ON SOME PROPERTIES OF FUNCTIONS REGULAR IN THE UNIT CIRCLE

P.G. Rooney¹

(received Oct. 1, 1957)

The space H_p , $l \le p \le \infty$ consists of those analytic functions f(z) regular in the unit circle, for which $M_p(f;r)$ is bounded for $0 \le r \le 1$, where

$$M_{p}(f;r) = \begin{cases} \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} d\theta \right\}^{1/p}, & 1 \leq p < \infty \\ \sup_{0 \leq \theta \leq 2\pi} |f(re^{i\theta})|, & p = \infty \end{cases}$$

These spaces have been extensively studied.

One well known result concerning these spaces is that if $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $\{a_n\}$ & \mathcal{L}_p for some p, $1 \le p \le 2$, then f & H_q , where $p^{-1} + q^{-1} = 1$, and conversely if f & H_p , $1 \le p \le 2$, then $\{a_n\}$ & \mathcal{L}_q . We propose to generalize this result to deal with functions $f(z) = \sum_{n=0}^{\infty} a_n z^n$ with $\{n^{-\lambda}a_n : n = 1, 2, \ldots\}$ & \mathcal{L}_p , where $\lambda \ge 0$. The resulting generalization is contained in the theorems below.

However, in order to make these generalizations we must first generalize the spaces \mathbf{H}_p . To this end we make the following definition.

DEFINITION. $H_{o,p} = H_p$. For $\lambda > 0$, $H_{\lambda,p}$ consists of those analytic functions f, regular in the unit circle and such that $M_{\lambda,p}(f)$ is finite, where

$$M_{\lambda,p}(f) = \begin{cases} \int_{0}^{1} (1-r^{2}) q^{\lambda-1} (M_{p}(f;r))^{q} r dr, 1$$

Can. Math. Bull., vol. 1, no. 1, Jan. 1958

THEOREM 1. If for some p, $1 \le p \le 2$, and some $\lambda > 0$ f ϵ H_{λ ,p} where f(z) = $\sum_{n=0}^{\infty} a_n z^n$, then $\{n^{-\lambda} a_n, n = 1, 2, ...\}$ ϵ ℓ_q where $p^{-1}+q^{-1}=1$.

Proof. As mentioned previously, the proof for λ = 0 is well-known. Let $\lambda > 0$ and suppose first that $p \neq 1$. Then since $M_{\lambda,p}(f) < \infty$, it follows that $M_p(f;r) < \infty$ for almost all r, $0 \leq r < 1$. But by [2], $M_p(f;r)$ is a steadily increasing logarithmicly-convex function of r. Hence $M_p(f;r) < \infty$ for all r, $0 \leq r < 1$. Thus for each r, $0 \leq r < 1$, $f(re^{i\theta})$ & $L_p(\theta, 2\pi)$. But

$$f(re^{i\theta}) = \sum_{0}^{\infty} a_n r^n e^{in\theta}$$
.

Hence by the Hausdorff-Young theorem [3; p.190] , if $0 \le r < 1$

$$\left(\sum_{0}^{\infty} |a_{n}|^{q} r^{qn}\right)^{1/q} \leq \left\{\frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} d\theta\right\}^{1/p} = M_{p}(f;r),$$

that is, for $0 \le r < 1$

$$\sum_{1}^{\infty} \left| a_{n} \right|^{q} r^{qn} \leq \left(M_{p}(f;r) \right)^{q} - \left| a_{o} \right|^{q}.$$

Multiplying both sides of this last inequality by $r(1-r^2)^{q\lambda-1}$ and integrating from zero to one we obtain

$$\frac{1}{2}\Gamma\left(q\lambda\right)\sum_{1}^{\infty}\frac{\Gamma\left(1+\frac{1}{2}qn\right)}{\Gamma\left(1+q\lambda+\frac{1}{2}qn\right)}\left|a_{n}\right|^{q}\leq M_{\lambda,p}(f)-\frac{\left|a_{0}\right|^{q}}{2q\lambda}<\infty.$$

But from [1; 1.18(4)]

$$\Gamma \left(1+\frac{1}{2}qn\right)/\Gamma \left(1+q\lambda+\frac{1}{2}qn\right) \sim \left(\frac{1}{2}qn\right)^{-q\lambda} \text{ as } n \to \infty,$$

so that

If p = 1, we have for 0 < r < 1 that

$$a_n = \frac{1}{2\pi} \int_0^{2\pi} f(re^{i\theta}) r^{-n} e^{-in\theta} d\theta ,$$

so that

$$|a_n| \leq \frac{r^{-n}}{2\pi} \int_0^{2\pi} |f(re^{i\theta})| d\theta = r^{-n} M_1(f;r) .$$

Hence
$$(1-r^2)^{\lambda} r^n |a_n| \leq (1-r^2)^{\lambda} M_1(f;r) \leq M_{\lambda,1}(f) .$$
Thus
$$\sup_{0 \leq r < 1} (1-r^2)^{\lambda} r^n |a_n| \leq M_{\lambda,1}(f) .$$

But an easy calculation shows that

$$\sup_{0 \le r \le 1} (1 - r^2)^{\lambda} r^n = \left(\frac{2\lambda}{n + 2\lambda}\right)^{\lambda} \left(\frac{n}{n + 2\lambda}\right)^{\frac{1}{\lambda}n} e^{-\frac{\lambda}{2}(2\lambda)^{\lambda} n^{-\lambda}} \text{ as } n \to \infty$$

so that $n^{-\lambda} |a_n| \le K$, n = 1, 2, ... and $\left\{ n^{-\lambda} a_n, n = 1, 2, ... \right\} \mathcal{E} \mathcal{L}_{\infty}$.

THEOREM 2. If for some p , $1 \le p \le 2$, and some $\lambda \geqslant 0$

$$\left\{ n^{-\lambda} a_n , n = 1, 2, \ldots \right\} \mathcal{E} \mathcal{L}_p$$
, and $f(z) = \sum_{n=0}^{\infty} a_n z^n$,

then $f \in H_{\lambda,q}$ where $p^{-1} + q^{-1} = 1$.

Proof. The series for f(z) clearly converges for |z| < 1. The proof for $\lambda = 0$ is well known. Let $\lambda > 0$ and suppose first that $p \neq 1$. Since

$$\sum_{1}^{\infty} |n^{-\lambda} a_{n}|^{p} < \infty$$

$$r^{pn} \leq K(r)n^{-\lambda}, \quad 0 \leq r < 1,$$

it follows that

and

$$\sum_{1}^{\infty} |a_{n}| P_{r}^{pn} < \infty , \quad 0 \le r < 1 .$$

Hence by [3; p. 190] it follows that there is a function $f(r, \theta)$ such that

$$\frac{1}{2\pi} \int_0^{2\pi} f(\mathbf{r}, \theta) e^{in\theta} d\theta = \begin{cases} a_n r^n & n \ge 0 \\ 0 & n < 0 \end{cases}, \quad 0 < r < 1 ,$$

and so that
$$\left\{ \frac{1}{2\pi} \int_0^{2\pi} |f(\mathbf{r}, \theta)|^q d\theta \right\}^{1/q} \leq \left\{ \sum_{n=0}^{\infty} |a_n|^p r^{pn} \right\}^{1/p} .$$

But clearly if 0 < r < 1

clearly if
$$0 < r < 1$$

$$\frac{1}{2\pi} \int_0^{2\pi} f(re^{i\theta}) e^{in\theta} d\theta = \begin{cases} a_n r^n & n \ge 0 \\ 0 & n < 0 \end{cases}$$

so that for each such r, $f(r,\theta) = f(re^{i\theta})$ a.e.,

and our inequality on
$$f(r,\theta)$$
 becomes
$$M_{q}(f;r) = \begin{cases} \frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\theta})|^{q} d\theta \end{cases}^{1/q} \leq \begin{cases} \infty & |a_{n}|^{p} r^{pn} \end{cases}^{1/p}.$$

Hence we have

$$(M_q(f;r))^p \leq \sum_{n=0}^{\infty} |a_n|^p r^{pn}$$

and this inequality remains true for p = 1. For then

$$|f(re^{i\theta})| \leq \sum_{n=0}^{\infty} |a_n| r^n$$
,

and hence

$$M_{\infty}(f;r) \leq \sum_{n=0}^{\infty} |a_n| r^n$$

Thus we have for any p, $1 \le p \le 2$,

$$M_{\lambda,q}(f) = \int_0^1 (1-r^2)^{p\lambda-1} \left(M_q(f;r)\right)^p r dr$$

$$\leq \frac{1}{2} \left[\Gamma(p\lambda) \sum_{n=1}^{\infty} \frac{\Gamma(1+\frac{1}{2}pn)}{\Gamma(1+p)+\frac{1}{2}pn}\right] a_n I^p.$$

But by [1; 1.18(4)],

$$\Gamma(1+\frac{1}{2}pn)/\Gamma(1+p\lambda+\frac{1}{2}pn) \sim (\frac{1}{2}pn)^{p\lambda}$$
,

and thus since

$$\sum_{1}^{\infty} |_{n}^{-\lambda} |_{a_{n}} |_{p} < \infty$$

we must have $M_{\lambda,q}(f) < \infty$, and $f \in H_{\lambda,p}$

REFERENCES

A. Erdélyi et al., Higher transcendental functions I, 1. (New York, 1953).

- 2. G.H. Hardy, The mean value of the modulus of an analytic function, Proc. Lond. Math. Soc. 14 (1914), 269-277.
- 3. A. Zygmund, <u>Trigonometrical series</u>, (Warsaw, 1935).

University of Toronto

 This work was done in part while the author was a holder of a summer research associateship of the National Research Council of Canada.