of Yakabe et al. (2000). A study of the diffusion in gas diffusion
layers of polymer electrolyte membrane fuel cells by Lindstrom & Wetton (2017) found
significant difference in the results between the Fick’s and the Stefan–Maxwell diffusion
models when the anode stream was operated with diluted hydrogen. This led the authors
to conclude that modelling with the Stefan–Maxwell diffusion is necessary even though it
might complicate a numerical implementation.

To the best of our knowledge, the only LBM realization of the Stefan–Maxwell
diffusion was reported recently by Chai et al. (2019) and Vienne, Marié & Grasso (2019);
although the two-dimensional LBM models of Chai et al. (2019) and Vienne et al.
(2019) differ from one another, they both are restricted by the isothermal and isobaric
assumptions and can thus not provide a basis for the development of a compressible
mixture LBM. The majority of existing LBM models for the multicomponent mixtures
(Chiavazzo et al. 2009; Hosseini, Darabiha & Thevenin 2018) are bound to use the Fick
diffusion model rather than the Stefan–Maxwell model. Another obstacle arises at the
coupling of diffusion to the transport of momentum and energy. The simplest way of
tackling multicomponent mixtures with the LBM is by representing the dynamics of
the species by an advection–diffusion equation (see, e.g., Chiavazzo et al. (2009) and
references therein). In this approach, the species are treated as passive scalars, advected
with the fluid velocity and the species do not influence the fluid or other species.
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The passive scalar viewpoint on LBM for mixtures was recently extended in Hosseini et al.
(2018, 2020). Apart from the inability of incorporating the Stefan–Maxwell diffusion,
the passive scalar approach suffers from a more fundamental shortcoming, namely
thermodynamic inconsistency. For example, a conventional passive scalar approach to
the energy equation does not readily recover the correct heat flux in the multicomponent
system and misses the enthalpy flux due to diffusion (Williams 1985; Chapman &
Cowling 1990; Bird, Stewart & Lightfoot 2006). As a remedy, a number of recent works
(Feng, Tayyab & Boivin 2018; Hosseini et al. 2019; Tayyab et al. 2020) abandoned
the construction of a kinetic model or LBM for multicomponent mixtures in favour
of a so-called hybrid LBM where only the flow of the mixture is represented by
an (augmented) LBM equation while the species and the temperature dynamics are
modelled by conventional macroscopic equations. While the hybrid LBM approach can
be potentially useful, in particular for combustion applications, our goal here is to retain a
fully kinetic model and LBM for multicomponent mixtures.

In this paper we revisit the LBM construction for a compressible multicomponent
mixture, focusing on a thermodynamically consistent coupling between the
Stefan–Maxwell diffusion and momentum and energy transfer in the system. We begin
in § 2 with setting up a kinetic system for the species in the M-component mixture.
The construction follows the path of so-called quasi-equilibrium kinetic models (Gorban
& Karlin 1994; Ansumali et al. 2007); see Arcidiacono et al. (2007) in the context of
isothermal mixtures. Here, we significantly extend the quasi-equilibrium kinetic model
for the species to a generic ideal gas equation of state and, unlike in the earlier approach
of Arcidiacono et al. (2007), enabling the Stefan–Maxwell constitutive relation. After a
short summary of nomenclature in § 2.1, the species kinetic equations are introduced in
§ 2.2, in the continuous time–space setting. We show in § 2.3 that the proposed kinetic
equations recover the Stefan–Maxwell diffusion together with the barodiffusion in the
hydrodynamic limit. The species kinetic equations are realized on the standard set of
discrete velocities in § 2.4. In § 2.5 we derive the lattice Boltzmann scheme for the species
kinetic equations following the technique of integration along characteristics introduced
by He, Chen & Doolen (1998). This concludes the first part of the model development.
In addition, while the Stefan–Maxwell exact diffusion relation is the main concern of
our study, in appendix A we show how other approximate diffusion models such as
Curtiss–Hirschfelder and generalized Fick (Kee, Coltrin & Glarborg 2003; Poinsot &
Veynante 2005; Giovangigli 2012) are derived from our kinetic model. We continue in § 3
with a mean-field lattice Boltzmann formulation of the mixture momentum and energy.
After a summary on the mixture energy and enthalpy of a generic non-reactive mixture in
§ 3.1, we present a two-population lattice Boltzmann equation for the mixture. We note that
the mean-field approach requires only two lattice Boltzmann equations, one for the mixture
density and momentum and another one for the energy. While the two-population LBM is
an established approach for a single-component compressible fluid (Frapolli, Chikatamarla
& Karlin 2015; Saadat, Bösch & Karlin 2019), the application of the two-population
techniques to the mixture requires a modification of the non-equilibrium fluxes discussed
in § 3.2. The mixture density, momentum and energy equations are presented in § 3.3,
while details of their derivation with the Chapman–Enskog analysis (Chapman & Cowling
1990) are summarized in the appendix B. The two-population mixture LBM is realized on
the standard lattice in § 3.4 where we extend the two-dimensional compressible LBM of
Saadat et al. (2019) to three-dimensional mixtures. Finally, in § 3.5 we discuss the coupling
between the M LBM equations for the species and the double-population mean-field
mixture LBM. The resulting LBM provides a reduced description of the M-component
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mixture with M + 2 tightly coupled lattice Boltzmann equations, unlike a standard kinetic
approach which would require 2 × M kinetic equations.

In § 4 the LBM model is validated with a number of select benchmarks. After a
summary of general aspects of numerical implementation in § 4.1, we present a simulation
of diffusion of argon and methane ternary mixtures with hydrogen in the Loschmidt
tube apparatus in § 4.2, along with the classical experiment of Arnold & Toor (1967)
and theoretical discussion of Krishna & Wesselingh (1997). We show that the LBM
simulations reproduce in a quantitative fashion the experimentally observed features of
the Stefan–Maxwell diffusion such as uphill and osmotic diffusion and the diffusion
barrier (Toor 1957; Duncan & Toor 1962; Arnold & Toor 1967; Krishna & Wesselingh
1997). The coupling between hydrodynamics and diffusion is validated in a counterflow
diffusion in opposed jets in § 4.3 and the speed of sound measurements are presented in
§ 4.4 for probing the compressible flow aspect of the model. Finally, a simulation of the
three-dimensional Kelvin–Helmholtz instability in a binary mixture is reported in § 4.5 as
a test for the performance of the proposed LBM in a complex flow. Conclusions are drawn
in § 5.

2. Lattice Boltzmann model of Stefan–Maxwell diffusion

2.1. Composition and equation of state of ideal gas mixture
We begin with introducing some nomenclature and notation. Let us consider a mixture
composed of M ideal gases. The composition is described by the species densities ρa,
a = 1, . . . , M, while the mixture density is

ρ =
M∑

a=1

ρa. (2.1)

Equivalently, the mixture composition is defined by the mixture density ρ and the M − 1
independent mass fractions Ya,

Ya = ρa

ρ
,

M∑
a=1

Ya = 1. (2.2a,b)

With the molar mass of the component ma, the mean molar mass m depends on the
composition,

1
m

=
M∑

a=1

Ya

ma
. (2.3)

The equation of state provides a relation between the pressure P, the temperature T and
the composition,

P = ρRT. (2.4)

Here, R is the specific gas constant that contains the information about the composition of
the gas by way of the mean molar mass m,

R = RU

m
, (2.5)

where RU ≈ 8.314 kJ K−1 · kmol−1 is the universal gas constant. Thus, for a mixture of
ideal gases, the specific gas constant R is a function of local composition and changes in
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Consistent lattice Boltzmann model 909 A1-5

space and time. The pressure of an individual component Pa is related to the pressure of
the mixture P through Dalton’s law of partial pressures as

Pa = XaP, (2.6)

where the mole fraction of a component Xa is related to its mass fraction Ya as

Xa =
(

m
ma

)
Ya,

M∑
a=1

Xa = 1. (2.7a,b)

A consequence of Dalton’s law of partial pressure is that
∑M

a=1 Pa = P. Combined with
the equation of state (2.4), the partial pressure Pa takes the form

Pa = ρaRaT, (2.8)

where Ra is the specific gas constant of the component,

Ra = RU

ma
. (2.9)

With these thermodynamic relations in mind, we proceed to setting up the kinetic
equations that recover the Stefan–Maxwell diffusion in the macroscopic limit.

2.2. Kinetic equation for the species
In this section we set-up kinetic equations which recover the Stefan–Maxwell diffusion
model for an M-component ideal gas mixture. Each component is described by a set
of populations fai, a = 1, . . . , M, corresponding to the discrete velocities ci, i = 0, . . . ,

Q − 1. The proposed kinetic equation for each of the species a is written as

∂t fai + ci · ∇fai =
M∑

b/=a

1
θab

[(
f eq
ai − fai

ρa

)
−
(

f eq
bi − f ∗

bi

ρb

)]
. (2.10)

Here, ρa is the density of the component a, which is defined as the zeroth moment of
populations fai,

ρa =
Q−1∑
i=0

fai. (2.11)

Furthermore, a symmetric set of relaxation parameters θab = θba shall be related
to the binary diffusion coefficients in the following. The equilibrium f eq

ai and the
quasi-equilibrium f ∗

ai populations will be fully defined in § 2.4. Here, we only need to
specify the conditions for the low-order moments thereof. To that end, let us introduce the
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partial momenta ρaua as first moments of the species’ populations,

ρaua =
Q−1∑
i=0

faici. (2.12)

The quasi-equilibrium populations f ∗
ai must satisfy the following set of constraints,

Q−1∑
i=0

f ∗
ai = ρa, (2.13)

Q−1∑
i=0

f ∗
aici = ρaua. (2.14)

The momenta of the components sum up to the mixture momentum,

M∑
a=1

ρaua = ρu. (2.15)

The equilibrium populations f eq
ai have to verify the following set of constraints:

Q−1∑
i=0

f eq
ai = ρa, (2.16)

Q−1∑
i=0

f eq
ai ci = ρau, (2.17)

Q−1∑
i=0

f eq
ai ci ⊗ ci = PaI + ρau ⊗ u. (2.18)

In (2.18) the partial pressure Pa (2.8) depends on the temperature T , which is obtained
from the mixture kinetic equations of § 3. Finally, the quasi-equilibrium distribution must
match the equilibrium if the species velocity equals the velocity of the mixture, ua = u:

f ∗
ai(ua)|ua=u = f eq

ai (u). (2.19)

Some comments are in order.

(i) The M-component kinetic system satisfies M + D conservation laws, where D is the
space dimension: the densities ρ1, . . . , ρM and the vector of fluid momentum ρu are
locally conserved fields.

(ii) Thanks to the matching condition (2.19), the relaxation term on the right-hand side
of (2.10) vanishes only at the equilibrium.

We now proceed with the identification of the relaxation parameters θab in terms of the
Stefan–Maxwell binary diffusion coefficients.
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2.3. Hydrodynamic limit of kinetic equations for the species
Evaluation of the zeroth and first moments of the kinetic equation (2.10) results in the
balance equations for the species densities and species velocities,

∂tρa = −∇ · (ρaua), (2.20)

ρa∂tua = ua∇ · (ρaua) − ∇ · Pa +
M∑

b/=a

1
θab

(ub − ua). (2.21)

Here, Pa is the partial pressure tensor,

Pa =
Q−1∑
i=0

faici ⊗ ci. (2.22)

Upon summation over the components in (2.20), we arrive at the continuity equation for
the mixture density,

∂tρ = −∇ · (ρu), (2.23)

while the summation over components in (2.21) results in the mixture momentum balance,

∂t(ρu) = −∇ · P, (2.24)

where P is the mixture pressure tensor,

P =
M∑

a=1

Pa. (2.25)

The low-order closure relation for the species balance equation (2.20) is established by
considering a perturbation around the equilibrium,

ua = u + δua, (2.26)

where the perturbation δua satisfies the consistency condition,

M∑
a=1

ρaδua = 0. (2.27)

To first order, upon substitution into (2.21), we get the constitutive relation for the diffusion
velocity δua,

ρa∂tu − u∇ · (ρau) + ∇ · Peq
a =

M∑
b/=a

1
θab

(δub − δua). (2.28)

Upon summation over the species, and by taking into account Dalton’s law in the
equilibrium pressure tensor (2.18), the compressible Euler equation for the flow velocity
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is established,

∂tu = −u · ∇u − 1
ρ

∇P. (2.29)

By elimination of the time derivative in (2.28), we get the constitutive relation as

P∇Xa + (Xa − Ya)∇P =
M∑

b/=a

1
θab

(δub − δua). (2.30)

Constitutive relation (2.30) becomes the Stefan–Maxwell diffusion equation once the
relaxation parameters θab are identified in terms of the binary diffusion coefficients Dab as

θab = Dab

PXaXb
. (2.31)

Summarizing, kinetic equations for the species (2.10) recover the Stefan–Maxwell law
of diffusion in the hydrodynamic limit, with both the diffusion due to non-uniformity of
the species molar concentration and the barodiffusion taken into account. The present
model does not include thermodiffusion as it should be expected by the simplicity of the
relaxation term. We comment that the above derivation of (2.30) assumes the validity of
the equation of state. The latter, in turn, depends on the temperature derived from the
mixture energy equation, and which shall be introduced in § 3. We now proceed with
finalizing the continuous time–space kinetic equations by identifying the equilibrium and
the quasi-equilibrium populations.

2.4. Realization on the standard lattice
The above kinetic model is realized on the standard three-dimensional D3Q27 lattice,
where D = 3 stands for three dimensions and Q = 27 is the number of discrete velocities:

ci = (cix , ciy, ciz), ciα ∈ {−1, 0, 1}. (2.32a,b)

Following Karlin & Asinari (2010) we define a triplet of functions in two variables, ξ and
ζ > 0,

Ψ0(ξ, ζ ) = 1 − (ξ 2 + ζ ), Ψ1(ξ, ζ ) = ξ + (ξ 2 + ζ )

2
, Ψ−1(ξ, ζ ) = −ξ + (ξ 2 + ζ )

2
.

(2.33a–c)

For a vector ξ = (ξx , ξy, ξz), we consider a product form associated with the discrete
velocities ci (2.32a,b),

Ψi(ξ , ζ ) = Ψcix (ξx , ζ )Ψciy (ξy, ζ )Ψciz(ξz, ζ ). (2.34)

The equilibrium f eq
ai and the quasi-equilibrium f ∗

ai are represented with the product form
(2.34) by choosing ξ = u or ξ = ua, respectively, and by assigning ζ = RaT in both cases:

f eq
ai (ρa, u, RaT) = ρaΨcix (ux , RaT)Ψciy (uy, RaT)Ψciz(uz, RaT), (2.35)

f ∗
ai(ρa, ua, RaT) = ρaΨcix (uax , RaT)Ψciy (uay, RaT)Ψciz(uaz, RaT). (2.36)

One can readily verify that, the equilibrium (2.35) and the quasi-equilibrium (2.36) satisfy
all the constraints put forward in § 2.2. We now proceed with the lattice Boltzmann
discretization of the kinetic equations (2.10).
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2.5. Lattice Boltzmann equation for the species

2.5.1. Kinetic equations in the relaxation form
With the mass diffusivity (2.31), the kinetic equation (2.10) is written as

∂t fai + ci · ∇fai =
M∑

b/=a

PXaXb

Dab

[(
f eq
ai − fai

ρa

)
−
(

f eq
bi − f ∗

bi

ρb

)]
. (2.37)

It can readily be seen that, in its present form, (2.37) is not well suited for numerical
implementation. Indeed, in an actual problem, the density of some species can be small
or even vanishing if a particular gas component is absent at some location. This is an
inconvenience rather than a failure since vanishing of the density is compensated by the
simultaneously vanishing molar fraction in the product XaXb. Hence, we first transform
(2.37) in order to eliminate this artifact. Substituting the equation of state (2.4) into (2.37),
we get

∂t fai + ci · ∇fai =
M∑

b/=a

(
m

mamb

)(
RUT
Dab

)
[Yb( f eq

ai − fai) − Ya( f eq
bi − f ∗

bi)]. (2.38)

Equation (2.38) is equivalent to (2.37) and does not suffer from a spurious division by a
vanishing density. Furthermore, it proves convenient to recast (2.38) in a relaxation form.
To that end, let us define characteristic times τab = τba,

1
τab

=
(

RUT
Dab

)(
m

mamb

)
, (2.39)

and let us introduce the relaxation times τa,

1
τa

=
M∑

b/=a

Yb

τab
= RaT

(
M∑

b/=a

Xb

Dab

)
. (2.40)

Finally, let us introduce a shorthand notation,

Fai = Ya

M∑
b/=a

1
τab

( f eq
bi − f ∗

bi). (2.41)

With these definitions, the kinetic equation (2.38) can be rearranged as follows:

∂t fai + ci · ∇fai = 1
τa

( f eq
ai − fai) − Fai. (2.42)

The species kinetic equations (2.42) are now cast into the relaxation form, familiar
from previous lattice Boltzmann models. The right-hand side comprises the conventional
relaxation term and a source term (2.41). The latter depends on the populations only
through the local densities, momenta and the temperature, as prescribed by the local
equilibrium and quasi-equilibrium populations (2.35) and (2.36). Hence, kinetic equation
(2.42) is amenable to a lattice Boltzmann discretization in time and space.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

85
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.853


909 A1-10 N. Sawant, B. Dorschner and I. V. Karlin

2.5.2. Derivation of the lattice Boltzmann equation
Following a procedure first introduced by He et al. (1998), we integrate (2.42) along the

characteristics and apply the trapezoidal rule on the right-hand side to obtain

fai(x + ciδt, t + δt) − fai(x, t) = δt
2τa

[ f eq
ai (x + ciδt, t + δt) − fai(x + ciδt, t + δt)]

+ δt
2τa

[ f eq
ai (x, t) − fai(x, t)] − δt

2
Fai(x + ciδt, t + δt) − δt

2
Fai(x, t). (2.43)

Next, we introduce transformed populations kai,

fai = kai + δt
2τa

( f eq
ai − fai) − δt

2
Fai. (2.44)

Let us evaluate the pertinent moments of the transform (2.44). Summation over the discrete
velocities gives

ρa( f ) = ρa(k), (2.45)

where we have specified that the density ρa( f ) on the left-hand side is defined using the
original populations fai while the density ρa(k) is defined by the zeroth moment of the
k-populations,

ρa(k) =
Q−1∑
i=0

kai. (2.46)

Thus, the species densities do not alter under the populations transformation, and the
specification can be dropped: ρa = ρa( f ) = ρa(k). On the other hand, evaluating the first
moment of (2.44) gives

ρaua( f )
(

1 + δt
2τa

)
− δt

2
Ya

M∑
b/=a

1
τab

ρbub( f ) = ρaua(k), (2.47)

where the species velocity ua(k) is defined by the k-populations in a conventional way,

ρaua(k) =
Q−1∑
i=0

kaici. (2.48)

Summation over the species in (2.47) shows that the momentum ρu is also an invariant of
the transform (2.44):

ρu( f ) = ρu(k). (2.49)

Since the term Fai vanishes at equilibrium, and also thanks to the invariance of the local
conservation (2.45) and (2.49), the equilibrium is the fixed point of the map (2.44):

f eq
ai (ρa, u, RaT) = keq

ai (ρ, u, RaT). (2.50)

Substituting (2.44) into (2.43), and introducing the parameters βa ∈ [0, 1],

βa = δt
2τa + δt

, (2.51)
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Consistent lattice Boltzmann model 909 A1-11

we get

kai(x + ciδt, t + δt) = kai(x, t) + 2βa[keq
ai (x, t) − kai(x, t)] + δt(βa − 1)Fai(x, t). (2.52)

The last term in (2.52) is spelled out as follows. The quasi-equilibrium population f ∗
ai in the

expression Fai (2.41) depends on the species velocity ua( f ). The latter, unlike the mixture
velocity u( f ) (2.49), is not invariant under the transform to the k-populations. Rather,
ua( f ) has to be evaluated using the linear relation (2.47) in terms of ub(k) by solving a
M × M linear system for each of the spatial components. In our realization we used Gauss
elimination.

2.5.3. Summary of the lattice Boltzmann equation for the Stefan–Maxwell diffusion
For convenience, we summarize the lattice Boltzmann equation for the species. We

return to a more conventional notation and rename kai to fai in (2.52),

fai(x + ciδt, t + δt) − fai(x, t) = 2βa[ f eq
ai − fai] + δt(βa − 1)Fai. (2.53)

The last term is written as

Fai = Ya

M∑
b/=a

(
RUT
Dab

)(
m

mamb

)
[ f eq

bi (ρb, u, RbT) − f ∗
bi(ρb, u + V b, RbT)], (2.54)

where we have introduced the transformed diffusion velocities of the components, V a,
a = 1, . . . , M. The latter are defined by (2.47) which can be recast as follows:

ρaV a −
(

δt
2

) M∑
b/=a

PXaXb

Dab
[V b − V a] = ρa(ua − u). (2.55)

The field ρaua on the right-hand side of (2.55) is defined by the moment relation as before,

ρaua =
Q−1∑
i=0

faici. (2.56)

The M + D independent conservation laws of the M-component system (2.53) correspond
to the mass of each component and the momentum of the mixture. The corresponding
locally conserved fields are the species densities ρa and the momentum flux ρu,

ρa =
Q−1∑
i=0

fai, (2.57)

ρu =
M∑

a=1

ρaua =
M∑

a=1

Q−1∑
i=0

faici. (2.58)

The conservation law of the fluid mass is the implication of the mass conservation of each
component. The density of the mixture ρ is defined by the densities of the components,

ρ =
M∑

a=1

ρa =
M∑

a=1

Q−1∑
i=0

fai, (2.59)
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909 A1-12 N. Sawant, B. Dorschner and I. V. Karlin

while the flow velocity u is

u = ρu
ρ

=

M∑
a=1

Q−1∑
i=0

faici

M∑
a=1

Q−1∑
i=0

fai

. (2.60)

Finally, we recall that the temperature dependence in the equilibrium and in the
quasi-equilibrium populations has to be supplied by the energy equation to be discussed
in the next section.

The Stefan–Maxwell diffusion relation is a source of a variety of approximate
constitutive relations for the multicomponent diffusion where the former is substituted
by a simpler, often explicit expression. Diffusion models such as the mixture averaged
approximation are widely used; see, e.g., Giovangigli (2012), Williams (1985), Poinsot &
Veynante (2005), Kee et al. (2003) and Bird et al. (2006). In appendix A we show how
approximate constitutive relations are derived based on the kinetic system (2.10).

3. Lattice Boltzmann model of mixture momentum and energy

3.1. First law of thermodynamics for ideal gas mixture
For further references and notation, we open this section with a summary of the first law
of thermodynamics for ideal gas mixtures. Since non-reactive mixtures are considered in
the following, the energy of formation is not included. The caloric equation of state of a
single-component ideal gas provides for the specific mole-based sensible internal energy
of species a:

Ūa =
∫ T

T0

C̄a,v(T) dT. (3.1)

Here, C̄a,v is the specific heat at constant volume. Thus, the sensible specific enthalpy
reads as

H̄a =
∫ T

T0

C̄a,p(T) dT, (3.2)

where C̄a,p is the specific heat at constant pressure defined by Mayer’s relation,

C̄a,p − C̄a,v = RU. (3.3)

Proceeding from the mole basis onto the mass basis, the specific heats are defined relative
to the molar mass,

Ca,v = C̄a,v

ma
, (3.4)

Ca,p = C̄a,p

ma
, (3.5)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

85
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.853


Consistent lattice Boltzmann model 909 A1-13

while the mass-based specific sensible internal energy and enthalpy are

Ua =
∫ T

T0

Ca,v(T) dT, (3.6)

Ha =
∫ T

T0

Ca,p(T) dT. (3.7)

Finally, the Mayer relation in the mass basis reads as

Ca,p − Ca,v = Ra, (3.8)

where the gas constant Ra is defined by (2.9).
Switching to the case of a M-component mixture, the mixture internal energy ρU is

defined on the mass basis as follows:

ρU =
M∑

a=1

ρaUa. (3.9)

The specific mixture internal energy U can be rewritten as

U =
M∑

a=1

YaUa =
M∑

a=1

Ya

∫ T

T0

Ca,v dT =
∫ T

T0

[
M∑

a=1

YaCa,v

]
dT =

∫ T

T0

Cv dT, (3.10)

where the specific heat at constant volume is the mass-averaged value over the
composition,

Cv =
M∑

a=1

YaCa,v. (3.11)

Similarly, the mixture enthalpy ρH is defined as

ρH =
M∑

a=1

ρaHa, (3.12)

while the specific mixture enthalpy H can be transformed in the manner of (3.10),

H =
M∑

a=1

YaHa =
M∑

a=1

Ya

∫ T

T0

Ca,p dT =
∫ T

T0

[
M∑

a=1

YaCa,p

]
dT =

∫ T

T0

Cp dT. (3.13)

The specific heat at constant pressure reads as

Cp =
M∑

a=1

YaCa,p, (3.14)

while both the specific heats satisfy the Mayer relation,

Cp − Cv = R, (3.15)

with the mixture gas constant R defined by (2.5). In the following, we formulate the lattice
Boltzmann equation for the mixture density, momentum and energy for a generic case of
temperature-dependent specific heats of the components.
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909 A1-14 N. Sawant, B. Dorschner and I. V. Karlin

3.2. Two-population lattice Boltzmann equation for the mixture
Point of departure is a lattice Boltzmann model for a single-component ideal gas
with variable Prandtl number and adiabatic exponent. To that end, several suitable
single-component lattice Boltzmann models exist in the literature; here we mention
compressible LBM by Frapolli et al. (2015), Frapolli, Chikatamarla & Karlin (2016a)
and Saadat et al. (2019). The common feature of these single-component models is the
use of the double-population construction, the idea first introduced in the context of
incompressible thermal convective LBM in the classical paper by He et al. (1998) and
further expanded in Guo et al. (2007), Karlin, Sichau & Chikatamarla (2013), Frapolli,
Chikatamarla & Karlin (2018). One set of populations, commonly quoted as f -populations,
represents the density and momentum as the locally conserved fields of the corresponding
f -LBM equation while another set, the g-populations, represents the energy as the local
conservation of the g-LBM kinetics. The coupling between the f - and g-LBM equations
is also well understood and enables the realization of an adjustable Prandtl number and
adiabatic exponent. Various realizations differ by the choice of the discrete velocities of
the f - and g-sets; in particular, the compressible LBM of Frapolli et al. (2015) employs
higher-order lattices with higher isotropy while the two-dimensional model developed
in Saadat et al. (2019) uses the standard lattice with correction terms to compensate for
insufficient isotropy.

Whichever single-component double-population model is taken as the starting point for
representing a multicomponent mixture, the central question is how to modify it. Note that,
this question would not arise if one would follow the conventional approach by extending
the already available M species LBM equations of § 2 to represent the energy equation
of the mixture. However, with the double-population approach, this would lead to 2 × M
lattices since the lattice for each component would need to be doubled to represent the
energy of that component. On the contrary, the mean-field approach pursuit here avoids
the kinetic representation of partial energies, instead it addresses only the total energy of
the mixture by a single g-set. This requires only M + 2 lattices, M for the species and two
for the mixture momentum and energy.

In the following, we refer to the f -populations as the momentum lattice, and the
g-populations as the energy lattice. For the momentum lattice, the locally conserved fields
are the density and the momentum of the mixture,

Q−1∑
i=0

fi = ρ, (3.16)

Q−1∑
i=0

fici = ρu. (3.17)

For the energy lattice, the locally conserved field is the total energy of the mixture,

Q−1∑
i=0

gi = ρE. (3.18)

Here, the total energy ρE is the sum of the mixture internal energy ρU (3.10) and the
kinetic energy ρu2/2,

ρE = ρU + ρu2

2
. (3.19)
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Consistent lattice Boltzmann model 909 A1-15

Since the mixture internal energy (3.10) depends on the composition, it is the first
instance where the species kinetic equations become coupled with the kinetic equations
for the mixture. Conversely, the temperature of the mixture is computed from the integral
equation, ∫ T

T0

Cv(T) dT = E − u2

2
. (3.20)

The temperature evaluated from solving (3.20) is used as the input in the definition of
the pressure P in the equilibrium and quasi-equilibrium constraints of the species lattice
Boltzmann system. This furnishes the input from the energy lattice into the species lattices.

We comment that, in the present section, the mixture density (3.16) and momentum
(3.17) are defined self-consistently in the sense of f -populations of the momentum lattice.
On the other hand, quantities carrying the same physical meaning were independently
and also self-consistently defined earlier using the species populations, (2.59) and (2.58),
respectively. Doubling of the conservation of the total mass and momentum is the feature
of the intermediate steps of the construction during which the species subsystem and
the mixture subsystem are set-up independently from one another. At the end of the
construction, the doubling of the conservation shall be resolved through a coupling of
both the species and the mixture subsystems in § 3.5.

The lattice Boltzmann equations for the momentum and for the energy lattice are
patterned from the single-component developments,

fi(x + ciδt, t + δt) − fi(x, t) = ω( f eq
i − fi), (3.21)

gi(x + ciδt, t + δt) − gi(x, t) = ω1(g
eq
i − gi) + (ω − ω1)(g∗

i − gi), (3.22)

where relaxation parameters ω and ω1 shall be related to the viscosity and thermal
conductivity in the following. We now proceed with specifying the constraints on the
equilibrium populations f eq

i and geq
i , and the quasi-equilibrium g∗

i in order that the system
(3.21) and (3.22) recovers the momentum and energy equations of the mixture.

First, the equilibrium populations must satisfy the D + 2 conservation laws,

Q−1∑
i=0

f eq
i = ρ, (3.23)

Q−1∑
i=0

f eq
i ci = ρu, (3.24)

Q−1∑
i=0

geq
i = ρE. (3.25)

Second, the equilibrium pressure tensor Peq and the tensor of equilibrium third-order
moments Qeq of the momentum lattice must verify the Maxwell–Boltzmann relations in
order to recover the compressible flow momentum equation,

Peq =
Q−1∑
i=0

f eq
i ci ⊗ ci = PI + ρu ⊗ u, (3.26)

Qeq =
Q−1∑
i=0

f eq
i ci ⊗ ci ⊗ ci = Pu ⊗ I + ρu ⊗ u ⊗ u, (3.27)
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where the overline denotes symmetrization. Similarly, the equilibrium mixture energy flux
qeq and the second-order moment tensor Req pertinent to the energy lattice are

qeq =
Q−1∑
i=0

geq
i ci =

(
H + u2

2

)
ρu, (3.28)

Req =
Q−1∑
i=0

geq
i ci ⊗ ci =

(
H + u2

2

)
Peq + Pu ⊗ u. (3.29)

The mixture equation of state P (2.4), the mixture gas constant R (2.5) and the specific
enthalpy of the mixture H (3.13) entering the constraints (3.26)–(3.28), (3.28) and (3.29)
depend linearly on the composition through the local mass fractions Ya.

To that end, the constraints on the equilibrium populations of the mixture momentum
and energy lattices is a straightforward extension of those of the single-component
double-population LBM for compressible flows where the ideal gas equation of state,
the internal energy and the enthalpy are merely replaced by their mixture-averaged
counterparts. A major difference comes next with the constraints for the quasi-equilibrium.
The zeroth-, first- and second-order moments of the quasi-equilibrium populations g∗

i , or
the quasi-equilibrium energy ρE∗, the energy flux q∗ and the flux of the energy flux R∗,
respectively, have to satisfy the following relations:

ρE∗ =
Q−1∑
i=0

g∗
i = ρE, (3.30)

q∗ =
Q−1∑
i=0

g∗
i ci = q − u · (P − Peq) + qdiff + qcorr, (3.31)

R∗ =
Q−1∑
i=0

g∗
i ci ⊗ ci = Req. (3.32)

The first and third of these quasi-equilibrium constraints, (3.30) and (3.32), as well
as the first and second terms in the quasi-equilibrium energy flux (3.31) are again the
direct extension of the single-component LBM. Specifically, the two first terms in (3.31),
comprising the energy flux q and the pressure tensor P,

q =
Q−1∑
i=0

gici, (3.33)

P =
Q−1∑
i=0

fici ⊗ ci, (3.34)

are needed to decouple the viscosity from thermal conductivity, and to maintain a variable
Prandtl number, in both the single-component and multicomponent cases.

The remaining two terms in the quasi-equilibrium energy flux (3.31), qdiff and qcorr, are
specific to the multicomponent case and appear due to the mean-field approach to the
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energy representation. The interdiffusion energy flux qdiff reads as

qdiff =
(

ω1

ω − ω1

)
ρ

M∑
a=1

HaYaV a, (3.35)

where the transformed diffusion velocities V a are defined according to (2.55). The
interdiffusion energy flux contributes the enthalpy transport due to diffusion and, hence,
it vanishes in the single-component case. The effect of the interdiffusion energy flux is
typically significant at the initial stages of the diffusion process and cannot be neglected.

Finally, the correction flux qcorr reads as

qcorr = 1
2

(
ω1 − 2
ω1 − ω

)
δtP

M∑
a=1

Ha∇Ya, (3.36)

and is explained by the following consideration. The thermal flux is the mixture average of
the component thermal fluxes, qth = ∑M

a=1 Yaqth
a , where qth

a = −τPCa,p∇T is the Fourier
law for the component, τ is a parameter of no importance to the current consideration. On
the other hand, in the single-component LBM, the thermal flux is qth

sc = −τP∇Hsc, and
with the single-component enthalpy Hsc it returns the Fourier law in this case. However,
the extension of the single-component to the multicomponent case so far invokes only the
replacement of the single-component enthalpy with the ‘lumped’ mixture enthalpy and
without any correction one gets

qlump = −τP∇
(

M∑
a=1

YaHa

)
= qth − τP

M∑
a=1

Ha∇Ya. (3.37)

Thus, apart from the mixture-averaged Fourier law qth, the thermal flux also contains
a spurious term. The spurious term is eliminated by the correction flux qcorr (3.36),
where the prefactor is chosen by considering the hydrodynamic limit; see appendix B.
The correction flux vanishes if all components are thermodynamically indistinguishable,
that is, if all species have the same specific heat. In many cases, the correction flux
contributes negligibly, for example, for air at moderate temperatures where the standard-air
assumptions for diatomic molecules holds to a good approximation.

3.3. Hydrodynamic limit of the two-population lattice Boltzmann model for mixtures
Constraints on the pertinent equilibrium and quasi-equilibrium moments (3.26)–(3.31),
(3.35), (3.36) and (3.32) are sufficient to study the hydrodynamic limit of the
two-population lattice Boltzmann system (3.21) and (3.22) without a complete
specification of the equilibrium and the quasi-equilibrium populations. The analysis
follows the route of expanding the propagation to second order in the time step δt and
evaluating the moments of the resulting expansion. Details of the derivation are included
in appendix B, here we present the final result.
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The continuity equation:

∂tρ + ∇ · (ρu) = 0. (3.38)

The momentum equation:

∂t(ρu) + ∇ · (ρu ⊗ u) + ∇ · π = 0. (3.39)

Here, the pressure tensor π reads as

π = PI − μ

(
S − 2

D
(∇ · u)I

)
− ς(∇ · u)I, (3.40)

where S is the strain rate,

S = ∇u + ∇u†. (3.41)

The dynamic viscosity μ and the bulk viscosity ς are related to the relaxation parameter
ω,

μ =
(

1
ω

− 1
2

)
Pδt, (3.42)

ς =
(

1
ω

− 1
2

)(
2
D

− R
Cv

)
Pδt. (3.43)

The energy equation:

∂t(ρE) + ∇ · (ρEu) + ∇ · q + ∇ · (πu) = 0. (3.44)

Here, the heat flux q reads as

q = −λ∇T + ρ

M∑
a=1

HaYaV a. (3.45)

The first term is the Fourier law of thermal conduction, with thermal conductivity λ related
to the relaxation parameter ω1,

λ =
(

1
ω1

− 1
2

)
PCpδt. (3.46)

The second term in (3.45) is the interdiffusion energy flux. Some comments are in order.

(i) The continuity, the momentum and the energy equations are the standard equations
for multicomponent compressible mixtures (Williams 1985; Bird et al. 2006).

(ii) The bulk viscosity vanishes if all components are monatomic, C̄a,v = DRU/2.
(iii) Introducing the thermal diffusivity α = λ/ρCp and the kinematic viscosity ν =

μ/ρ, the Prandtl number becomes

Pr = ν

α
= ω1(2 − ω)

ω(2 − ω1)
. (3.47)
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(iv) Using the equation of state of the mixture (2.4) in (3.42) and (3.46), relaxation
parameters ω and ω1 are expressed in terms of dynamic viscosity and thermal
conductivity,

ω = 2Pδt
Pδt + 2μ

, (3.48)

ω1 = 2PCpδt
PCpδt + 2λ

. (3.49)

Finally, the dynamic viscosity μ and the thermal conductivity λ of the mixture at any
point is evaluated as a function of the local composition by using the methods described
in Wilke (1950) and Mathur, Tondon & Saxena (1967), respectively:

μ =
M∑

a=1

μaXa

M∑
b=1

φabXb

. (3.50)

Here μa are the dynamic viscosity of the components while the dimensionless factor φab

is given by

φab =

[
1 +

√
μa

μb

√
mb

ma

]2

√
8
√

1 + ma

mb

. (3.51)

The thermal conductivity of the mixture λ is calculated from the thermal conductivity
of the components λa,

λ = 1
2

⎛
⎜⎜⎜⎜⎜⎝

M∑
a=1

Xaλa + 1
M∑

a=1

Xa

λa

⎞
⎟⎟⎟⎟⎟⎠ . (3.52)

3.4. Realization on the standard lattice

3.4.1. Equilibrium and quasi-equilibrium
In order to finalize the construction of the lattice Boltzmann equations for the mixture,

we need to specify the choice of the momentum and the energy lattices, and to
provide the corresponding equilibrium and quasi-equilibrium populations. To that end, the
single-component lattice Boltzmann models satisfying the moment constraints of § 3.2 are
known in the literature. These employ higher-order lattices with a relatively large number
of discrete velocities such as D2Q49 (Q = 49 in two dimensions, Frapolli et al. 2015) or
D3Q39 (Q = 39 in three dimensions, Frapolli, Chikatamarla & Karlin 2020).

In this paper we develop the standard D3Q27 lattice realization as in the above
case of the species LBM of § 2.4. We thus consider a two-dimensional compressible
single-component lattice Boltzmann model by Saadat et al. (2019) on the standard D2Q9
velocity set. Since the D2Q9 and D3Q27 belong to the same family of product lattices,
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cf. Karlin & Asinari (2010), it is natural to consider compressible LBM of Saadat et al.
(2019) for our purpose. In the following, we extend the model of Saadat et al. (2019) to the
three-dimensional D3Q27 discrete velocities set.

For the evaluation of the equilibrium geq
i and of the quasi-equilibrium g∗

i of the energy
lattice, we proceed with the following ansatz Gi, parameterized with a scalar θ ∈ [0, 1], a
scalar M0, a vector m and a second-order tensor M ,

Gi(θ, M0, m, M) = hi(θ, M0, m, M) + Bi · Z(θ, M0, M), (3.53)

hi(θ, M0, m, M) = wi(θ)

(
M0 + m · ci

θ
+ (M − M0θI) : (ci ⊗ ci − θI)

2θ 2

)
. (3.54)

Here, the weights wi are calculated in the product form as

wi = wcix wciy wciz, (3.55)

based on the fundamental triplet,

w0 = 1 − θ, w1 = θ

2
, w−1 = θ

2
. (3.56a–c)

Furthermore, in (3.53), Z is a vector with the components

Zα = (1 − 3θ)

2θ
(Mαα − θM0). (3.57)

Here, Mαα is the diagonal component of the second-order tensor M , while the components
of vectors Bi are defined as follows:

Biα = 1 for c2
i = 0,

Biα = − 1
2 |ciα| for c2

i = 1,

Biα = 0 otherwise.

⎫⎪⎬
⎪⎭ (3.58)

Note that, when the parameter θ is set to the lattice reference temperature θ = 1/3, the
term in (3.57) vanishes and the remaining term (3.54) becomes the familiar second-order
Grad’s approximation (Grad 1949). By construction, the form (3.53) satisfies the moment
relations, for any θ :

Q−1∑
i=0

{1, ci, ci ⊗ ci}Gi(θ, M0, m, M) = {M0, m, M}. (3.59)

The equilibrium and the quasi-equilibrium populations geq
i and g∗

i are defined with the
help of the form (3.53) by specifying the parameters θ = RT , M0 = ρE and M = Req

(3.29) in both cases, and m = qeq (3.28) or m = q∗ (3.31) for the equilibrium or the
quasi-equilibrium, respectively, following Saadat et al. (2019):

geq
i = Gi(RT, ρE, qeq, Req), (3.60)

g∗
i = Gi(RT, ρE, q∗, Req). (3.61)

We shall now proceed with identifying the equilibrium of the momentum lattice and the
modification of the lattice Boltzmann equation necessary for the D3Q27 model.
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3.4.2. Augmented lattice Boltzmann equation for the momentum lattice
Equilibrium populations of the momentum lattice f eq

i are evaluated in the conventional
way with the help of the product form (2.34) and using ξ = u and ζ = RT ,

f eq
i = ρΨi(u, RT). (3.62)

It is well known that the diagonal element of the equilibrium third-order moment of the
momentum lattice Qeq

ααα cannot satisfy the required moment relation (3.27). This happens
due to the lattice constraint, c3

iα = ciα, which makes the diagonal third-order moments
linearly dependent on the momentum, cf., e.g., Karlin & Asinari (2010). Following Saadat
et al. (2019), we consider the augmented lattice Boltzmann equation on the momentum
lattice as

fi(x + ci, t + 1) = fi(x, t) + ω( f eq
i − fi) + Ai · X , (3.63)

where X is the vector with the components α = x, y, z,

Xα = −∂α

[(
1
ω

− 1
2

)
δt∂α(ρuα(1 − 3RT) − ρu3

α)

]
, (3.64)

and where the components of vectors Ai are defined as

Aiα = 1
2 ciα for c2

i = 1,

Aiα = 0 otherwise.

}
(3.65)

This completes the realization of the mixture momentum and energy lattice Boltzmann
equations on the standard D3Q27 lattice. In the next section we shall specify the coupling
between the species and the mixture lattice Boltzmann subsystems.

3.5. Weak and strong coupling

3.5.1. Weak coupling
Summarizing, the lattice Boltzmann model for a compressible M-component mixture

of ideal gas on the standard D3Q27 lattice consists of M species lattices where the lattice
Boltzmann equation is given by (2.53), and the momentum and energy lattice Boltzmann
equations (3.63) and (3.22). In total, the M + 2 lattice Boltzmann equations are tightly
coupled. As has been already specified above, the temperature from the energy lattice is
provided to the species lattices through species equilibrium (2.35) and quasi-equilibrium
(2.36), but also in the Stefan–Maxwell temperature-dependent relaxation rates (2.31). On
the other hand, the mass fractions from the species lattices are used to compute the mixture
energy and enthalpy in the equilibrium and the quasi-equilibrium of the momentum
and energy lattices. Another coupling is the input of species diffusion velocities into
the quasi-equilibrium population of the energy lattice via the interdiffusion flux (3.35).
Finally, the momentum and the energy lattices are coupled in the standard way already
present in the single-component setting. This entire set of interconnections between the
species, and the momentum and energy lattices shall be termed the weak coupling.

3.5.2. Strong coupling: Matching of mixture density and momentum
With the two subsystems, the species and the mixture, first constructed independently

from each other and after that being coupled weakly in the way described previously,
we are left with two independent definitions of the mixture density and the
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mixture momentum. On the one hand, the mixture density ρ (3.16) and the mixture
momentum ρu (3.17) are defined as the moments of the populations fi. On the other
hand, the same quantities are defined with the species populations as the sum of partial
densities and partial momenta. The number of the conservation laws for the species
subsystem is M + D, while for the mixture subsystem it is D + 2. The total number of
the conservation laws in the weakly coupled combined system is M + 2D + 2. Thus,
the weakly coupled system is in excess of D + 1 conservation laws as compared with
the M + D + 1 conservation laws of the mixture. This redundancy can be eliminated by
removing one set of species populations (here, the Mth) and writing

fMi = fi −
M−1∑
a=1

fai. (3.66)

As a consequence, the Mth component is not an independent field anymore but is slaved
to the remaining species and mixture populations.

While this is the method of choice to avoid over-determination of the system, various
other, weaker coupling strategies exist. For example, considering the mixture density
and mixture momentum defined by the momentum lattice as primary, the excess in
conservation laws can be resolved by replacing the density of a selected component
ρM by the deficit of density once the M − 1 other components are taken into account.
Similarly, the momentum of the Mth component ρMuM accounts for the deficit of the
mixture momentum once the momenta of the other species are counted,

ρM = ρ −
M−1∑
a=1

ρa =
Q−1∑
i=1

fi −
M−1∑
a=1

Q−1∑
i=1

fai, (3.67)

ρMuM = ρu −
M−1∑
a=1

ρaua =
Q−1∑
i=1

fici −
M−1∑
a=1

Q−1∑
i=1

faici. (3.68)

In other words, only the density and momentum of the Mth component are slaved by
the corresponding mixture quantities and the rest of the mixture composition. Hence, the
lattice Boltzmann equation for the Mth component becomes purely relaxational, stripped
of its conservation law. At the same time, the total momentum conservation is slaved by the
momentum conservation of the momentum lattice. Since the relation (3.66) also implies
(3.67) and (3.68), the number of independent conservation laws in both versions of the
strongly coupled system is thus

(D + 2) + [(M + D) − 1 − D] = M + D + 1, (3.69)

and corresponds to the locally conserved fields, ρ1, . . . , ρM−1, ρ, ρu and ρE. While
the assignment of the slaved component M is not unique, it is advisable to select the
component which carries the majority of mass in the mixture.

In practice all couplings, the weak or the strong versions, yield identical results but the
strongest coupling as in (3.66) is recommended as it reduces the number of lattices from
M + 2 in other coupling strategies to M + 1.

4. Results

4.1. Overview of numerical implementation
In order to validate various physical aspects of the proposed lattice Boltzmann model, we
consider four benchmarks as follows.
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(i) Diffusion in a ternary gas mixture. This test case validates the Stefan–Maxwell
diffusion and exhibits effects such as a diffusion barrier and uphill diffusion, which
cannot be captured by Fick’s diffusion assumption.

(ii) Diffusion in opposed jets. Here, we verify the coupling between the hydrodynamics
and the diffusion model.

(iii) Speed of sound measurement in a mixture. This test case further validates the
compressible model.

(iv) Three-dimensional Kelvin–Helmholtz instability. Finally, this canonical benchmark
demonstrates the extension of the fully coupled model to three dimensions and,
therefore, shows viability for complex flows including turbulence.

Thermodynamic data necessary for the simulations such as the specific heats, molecular
masses and transport coefficients including dynamic viscosity, thermal conductivity and
the Stefan–Maxwell diffusivities were obtained from the publicly accessible GRI-Mech
3.0 mechanism (Smith et al. 1999). The lattice Boltzmann code was coupled to the open
source code Cantera (Goodwin et al. 2018) which is capable of parsing the GRI-Mech
mechanism data file. The data required by the lattice Boltzmann solver during runtime
is obtained by querying Cantera through its C++ API involving the ‘IdealGasMix’ and
‘Transport’ classes. The temperature was derived from the energy data output by solving
(3.20) in the external loop by iteration. In all cases, we set the reference temperature T0 =
237.15 K in (3.6). All data necessary for reproducing the test cases in this work is provided
in appendix C for the interested reader to avoid using Cantera. The speed of sound cs is
defined as

cs =
√

γ RT, (4.1)

where both the adiabatic exponent γ = Cp/Cv and the specific gas constant R depend on
the mixture composition. In what follows, we use the acoustic scaling: The speed of sound
(4.1) at a specified reference composition (typically, at the equilibrium) and specified
temperature is used to make velocity non-dimensional, unless otherwise stated. The
characteristic length is given in the respective set-up. Acoustic scaling was used to convert
from physical to lattice units. Finally, the second-order accurate isotropic lattice operators
proposed by Thampi et al. (2013) were used for the evaluation of spatial derivatives in the
correction to the heat flux (3.36) as well as in the isotropy correction (3.64).

4.2. Diffusion in a ternary gas mixture
A classical experiment on diffusion in a ternary mixture of hydrogen H2, argon Ar and
methane CH4 in a Loschmidt tube apparatus was performed by Arnold & Toor (1967);
results of the experiment of Arnold & Toor (1967) were later analysed in depth by Krishna
& Wesselingh (1997). The experiment of Arnold & Toor (1967) highlighted a number of,
in part counter-intuitive, features of the Stefan–Maxwell diffusion. It is therefore natural
to test our mixture model against the experiment of Arnold & Toor (1967).

The strongly coupled version of the three-dimensional lattice Boltzmann model for
Stefan–Maxwell diffusion was realized on a quasi-one-dimensional domain with 864 ×
1 × 1 grid points. In order to represent a closed tube, the bounce-back boundary condition
was used for all populations at each end of the tube, while periodic boundary conditions
were applied in the other two directions. The same initial composition of the mixture as
in the experiment of Arnold & Toor (1967) was used; the set-up was initialized with a
uniform atmospheric pressure and temperature T = 300 K. It should be stressed that the
temperature was not stipulated to be fixed during the simulation. Rather, the fully coupled
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FIGURE 1. Diffusion in a ternary mixture, case 1T (Arnold & Toor 1967). Mole fractions of
hydrogen H2, argon Ar and methane CH4 along the length of the tube as described by the initial
conditions of (4.2).

thermo-hydrodynamic system maintained the isobaric and isothermal conditions by the
initial and boundary conditions. As in the experiment, the evolution of the composition
was represented by the average mole fraction of each species in the left and in the right
halves of the tube. The non-dimensional time was used to represent the data, tND = t/ts,
where ts is the time required for the sound wave to traverse the domain in a reference
equilibrium composition.

In our first numerical experiment, the mole fractions of the species in the left and right
halves of the tube were initiated as in the case 1T of Arnold & Toor (1967), see figure 1:

Left: XH2 = 0.491, XAr = 0.509, XCH4 = 0.000,

Right: XH2 = 0.000, XAr = 0.485, XCH4 = 0.515.

}
(4.2)

Time evolution of hydrogen H2 and methane CH4 follows Fick’s diffusion law: the
species from the higher concentration side reduce in mole fractions as they move towards
the low concentration side. Thus, CH4 can be seen moving from right to left and H2 in the
opposite direction, both species eventually attaining a uniform concentration.

However, the behaviour of argon Ar cannot be explained by Fick’s law. Although Ar
has a negligible concentration gradient due to the initial conditions (4.2), it does start
diffusing, see figure 2. This phenomenon was termed osmotic diffusion by Toor (1957).
Osmotic diffusion is said to occur when the rate of diffusion of a component is not zero
even though its concentration gradient is negligible; this would correspond to an infinite
Fick’s diffusivity. The concentration of Ar keeps on growing in the left section even though
its concentration is higher in the left section itself, see figure 2. The effect was termed
uphill diffusion (or reverse diffusion) in Toor (1957) because the component diffuses in the
direction of increase of its concentration; in Fick’s picture this would amount to negative
diffusivity. The reverse diffusion is seen to proceed for some time and then flattens at
tND ≈ 400. At this point in time, an appreciable concentration gradient is built up but the
diffusion is negligible, see figure 3. The effect was termed a diffusion barrier in Krishna
& Wesselingh (1997), the point at which the diffusion rate of a component vanishes even
though its concentration gradient does not. This would mean zero Fick’s diffusivity. After
the diffusion barrier, the ordinary Fick’s diffusion sets in and proceeds downhill of the
concentration gradient until the uniform steady state is reached, see figures 4 and 5.

Figure 6 shows the evolution of the average mole fractions of the species in the left
and right halves of the tube. The effects just mentioned were observed in the experiment
of Arnold & Toor (1967) and in an earlier similar experiment by Duncan & Toor (1962).
Krishna & Wesselingh (1997) provided an explanation by drawing an analogy between the
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FIGURE 2. Case 1T . Mole fractions of hydrogen H2, argon Ar and methane CH4 along the
length of the tube during uphill diffusion of Ar at tND = 179.52.
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FIGURE 3. Case 1T . Mole fractions of hydrogen H2, argon Ar and methane CH4 along the
length of the tube at the diffusion barrier, tND = 378.98.
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FIGURE 4. Case 1T . Mole fractions of hydrogen H2, argon Ar and methane CH4 along the
length of the tube during Fickian diffusion of argon after the diffusion barrier, tND = 777.91.
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FIGURE 5. Case 1T . Mole fractions of hydrogen H2, argon Ar and methane CH4 along the
length of the tube at the steady state, tND = 6323.09.
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FIGURE 6. Diffusion in a ternary mixture, case 1T (Arnold & Toor 1967), (4.2). Averaged mole
fractions of hydrogen H2, argon Ar and methane CH4 in the left and right halves of the tube. The
figure shows reverse diffusion of argon. Symbol: present simulation; line: theory (Arnold & Toor
1967).

frictional drag and binary diffusion coefficients of pairs of species. According to Krishna
& Wesselingh (1997), the Stefan–Maxwell diffusivity plays a role of an inverse drag
coefficient. The binary diffusion coefficient between Ar and H2 is 8.14543 × 10−5 m2 s−1,
while that between Ar and CH4 is 2.17321 × 10−5 m2 s−1. This means that the frictional
drag exerted on Ar by CH4 is much greater than that exerted on Ar by H2. Thus, CH4
drags Ar along with it during the initial period when the flux of CH4 from right to left is
large, causing the uphill diffusion of Ar. The transport of CH4 from right to left eventually
reduces because the driving force causing it reduces due to the reduction in concentration
gradient of CH4. At the same time, the increasing concentration of Ar creates a driving
force for Ar to diffuse downhill. A balance is reached at the point of diffusion barrier after
which the drag force caused by CH4 is overcome and Ar starts diffusing downhill of its
concentration in a Fick’s fashion.

It is apparent from figure 6 that the lattice Boltzmann simulation was able to correctly
capture the experimentally observed phenomena. For a more quantitative assessment, we
compare simulation results with the linearized theory of multicomponent mass transfer
proposed in Arnold & Toor (1967). The theory relies upon a semi-analytical solution of
the one-dimensional diffusion equations for the average mole fractions using linearized
Stefan–Maxwell relation for the diffusion fluxes, and was shown to match the experiment
in a quantitative fashion (Arnold & Toor 1967). For the purpose of this study, we
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FIGURE 7. Diffusion in a ternary mixture, case 2T (Arnold & Toor 1967), (4.3). Averaged mole
fractions of hydrogen H2, argon Ar and methane CH4 in the left and right halves of the tube. The
figure shows reverse diffusion of methane. Symbol: present simulation; line: theory (Arnold &
Toor 1967).

numerically solved the equations of the linearized theory using Python. As is evident from
figure 6, the results of the simulation agree well with the linearized theory, both in terms
of magnitudes of the mole fractions as well as the time.

Continuing along the lines of the experimental study, the simulation was repeated with
a different set of initial conditions, corresponding to the case 2T of Arnold & Toor (1967):

Left: XH2 = 0.512, XAr = 0.000, XCH4 = 0.448,

Right: XH2 = 0.000, XAr = 0.485, XCH4 = 0.515.

}
(4.3)

According to the theory of the inverse relation between mass diffusivity and drag (Krishna
& Wesselingh 1997), methane should now exhibit uphill diffusion due to the flux of argon.
This is indeed what was seen in the experiments of Arnold & Toor (1967) as well as in our
simulations, see figure 7. Simulations are in good agreement with the linearized theory.

A final but equally important situation is the one marked as case 3T in the experiment
(Arnold & Toor 1967):

Left: XH2 = 0.512, XAr = 0.000, XCH4 = 0.448,

Right: XH2 = 0.491, XAr = 0.509, XCH4 = 0.000.

}
(4.4)
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FIGURE 8. Diffusion in a ternary mixture, case 3T (Arnold & Toor 1967), (4.4). Averaged mole
fractions of hydrogen H2, argon Ar and methane CH4 in the left and right halves of the tube.
The figure shows near-Fickian diffusion of hydrogen. Symbol: present simulation; line: theory
(Arnold & Toor 1967).

The binary diffusivity between Ar and H2 is 8.14543 × 10−5 m2 s−1, while that between
CH4 and H2 is 7.37433 × 10−5 m2 s−1. The diffusivities are comparable and, thus, the
interaction of H2 with Ar is very similar to the interaction of H2 with CH4. In figure 8
the results from the lattice Boltzmann simulation as well as the linearized theory show
a nearly Fickian diffusion of H2. Hydrogen however does show a small but nevertheless
clear tendency to accumulate in the right half of the tube. This is possibly due to a slightly
greater drag exerted on H2 by CH4 thanks to a somewhat smaller diffusivity between the
pair.

For an additional validation, we compare the composition map of the simulation with the
composition map of the experiment, since the composition map for the Stefan–Maxwell
diffusion is independent of time (Duncan & Toor 1962). Figure 9 verifies that the
composition paths of the simulations agree well with that of all the three experiments of
Arnold & Toor (1967). The composition path that would be followed by a purely Fickian
diffusion is also marked in figure 9 as ‘Path w/o reverse diffusion’ for the purpose of
contrast. The set-ups eventually attain a homogeneous composition at the ‘Equilibrium’
points on the composition map located midway of the Fickian lines, at the intersection
with the Stefan–Maxwell trajectory. It can be again seen in the composition map that even
for the case 3T , the diffusion path of hydrogen is almost yet not purely Fickian.
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FIGURE 9. Composition path of the averaged mole fractions of H2, Ar and CH4 in the left and
right halves of the tube. The composition path shows three different cases, each with a reverse
diffusion of Ar, CH4 and a nearly Fickian diffusion of hydrogen. Lines: present simulation;
symbol: experiment of Arnold & Toor (1967).

4.3. Diffusion in opposed jets
In order to assess the coupling between the diffusion and the hydrodynamic systems
we consider the case of planar opposed jets. The set-up and boundary conditions are
similar to that studied in Arcidiacono et al. (2007). It consists of two facing jets of fluid
with equal momentum and different compositions. As shown in figure 10, the simulation
is performed on a grid of size Lx × Ly × Lz = 200 × 400 × 1 points, with the distance
between the nozzles Lx = 200. For the inlets, the incoming populations are replaced by the
equilibrium distributions while the outlets are modelled by making the derivative normal
to the boundary zero. For the solid vertical boundaries at y < 0.1Ly and y > 0.9Ly , a
free-slip boundary condition is used. The compositions of the jet streams are

Left: XH2 = 0.1, XN2 = 0.85, XO2 = 0.0, XH2O = 0.05,

Right: XH2 = 0.0, XN2 = 0.90, XO2 = 0.1, XH2O = 0.00.

}
(4.5)

The solution of the present model at steady state is compared with the solution produced by
the ‘CounterflowDiffusionFlame’ function of the open source package Cantera (Goodwin
et al. 2018). This function computes a steady-state solution to counterflow diffusion flame
using a reduced one-dimensional similarity solution, as derived in § 6.2 of Kee et al.
(2003). In order to get a solution comparable with the Stefan–Maxwell formulation of
the lattice Boltzmann model, the reactions are turned off in Cantera and the transport
model is set to ‘Multi’, which accounts for the pairwise diffusion between the species. As
can be seen in figure 11, the LBM solution for the mole fractions of all the components as
well as the scaled velocity agree well with the solution produced by Cantera. It should be
noted that this test case is regarded severe in Arcidiacono et al. (2007) since the diffusion
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FIGURE 10. Contour of the mole fraction of H2 and vectors of velocity at steady state for the
opposed jets set-up. The velocity vectors are scaled by the magnitude of the velocity.
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FIGURE 11. Mole fractions of H2, N2, O2 and H2O and flow velocity at stagnation line.

of the components proceeds against the velocity of the bulk flow. For example, hydrogen
and water from the left nozzle diffuse against the bulk flow on the right side, upstream
towards the right nozzle. The good agreement of the results indicates that the coupling of
the Navier–Stokes and the Stefan–Maxwell models is consistent and correct.

4.4. Speed of sound
As a standard test for a compressible flow LBM, we verify that the model correctly
reproduces the speed of sound cs (4.1). The speed of sound was measured for the following
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Case 4: γ = 1.16208, R = 0.0283563

LBM

FIGURE 12. Speed of sound for different compositions (4.6). Symbol: simulation;
line: theory, (4.1).

four compositions S1–S4:

(S1) R = 0.046897 XH2 = 0.491, XAr = 0.509, XCH4 = 0.000,

(S2) R = 0.0333655 XH2 = 0.200, XAr = 0.700, XCH4 = 0.100,

(S3) R = 0.026625 XH2 = 0.000, XAr = 0.900, XCH4 = 0.100,

(S4) R = 0.0283563 XH2 = 0.200, XAr = 0.100, XC3H8 = 0.700.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.6)

Composition S1 in (4.6) is chosen from one of the cases in § 4.2, whereas the case
S3 is chosen arbitrarily in order to test for the sound speed in a composition with a
considerable difference in mole fractions. The cases S2 and S4 are chosen to verify the
speed of sound in a ternary mixture and in the presence of heavier gases such as propane,
respectively. The test is performed by tracking a small perturbation in pressure ΔP = 10−5

at a specified temperature T . Figure 12 compares the measured speed of the propagation of
the perturbation with the theoretical speed of sound prediction (4.1). The lattice Boltzmann
model correctly recovered the sound speed over a tested range of temperatures from
Tmin = 0.025 to Tmax = 0.8 in lattice units. The tested temperature range is characterized
by the ratio of the temperatures, Tmax/Tmin = 32, which is sufficiently large for many
applications. Temperature between T = 0.2 to T = 0.5 in lattice units was used for most
of the simulations presented in this paper.

4.5. Kelvin–Helmholtz instability
Without a pretence of an in-depth study of shear layer instabilities in this paper, the
final example presents a three-dimensional simulation of the classical Kelvin–Helmholtz
instability in order to validate the proposed model towards its possible use for
high-Reynolds-number simulations. Similar to the set-up in San & Maulik (2018),
we simulate the Kelvin-Helmholtz instability in a periodic domain of the size
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FIGURE 13. Contour of the mole fraction of nitrogen N2 (a) and isosurface of the equilibrium
concentration of nitrogen XN2 = 0.5 coloured with the Mach number in the x-direction (b) at
time te = 2.2521.
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FIGURE 14. Contour of the mole fraction of nitrogen N2 (a) and isosurface of the equilibrium
concentration of nitrogen XN2 = 0.5 coloured with the Mach number in the x-direction (b) at
time te = 3.3119.

Lx × Ly × Lz = 800 × 800 × 200 lattice grid points. The domain is split into three
sections in the flow-normal direction, where the initial conditions for a two-component
mixture of nitrogen N2 and water vapour H2O are as follows:

ux = 0.1Mc, XH2O = 0.9, XN2 = 0.1, for 0 ≤ y < 0.25Ly,

ux = −0.1Mc, XH2O = 0.1, XN2 = 0.9, for 0.25Ly ≤ y < 0.75Ly,

ux = 0.1Mc, XH2O = 0.9, XN2 = 0.1, for 0.75Ly ≤ y ≤ Ly.

⎫⎪⎬
⎪⎭ (4.7)

The velocity in the normal direction uy and in the spanwise direction uz is given by,
respectively,

uy = 2|ux |0.01 sin(2πx/Lx), (4.8)

uz = 2|ux |0.01 sin(2πz/Lz). (4.9)
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FIGURE 15. Contour of the mole fraction of nitrogen N2 (a) and isosurface of the equilibrium
concentration of nitrogen XN2 = 0.5 coloured with the Mach number in the x-direction (b) at
time te = 4.901612.
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FIGURE 16. Contour of the mole fraction of nitrogen N2 (a) and isosurface of the equilibrium
concentration of nitrogen XN2 = 0.5 coloured with the Mach number in the x-direction (b) at
time te = 8.345988.

The initial composition of the binary mixture (4.7) is so chosen as to equilibrate at the
50/50 equilibrium composition XN2 = XH2O = 0.5 in the absence of any flow. The initial
condition (4.8) and (4.9) further introduces a small perturbation in both the normal and
spanwise directions with a wavelength equal to the length of the domain and a magnitude
of one percent of the relative shear velocity. As defined by Leep, Dutton & Burr (1993),
the convective Mach number Mc is the Mach number relative to the frame of reference
of the simulation. The relative Mach number Mr based on the relative velocity across the
shear layers is Mr = 0.2 according to the initial conditions (4.7). The Reynolds number
with respect to the viscosity of the bottom-most layer, with Mr as the velocity scale and
Ly as the length scale is Re = 11963.46. The mole fractions are chosen as 0.1 and 0.9 to
make the test more severe. We define an eddy turnover time te = Lx/Ur, with the initial
relative velocity Ur = 2|ux |.
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FIGURE 17. Turbulent kinetic energy spectrum at te = 7.9486 along with the theoretical
Kolmogorov scaling. Here η is the Kolmogorov length scale and uη is the Kolmogorov velocity.

We present contours and isosurfaces of the equilibrium mole fraction of nitrogen XN2 =
0.5 at different times in figures 13–16. The isosurfaces are coloured by the x-component
of the convective Mach number Mc to provide a visual indication of the direction of
motion. Soon after the initial condition, the normal perturbation breaks the symmetry of
the flow and the shear layer begins to curl up into a vortex without a significant spanwise
deformation. This is evident in figure 13, where the three dimensionality of the flow is
visible only in the non-uniform spanwise velocity of the isosurface. As the simulation
proceeds, the flow in figure 14 develops anti-symmetric vortices which are also visibly
deformed in the spanwise direction. This process continues and the vortices stretch and
deform over time, which is visible in both the contours of the mole fraction of N2 as
well as the isosurfaces in figure 15. The flow eventually becomes more chaotic, forming
smaller-scale structures in figure 16. It should not be forgotten that the components are
also undergoing diffusion during this mixing, as evident from the smearing of the contour
values over time.

While the above observations are inline with what is typically observed in the literature,
it is also important to verify the energy distribution across the scales of the flow. To that
end, we measure the turbulent kinetic energy spectrum, which shows the expected −5/3
Kolmogorov scaling in the inertial subrange in figure 17. This additionally validates our
model and outlines a path towards complex multicomponent flow simulations.

5. Conclusion

Let us consider a ‘good’ lattice Boltzmann setting for a single-component gas. From
past experience, this would imply a two-population LBM because the second population
would be ultimately needed for an adequate description of the energy, leaving aside a
special case of monatomic gas. It is then possible to envision, following the rule of the
conventional kinetic theory (Chapman & Cowling 1990), a valid lattice Boltzmann model
for a mixture of such gases, with the total number of kinetic equations equal to 2 × M for
the M-component mixture since each component needs to be represented by its individual
two-population LBM.

In contrast, in this paper we proposed a lattice Boltzmann framework for
multicomponent mixtures of ideal gases with a more realistic number of coupled lattice
Boltzmann equations. We addressed two equally important aspects. First, we proposed
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a new LBM system for the Stefan–Maxwell diffusion and barodiffusion comprising M
lattice Boltzmann equations. Second, we proposed a reduced, mean-field description of the
mixture momentum and energy using the two-population setting. The resulting framework
consists of M + 2 lattice Boltzmann equations (or, eventually, M + 1 if the strong coupling
(3.66) is used) rather than 2 × M as it would be if the detailed and not the mean-field
approach to the energy of the mixture would have been pursued.

Special attention was devoted to the consistent thermodynamic coupling of the above
two sub-systems in such a manner that the hydrodynamic limit is not compromised.
The proposed framework was realized on the standard three-dimensional lattice using
an extension of the compressible model of Saadat et al. (2019). Specific to the
multicomponent problem, the interdiffusion energy flux was added in a natural way to
the heat flux to recover the correct energy equation while a counter-flux was introduced to
remove the spurious contribution to the Fourier law inevitably arising with the mean-field
approach to the energy description. While we focused on the multicomponent case, the
proposed realization is also an extension of the augmented, compressible LB model
proposed by Saadat et al. (2019) to a general form in three dimensions, which can of
course also be used for single-component flows.

The simulation of the diffusion in a ternary mixture demonstrated that the proposed
LBM correctly accounts for binary interaction between species. The coupling of diffusion
to hydrodynamics was assessed by computing diffusion in opposed jets and the basic
compressibility features were demonstrated through the speed of sound simulation
at various compositions. Finally, the simulation of the three-dimensional shear layer
instability in a binary mixture with a high composition contrast indicates that the proposed
method can be useful for direct numerical simulations of complex flows.

All of the above gives us grounds to believe that the proposed multicomponent
framework fills the gap in the development of the LBM and is a first step towards reactive
flow applications which will be the focus of our future studies.

Acknowledgements

We thank S.A. Hosseini for a discussion of the passive scalar LBM Hosseini et al.
(2018). This work was supported by European Research Council (ERC) Advanced Grant
no. 834763-PonD. Computational resources at the Swiss National Super Computing
Center CSCS were provided under grant no. s897. Authors thank S. Springman and
A. Togni for enabling research of N.S. at ETHZ.

Declaration of interests

The authors report no conflict of interest.

Appendix A. Kinetic models for multicomponent diffusion approximations

A.1. Kinetic equations and hydrodynamic limit
A variety of approximate constitutive relations for the multicomponent diffusion
have been proposed in the literature, where the Stefan–Maxwell diffusion relation is
substituted by a simpler surrogate expression. To that end, diffusion models such as
Curtiss–Hirschfelder or mixture-averaged approximation are widely used, especially in
combustion problems (see e.g. Kee et al. (2003); Poinsot & Veynante (2005); Giovangigli
(2012); a comprehensive review can be found in Giovangigli (2015)). While the main
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focus of our study is the Stefan–Maxwell diffusion model, it is interesting to see how
approximate diffusion models are realized in the present setting. We start with the
continuous time-space kinetic equation in the relaxation form (2.42) and modify it as
follows:

∂t fai + ci∇ fai = 1
τa

( f eq
ai − fai) − Λa

M∑
b=1

1
τb

( f eq
bi − f ∗

bi). (A 1)

Here, nondimensional parameters Λa ≥ 0 may depend on the locally conserved quantities
and must satisfy the normalization

M∑
a=1

Λa = 1. (A 2)

A comparison with the previous kinetic equation (2.42) reveals a replacement of the
Stefan–Maxwell source term (2.41) with a projected version thereof,

Fai → F̃ai, (A 3)

where

F̃ai = Λa

M∑
b=1

1
τb

( f eq
bi − f ∗

bi). (A 4)

On the other hand, the definitions of the equilibrium and of the quasi-equilibrium
distributions remain as in § 2. Hence, it can be readily seen that the modified kinetic
equations (A 1) retain both the mass and the momentum conservation for any partition
Λa. Consequently, analysis of § 2.3 holds, and instead of the Stefan–Maxwell constitutive
relation we arrive at a mixture-averaged diffusion relation

P∇Xa + (Xa − Ya)∇P = − 1
τa

ρaδua + Λa

(
M∑

b=1

1
τb

ρbδub

)
. (A 5)

Unlike the original Stefan–Maxwell constitutive relation (2.30), (A 5) can be readily
resolved to obtain the explicit expression of the diffusion flux. In order to save notation,
we introduce the Stefan–Maxwell thermodynamic force da:

da = P∇Xa + (Xa − Ya)∇P. (A 6)

With this definition, the solution for (A 5) reads as

ρaδua = −τada + Ta

M∑
k=1

τkdk, (A 7)

where Ta is a (normalized) partition of relaxation times

Ta = Λaτa

M∑
b=1

Λbτb

. (A 8)
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With the momentum flux ρaua = ρau + ρaδua, the species equation (2.20) becomes

∂t(ρYa) + ∇ · (ρYau) − ∇ · ((1 − Ta)τada) + ∇ ·
(

Ta

M∑
b /=a

τbdb

)
= 0. (A 9)

Upon summation over the components, it is readily verified that the species equations (A 9)
satisfy the mass balance

∂tρ + ∇ · (ρu) = 0. (A 10)

Following standard terminology (Williams 1985; Poinsot & Veynante 2005; Bird et al.
2006; Giovangigli 2012), the last term in (A 9) is referred to as a mass correction. In the
above derivation, the mass correction appears by construction as a direct implication of
the momentum conservation by kinetic equations (A 1). In order to link the result (A 9)
with the standard literature, we set

Λm
a =

(
Ya

τa

)( M∑
b=1

Yb

τb

)−1

, (A 11)

which implies in (A 8),
Tm

a = Ya, (A 12)

while (A 9) recovers the standard mixture-averaged (or Curtiss–Hirschfelder)
approximation (Curtiss & Hirschfelder 1949; Kee et al. 2003; Poinsot & Veynante 2005;
Giovangigli 2012). In order to recast it in a more familiar form, we neglect barodiffusion
and introduce the mixture-averaged diffusion fluxes jm

a (Kee et al. 2003):

jm
a = −(1 − Ya)τaP∇Xa. (A 13)

We note (Kee et al. 2003) that the mixture-averaged diffusion fluxes, in general, do not
satisfy mass conservation,

∑M
a=1 jm

a /= 0, unlike the diffusion fluxes (A 7). Substituting the
Stefan–Maxwell relaxation times τa (2.40),

τa = 1

RaT
M∑

b /=a

Xb/Dab

, (A 14)

we obtain in (A 13),

jm
a = −ρ

(
Ya

Xa

)
Dm

a ∇Xa, (A 15)

where the standard mixture-averaged diffusion coefficient Dm
a of the species a is

Dm
a = 1 − Ya

M∑
b /=a

Xb/Dab

. (A 16)

With these definitions, the species balance equations (A 9) become

∂t(ρYa) + ∇ · (ρYau) + ∇ · jm
a − ∇ ·

(
Ya

M∑
b /=a

jm
b

1 − Yb

)
= 0. (A 17)
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Since the Curtiss–Hirschfelder diffusion equation (A 17) is a special case of the generic
equation (A 9), it satisfies the mass balance, which can also be verified directly by
summation over the species in (A 17).

A.2. Lattice Boltzmann realization
Starting with the kinetic equations (A 1), the derivation of the lattice Boltzmann scheme
proceeds along the lines of § 2.5, and we present the result of this derivation. In the
notation from § 2.5.3, the species lattice Boltzmann equations now read

fai(x + ciδt, t + δt) − fai(x, t) = 2βa[ f eq
ai − fai] + δt(βa − 1)F̃ai, (A 18)

where the difference is in the last term; instead of the expression (2.54) we now have the
corresponding averaged version thereof:

F̃ai = Λa

M∑
b=1

1
τb

[ f eq
bi (ρb, u, RbT) − f ∗

bi(ρb, u + V b, RbT)]. (A 19)

Consequently, the transformed diffusion velocity of the components, V a, a = 1, . . . , M,
are now defined by a set of linear relations:

V a − δt
2

[
− 1

τa
V a + Λa

(
M∑

b=1

YbV b

Yaτb

)]
= ua − u. (A 20)

Unlike its Stefan–Maxwell counterpart, (2.55), the linear system (A 20) admits an explicit
solution for any number of species M:

V a = (1 − βa)(ua − u) +

⎛
⎜⎜⎜⎜⎜⎝

(1 − βa)Λa

1 −
M∑

b=1

βbΛb

⎞
⎟⎟⎟⎟⎟⎠

M∑
k=1

βk

(
Yk

Ya

)
(uk − u), (A 21)

where, as before in (2.51),

βa = δt
2τa + δt

. (A 22)

Finally, all considerations of the mixture momentum and energy as presented in § 3 remain
valid without any amendments.

The present scheme for the Curtiss–Hirschfelder diffusion approximation was validated
with the diffusion in the opposing jets benchmark in § 4.3; results are presented in
figure 18. The LBM solution for the mole fractions of all the components as well as
the scaled velocity agree well with the reference solution produced by Cantera (Goodwin
et al. 2018). In comparison with the Stefan–Maxwell diffusion model, figure 11 also shows
that Curtiss–Hirschfelder approximation is quite reliable, as should be expected in this
case. It should be noted that numerical solution of the transform (2.55) required for the
Stefan–Maxwell formulation does not produce any significant overheads as compared with
using the corresponding explicit expression (A 21) for the mixture-averaged formulation.
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FIGURE 18. Mole fractions of H2, N2, O2 and H2O and flow velocity at stagnation line. The
Curtiss–Hirschfelder diffusion formulation for the set-up of § 4.3.

A.3. Discussion of kinetic approximations
The structure of the kinetic system (A 1) can be made more transparent when considered
in the M-dimensional space of population vectors f i = ( f1i, . . . , fMi)

†. We recognize that
the system (A 1) can be written as follows:

∂tf i + ci · ∇f i = τ−1(f eq
i − f i) − Λτ−1(f eq

i − f ∗
i ), (A 23)

where τ−1 is the diagonal matrix of inverse relaxation times, τ−1 = diag(τ−1
1 , . . . , τ−1

M ),
and where the matrix Λ is

Λ =
⎛
⎝ Λ1 · · · Λ1

· · · · · · · · ·
ΛM · · · ΛM

⎞
⎠ . (A 24)

Thanks to (A 2), it can be readily seen that the operator Λ (A 24) is a projector:

Λ2 = Λ. (A 25)

On the other hand, we note the multi-component representation of diffusion fluxes (Kee
et al. 2003; Poinsot & Veynante 2005; Giovangigli 2012),

ρaδua =
M∑

b=1

Dabdb, (A 26)

where the diffusion matrix Dab is constructed by iteration on the Stefan–Maxwell
constitutive relation (Giovangigli 2015). It is interesting to note that the use of
the projection operation in the above derivation of the kinetic model for the
Curtiss–Hirschfelder approximation parallels the first iteration of the diffusion matrix as
described by Giovangigli (2015):

D(1)

ab = −τaδab + Yaτb. (A 27)

Kinetic models corresponding to next-order iterations of the multi-component diffusion
representation (A 26) can be considered accordingly. The specific construction of the
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kinetic equation for these cases remains beyond the scope of this paper. We note that
the exact multi-component diffusion matrix (A 26) is equivalent to the Stefan–Maxwell
constitutive relation (Kee et al. 2003), and which was proposed above in the kinetic
equation setting.

Finally, we note that the diffusion models discussed so far, the Stefan–Maxwell original
formulation and its simplified descendants, inherit a common trait: diffusion is driven by
the non-uniformity of the molar fraction Xa (and by the pressure non-uniformity). In some
cases, a (generalized) Fick’s diffusion approximation is used instead, where the driving
force of diffusion is due to the gradient of the mass fraction ∇Ya. In order to recover the
generalized Fick’s diffusion, we modify the equilibrium populations f eq

ai (2.35) and the
quasi-equilibrium populations f ∗

ai (2.36) as follows:

f eq
ai (ρa, u, RT) = ρaΨcix (ux , RT)Ψciy (uy, RT)Ψciz(uz, RT), (A 28)

f ∗
ai(ρa, ua, RT) = ρaΨcix (uax , RT)Ψciy (uay, RT)Ψciz(uaz, RT). (A 29)

In other words, the equilibrium (A 28) and the quasi-equilibrium (A 29) are still
represented with the product form (2.34) by choosing ξ = u or ξ = ua, respectively, while
assigning ζ = RT in (A 28) and (A 29) instead of ζ = RaT in (2.35) and (2.36). One can
readily verify that the equilibrium (A 28) and the quasi-equilibrium (A 29) satisfy all the
constraints put forward in § 2.2 except for the equilibrium pressure tensor of the species
(2.18) which now becomes

Q−1∑
i=0

f eq
ai ci ⊗ ci = YaPI + ρau ⊗ u. (A 30)

With this modification of the equilibrium and quasi-equilibrium populations, the kinetic
system (A 1) still retains the mass and momentum conservation as before; however, the
analysis of the hydrodynamic limit yields a constitutive relation with the Fick rather than
the Stefan–Maxwell thermodynamic force

P∇Ya = − 1
τa

ρaδua + Λa

(
M∑

b=1

1
τb

ρbδub

)
. (A 31)

The next steps of the analysis proceed with § 1, provided the thermodynamic force (A 6)
is replaced by da = P∇Ya. The diffusion equation becomes

∂t(ρYa) + ∇ · (ρYau) − ∇ · (ρDa∇Ya) + ∇ ·
(

Taρ

M∑
b=1

Db∇Yb

)
= 0, (A 32)

where the diffusion coefficients Da = τaRT can be computed in a variety of ways, with or
without the Stefan–Maxwell binary diffusion coefficients in mind. The so-called fixed
Schmidt number approximation (Poinsot & Veynante 2005; Hosseini et al. 2018) is
obtained when the Stefan–Maxwell origin of diffusion is dropped in favour of the Schmidt
number definition Sca = μ/ρDa, where μ is the mixture dynamic viscosity (3.42). In order
to derive the fixed Schmidt number approximation in the present context, it suffices to
interpret the relaxation times (A 14) as τa = Da/RT , where the diffusion coefficient is
evaluated as Da = μ/ρSca.
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Again, the mass correction is taken into account automatically in (A 32) by construction,
and is implied by momentum conservation, for any projector Λ. In particular, the choice
of Λa as in (A 11) brings (A 32) to a canonical form

∂tYa + u · ∇Ya − 1
ρ

∇ · (ρDa∇Ya) + 1
ρ

∇ ·
(

Yaρ

M∑
b=1

Db∇Yb

)
= 0. (A 33)

The lattice Boltzmann scheme is realized as in § 2, subject to a replacement of f eq
ai and f ∗

ai
with (A 28) and (A 29) elsewhere in (A 18) and (A 4).

In summation, the Stefan–Maxwell constitutive relations and various approximations
thereof derived in this appendix A are realized in a uniform setting of kinetic models
for the species in the first place, thanks to the momentum conservation by the species
sub-system. This implied mass conservation not only for the Stefan–Maxwell case but
also for its approximations where mass correction becomes an integral part of the model.
This is different from the passive scalar approach to kinetic models of diffusion where
mass correction needs to be fixed by additional considerations (Hosseini et al. 2018).

Appendix B. Hydrodynamic limit of the mean-field LBM

We expand the lattice Boltzmann equations (3.21) and (3.22) in Taylor series to second
order, using space component notation and summation convention:[

δt(∂t + ciμ∂μ) + δt2

2
(∂t + ciμ∂μ)2

]
fi = ω( f eq

i − fi), (B 1)

[
δt(∂t + ciμ∂μ) + δt2

2
(∂t + ciμ∂μ)2

]
gi = ω1(g

eq
i − gi) + (ω − ω1)(g∗

i − gi). (B 2)

With a time scale t̄ and a velocity scale c̄, the non-dimensional parameters are introduced
as follows:

t′ = t
t̄
, c′

α = cα

c̄
, x ′

α = xα

c̄t̄
. (B 3a–c)

Substituting the relations (B 3a–c) into (B 1) and (B 2), the kinetic equations in the
non-dimensional form become[

δt′(∂t′ + c′
iμ∂μ′) + δt′2

2
(∂t′ + c′

iμ∂μ′)2

]
fi = ω( f eq

i − fi), (B 4)

[
δt′(∂t′ + c′

iμ∂μ′) + δt′2

2
(∂t′ + c′

iμ∂μ′)2

]
gi = ω1(g

eq
i − gi) + (ω − ω1)(g∗

i − gi). (B 5)

Let us define a smallness parameter ε as

ε = δt′ = δt
t̄
. (B 6)

Using the definition of ε and dropping the primes for ease of writing, we obtain[
ε(∂t + ciμ∂μ) + ε2

2
(∂t + ciμ∂μ)2

]
fi = ω( f eq

i − fi), (B 7)

[
ε(∂t + ciμ∂μ) + ε2

2
(∂t + ciμ∂μ)2

]
gi = ω1(g

eq
i − gi) + (ω − ω1)(g∗

i − gi). (B 8)
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Writing a power series expansion in ε as

∂t = ∂(1)
t + ε∂(2)

t , (B 9)

fi = f (0)

i + εf (1)

i + ε2f (2)

i , (B 10)

gi = g(0)

i + εg(1)

i + ε2g(2)

i , (B 11)

g∗
i = g∗(0)

i + εg∗(1)

i + ε2g∗(2)

i , (B 12)

we substitute (B 9)–(B 12) into (B 7) and (B 8), and proceed with collecting terms of
same order. This is standard (Chapman & Cowling 1990); for the specific case of the
two-population LBM, see e.g. Karlin et al. (2013). At order ε0, we get

f (0)

i = f eq
i , (B 13)

g(0)

i = g∗(0)

i = geq
i . (B 14)

At order ε1, upon summation over the discrete velocities, we find

∂(1)
t ρ + ∂αjeq

α = 0, (B 15)

∂(1)
t jeq

α + ∂βPeq
αβ = 0, (B 16)

∂(1)
t (ρE) + ∂αqeq

α = 0. (B 17)

Here, ρ is the density of the fluid given by the zeroth moment of the f -populations in
(3.23), jeq

α is the equilibrium momentum of the fluid as defined by (3.24), Peq
αβ is the

equilibrium pressure tensor and qeq
α is the equilibrium heat flux as defined by (3.26) and

(3.28), respectively, and ρE is the total energy of the fluid calculated as the zeroth moment
of g-populations using (3.25). Finally, at order ε2 we arrive at

∂(2)
t ρ = 0, (B 18)

∂(2)
t jeq

α +
(

1
2

− 1
ω

)
∂β(∂

(1)
t Peq

αβ + ∂γ Qeq
αβγ ) = 0, (B 19)

∂(2)
t (ρE) + ∂α

[(
1
2

− 1
ω

)
(∂(1)

t qeq
α + ∂βReq

αβ) +
(

1 − ω1

ω

)
q∗(1)

α

]
= 0. (B 20)

Here, Qeq
αβγ and Req

αβ are the third-order moment of f eq
i and the second-order moment of geq

i ,
respectively. Their expressions are given by (3.27) and (3.29), respectively. Combining
terms at both orders, we recover the following macroscopic equations:

∂tρ + ∂αjeq
α = 0, (B 21)

∂tjeq
α + ∂βPeq

αβ + ε

(
1
2

− 1
ω

)
∂β(∂

(1)
t Peq

αβ + ∂γ Qeq
αβγ ) = 0, (B 22)

∂t(ρE) + ∂αqeq
α + ε∂α

[(
1
2

− 1
ω

)
(∂(1)

t qeq
α + ∂βReq

αβ) +
(

1 − ω1

ω

)
q∗(1)

α

]
= 0, (B 23)
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where

∂(1)
t Peq

αβ + ∂γ Qeq
αβγ = −PR

Cv

∂γ uγ δαβ + P(∂αuβ + ∂βuα), (B 24)

∂(1)
t qeq

α + ∂βReq
αβ = P

(
1 − Cp

Cv

)
uα∂βuβ + Puβ(∂αuβ + ∂βuα) + P

M∑
a=1

Ha∂αYa + PCp∂αT,

(B 25)

q∗(1)
α =

(
1
ω1

)
(∂(1)

t qeq
α + ∂βReq

αβ) + 1
ε

(
ω

ω1

)
(−uβ(Pαβ − Peq

αβ) + qdiff
α + qcorr

α ), (B 26)

Pαβ − Peq
αβ = ε

(
− 1

ω

)
(∂(1)

t Peq
αβ + ∂γ Qeq

αβγ ). (B 27)

We now substitute for the moments from the expressions (B 24)–(B 27) in (B 21)–(B 23)
and for the equilibrium moments from (3.23)–(3.32) to get the resulting macroscopic
equations. Equation (B 21) recovers the continuity equation

∂tρ + ∂α(ρuα) = 0. (B 28)

Equation (B 22) recovers the mixture momentum equation

∂t(ρuα) + ∂β(ρuαuβ) + ∂βπαβ = 0, (B 29)

with the constitutive relation for the stress tensor

παβ = Pδαβ − μ

(
∂αuβ + ∂βuα − 2

D
(∂μuμ)δαβ

)
− ς(∂μuμ)δαβ. (B 30)

The dynamic viscosity μ and the bulk viscosity ς are related to the relaxation coefficient
ω by (3.42) and (3.43), respectively. Finally, (B 23) recovers the mixture energy equation

∂t(ρE) + ∂α(ρEuα) + ∂α(παβuβ) + ∂αqα = 0, (B 31)

where the heat flux q has the following form:

qα = −λ∂αT − εP
(

1
ω1

− 1
2

) M∑
a=1

Ha∂αYa +
(

ω

ω1
− 1

)
qcorr

α +
(

ω

ω1
− 1

)
qdiff

α , (B 32)

with the thermal conductivity λ defined by (3.46). We now choose qcorr
α to cancel the

spurious second term containing the gradient of Ya:

qcorr
α = 1

2

(
ω1 − 2
ω1 − ω

)
εP

M∑
a=1

Ha∂αYa. (B 33)

This is equivalent to (3.36). Finally, the interdiffusion energy flux is introduced by
choosing the last term qdiff in (B 32) as

qdiff
α =

(
ω1

ω − ω1

)
ρ

M∑
a=1

HaYaVaα, (B 34)

which is equivalent to (3.35). Substituting (B 33) and (B 34) into (B 32), we get the
heat flux q in the energy equation (B 31) as a combination of the Fourier law and the
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interdiffusion energy flux due to diffusion of the species (Williams 1985; Bird et al. 2006):

qα = −λ∂αT + ρ

M∑
a=1

HaYaVaα. (B 35)

Appendix C. Thermodynamic data for benchmarks

Data useful for reproducing the benchmarks in § 4 is provided here for reference.
The data source is the publicly accessible GRI-Mech 3.0 mechanism (Smith et al.
1999) and it is calculated by the open source code Cantera (Goodwin et al. 2018) at a
temperature of 300 K and at a pressure of 1 atm. The symbol Da−b represents the pairwise
Stefan–Maxwell mass diffusivity between the species a and b.

C.1. Diffusion in a ternary gas mixture, § 4.2

Property\Species H2 Ar CH4

ma [g mol−1] 2.01588 39.948 16.0428
μ [kg m−1 s−1] 9.00003 × 10−6 2.31418 × 10−5 1.14289 × 10−5

λ [W m−1 K−1] 0.186929 0.0180602 0.0358402
Cp [J kmol−1 K−1] 28850.8 20786.2 35760.5

DH2–Ar = 8.14543 × 10−5 m2 s−1

DH2–CH4 = 7.37433 × 10−5 m2 s−1

DAr–CH4 = 2.17321 × 10−5 m2 s−1

⎫⎬
⎭ . (C 1)

C.2. Diffusion in opposed jets, § 4.3

Property\Species N2 H2 O2 H2O

ma [g mol−1] 28.0135 2.01588 31.9988 18.0153
μ [kg m−1 s−1] 1.80955 × 10−5 9.00003 × 10−6 2.06307 × 10−5 1.00761 × 10−5

λ [W m−1 K−1] 0.026478 0.186929 0.0265397 0.0255707
Cp [J kmol−1 K−1] 29075.5 28850.8 29388.1 33596.4

DN2–H2 = 7.79236 × 10−5 m2 s−1

DN2–O2 = 2.08575 × 10−5 m2 s−1

DN2–H2O = 2.27013 × 10−5 m2 s−1

DH2–O2 = 8.07143 × 10−5 m2 s−1

DH2–H2O = 8.56433 × 10−5 m2 s−1

DO2–H2O = 8.07143 × 10−5 m2 s−1

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (C 2)
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C.3. Speed of sound, § 4.4

Property\Species H2 Ar CH4 C3H8

ma [g mol−1] 2.01588 39.948 16.0428 44.0965
μ [kg m−1 s−1] 9.00003 × 10−6 2.31418 × 10−5 1.14289 × 10−5 8.23526 × 10−6

λ [W m−1 K−1] 0.186929 0.0180602 0.0358402 0.0183989
Cp [J kmol−1 K−1] 28850.8 20786.2 35760.5 73950

DH2–Ar = 8.14543 × 10−5 m2 s−1

DH2–CH4 = 7.37433 × 10−5 m2 s−1

DAr–CH4 = 2.17321 × 10−5 m2 s−1

DH2–C3H8 = 4.68396 × 10−5 m2 s−1

DAr–C3H8 = 1.03862 × 10−5 m2 s−1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (C 3)

C.4. Kelvin–Helmholtz instability, § 4.5

Property\Species N2 H2O

ma [g mol−1] 28.0135 18.0153
μ [kg m−1 s−1] 1.80955 × 10−5 1.00761 × 10−5

λ [W m−1 K−1] 0.026478 0.0255707
Cp [J kmol−1 K−1] 29075.5 33596.4

DN2−H2O = 2.27013 × 10−5 m2 s−1. (C 4)
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