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Abstract

Inferences consistent with “recognition-based” decision-making may be drawn for various reasons other than recog-
nition alone. We demonstrate that, for 2-alternative forced-choice decision tasks, less-is-more effects (reduced perfor-
mance with additional learning) are not restricted to recognition-based inference but can also be seen in circumstances
where inference is knowledge-based but item knowledge is limited. One reason why such effects may not be observed
more widely is the dependence of the effect on specific values for the validity of recognition and knowledge cues. We
show that both recognition and knowledge validity may vary as a function of the number of items recognized. The impli-
cations of these findings for the special nature of recognition information, and for the investigation of recognition-based
inference, are discussed.
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1 Introduction

Investigations of the recognition heuristic (RH) typically
involve participants making judgments about items about
which they have limited knowledge, such as the rela-
tive sizes of cities in the USA. For example, a partici-
pant might be presented with the two cities San Diego
and San Antonio and asked which is bigger. In the clas-
sic work of Goldstein and Gigerenzer (2002), it is as-
sumed that the participant will guess if they recognize
neither of the items, they will use whatever additional
knowledge is available to make a decision if they rec-
ognize both of the items and, crucially, if they recognize
only one of the items, they will choose this item as the
larger without consulting any other cues or searching for
further information (the Recognition Heuristic or RH).
This is because items of larger size are more likely to
be encountered, hence more likely to be recognized (the
recognition-magnitude correlation). Recognizing one of
the two items is thus a useful cue for choosing the recog-
nized item. If both items are recognized, however, addi-
tional knowledge is needed to make the decision and such
additional knowledge may be very limited. Recognition-
driven inference can give rise to the less-is-more effect
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(LiME), whereby individuals who recognize many of the
items often perform worse than individuals who recog-
nize fewer of the items (Goldstein & Gigerenzer, 2002).

The LiME is a counter-intuitive finding, predicted to
occur under given circumstances if the RH is applied
(Goldstein & Gigerenzer, 2002; McCloy, Beaman &
Smith, 2008). The counter-intuitive nature of the LiME
prediction allows for a strong test of the RH and has
been used as a rhetoric device to promote the heuris-
tic (Borges, Goldstein, Ortmann & Gigerenzer, 1999;
Gigerenzer, 2007; Schooler & Hertwig, 2005). Evidence
for the LiME has also been observed empirically (Frosch,
Beaman & McCloy, 2007; Goldstein & Gigerenzer, 2002;
Reimer & Katsikopoulos, 2004) but, counter to this, fail-
ures to observe the effect have also been cited in at-
tempts to refute the RH (e.g., Boyd, 2001; Dougherty,
Franco-Watkins & Thomas, 2008; Pohl, 2006). At least
as originally introduced, a LiME is a mathematical ne-
cessity (given certain assumptions) rather than a proof of
recognition-based inference. Nevertheless, the consensus
appears to be that the observation of a LiME implies that
the recognition heuristic was employed (Pachur, Mata &
Schooler, 2009), and that the use of knowledge will di-
lute or reduce the size of the LiME (e.g., Hilbig, Erd-
felder & Pohl, 2010). Here we explore whether LiMEs
are also mathematical necessities if those assumptions are
altered somewhat — specifically if inference is no longer
recognition-based but instead makes reference to some
form of knowledge.
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LiMEs need not appear only when the RH is studied
in isolation. They are also predicted by formal mod-
els of knowledge-based inference if those models ex-
ploit the recognition principle. Gigerenzer and Gold-
stein (1996) used the appearance of the effect as part of
their comparison of five integration algorithms with the
Take The Best (TTB) algorithm (Gigerenzer & Goldstein,
1996; pp. 656–661). TTB and all of the integration algo-
rithms were implemented such that, in each case, recog-
nition was used as a cue if only one item was recognized
(p. 657). Unsurprisingly, all six algorithms produced a
non-monotonic relationship between recognition and cor-
rect inference (Gigerenzer & Goldstein, 1996, Figure 6).
However, as we will demonstrate, LiMEs can be pro-
duced by knowledge-based decision-making processes
which use neither recognition-driven inference nor the re-
lated speed-of-retrieval inference that Schooler and Her-
twig (2005) have shown produces similar advantageous
effects for moderate over lesser forgetting rates. The first
aim of this paper is to prove by analytical means that
LiMEs can be produced by knowledge-based decision-
rules. They are not unique to recognition-driven infer-
ence and cannot therefore be viewed as providing uncon-
ditional support for this hypothesis. Our second aim is to
examine, using the basic framework developed, how both
recognition and knowledge validities vary as a function
both of the correlation between recognition and magni-
tude and the number of items recognized.

1.1 Moderators of the recognition-
magnitude correlation.

In Goldstein and Gigerenzer’s original (2002) formula-
tion of the RH, additional knowledge is used only as
a tie-breaker to decide between two recognized items.
When a single item is recognized, inference is purely
recognition-driven. This aspect has aroused much inter-
est and has proven controversial (Gigerenzer & Brighton,
2009; Hilbig & Pohl, 2008; Hilbig, Pohl & Bröder, 2009;
Newell & Fernandez, 2006; Newell & Shanks 2004;
Pachur & Hertwig, 2006; Pachur, Bröder & Marewski,
2008; Pohl, 2006; Richter & Späth, 2006). In an alter-
native formulation, limited knowledge can be used even
when only one item is recognized. This alternative for-
mulation is worth examining because a number of ac-
counts, generally favorable to the RH, have seemingly
relaxed the criteria for its application. For example, Volz
et al. (2006, p. 1935) conclude, on the basis of neu-
roimaging evidence that, “the processes underlying RH-
based decisions go beyond simply choosing the recog-
nized alternative.” Additionally, the discrimination in-
dex proposed by Hilbig and Pohl (2008) led them to con-
clude that a substantial number of recognition-consistent
choices were informed by further information other than

recognition alone.
The relationship (whether positive or negative) be-

tween the recognition of an item and its magnitude is
clearly central to the RH. It works because, in the tasks to
which this approach has been successfully applied, larger
items are more prominent (more newsworthy, more im-
portant, etc.) than smaller items and this leads to larger
items being more likely to be recognized. However, if
the question related to the relative size of pairs of birds
and the single recognized item was a house-sparrow, the
Recognized → Larger inference makes much less sense
than when the same options are presented but the question
relates to the relative population size of the two birds.1

This highlights the fact that recognition actually corre-
lates with prominence, which may not itself correlate
with all forms of magnitude per se. The prominence-
recognition correlation also may not hold — or at least,
it may vary in size — if the items experienced as promi-
nent vary between individuals. One potential moderating
factor is sampling bias. The newspaper example given by
Goldstein and Gigerenzer (2002) is a good case. In this
example, it is suggested that a city may be recognized if it
is frequently mentioned in a newspaper, and that a larger
city is more likely to be so mentioned. The individual re-
ceiving the newspaper is implicitly assumed to be a fairly
passive processor of the information contained within the
newspaper. No consideration is given to the potential dif-
ference between an individual who actively seeks out a
newspaper and one who does not, or to potential dif-
ferences between choice of reading matter. These may
have very different content (e.g., the New York Review of
Books versus the National Enquirer), and each of which
might be sought out, or passively encountered, to differ-
ent degrees by different individuals or groups of individ-
uals. Calculating the recognizability of a city from the
relative frequency with which it is mentioned in any one
publication may be misleading if applied to a group of
individuals who disproportionately sample from another
publication or from different sections of the same pub-
lication (e.g., the sporting pages versus the “style” sec-
tion). Overall, biased sampling of this type may be good
or bad for the performance of the heuristic, depending on
whether a disproportionate number of “large” items are
sampled, which would enhance the validity of recognition
(e.g., a soccer fan will recognize more towns with premier
league soccer teams) or whether sufficient “small” items
are sampled to reduce the magnitude-recognition corre-
lation (e.g., a golf fan will recognize more towns with
famous golf courses, but such towns do not on the whole
tend to be large in size).

A basic premise in what follows is that, for any given
individual, there are several subgroups of items which

1Thanks to Pete Bibby for this example
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the individual is able to recognize and about which they
may also have partial knowledge. This is particularly
likely if they are local to the individual in some way or
if they form part of a set of items of special interest to
that individual. For example, the third author has ob-
served anecdotally that the only German citizens of her
acquaintance who reliably recognize the Yorkshire city
of Leeds are football fans. Coincidentally, British citi-
zens of her acquaintance show the same pattern for the
Nordrhein-Westfalen city of Leverkusen. Hence, anecdo-
tally at least, it appears that football fans and those unin-
terested in the game may have differential access to sub-
sets of European cities. Special access to information re-
garding subgroups may also vary with the choice domain,
a point which is easily confirmed using existing empirical
data. For example, by-item analysis of data taken from
an experiment by McCloy, Beaman, Frosch and Goddard
(2010), in which a group of 40 participants were asked
to indicate which of a group of famous individuals they
recognized, found no significant effect of the gender of
the participant on the overall recognition rate, F(1, 43)
= 2.3, p = .14 but a significant effect of the reasons why
the individuals rose to fame (as either sports personali-
ties, fashion and show-business professionals, rock stars
or business people), F(3, 43) = 13.48, p < .001, and a
significant interaction between this factor and the gen-
der of the participant, F(3, 43) = 13.44, p < .001. Males
recognized, on average, sports personalities 78% of the
time (females = 55%) and rock stars 75% of the time (fe-
males = 66%). In contrast, females recognized fashion
and show-business professionals 57% of the time (males
= 33%) and the two genders were both poor at recogniz-
ing business people, males = 16%, females = 11%. Thus,
gender is a factor which provides, or at least contributes
to, differential access to different subsets of rich and fa-
mous people. In what follows, we consider similar sit-
uations where, for an individual within the environment,
there is no simple correlation between recognition and
magnitude because subsets of the items are prominent for
reasons unconnected to magnitude (e.g., the age, gender
or special interests of the individual).

2 Study 1: Models predicting the
LiME

To formally examine the appearance of LiMEs, we sup-
pose a pool of N items, split into several subsets A,
B, C, . . . . Within each subset the participant is able
to recognize u v, w, . . . items, respectively. In a typi-
cal test of recognition-driven inference, the experimenter
selects items quasi-randomly from the pool. Since the
constraints on the experimenter are unknown, a random
selection from N is assumed. In the basic case, pairs

of items are chosen, and the participant’s task is to say
which is larger. For purposes of exposition, we restrict
attention to situations with just three subsets. The models
can easily be extended to other cases (e.g., the participant
is asked to choose between more than two items [Frosch
et al., 2007; McCloy et al., 2008] and/or the pool is split
into more than three subsets).

2.1 The basic framework

Suppose that, when presented with a two-alternative
forced choice task, an individual recognizes from among
the two alternatives i items from subset A, j items from
subset B, and k items from subset C. On a given trial,
only two items are presented, so i, j, k range from 0 to
2, with i + j + k≤2. That is, the number of items rec-
ognized on any trial could vary from 0–2 for any of the
three subsets but the total number recognized obviously
cannot exceed the two items presented. pijk is the prob-
ability that this event occurs. (For example, if i = 1,
j = 1, and k = 0, pijk is the probability of recognizing
one item from subset A and one from subset B.) pijk is
obviously dependent on how many items the participant
can recognize in each of the subsets, but is independent of
the decision rule adopted. αijk is the probability of suc-
cess, given the recognition of i, j and k items from their
respective subsets. This parameter is dependent on the
decision rule the participant adopts and is the only thing
that distinguishes the models we consider. The overall
probability of success P (u, v, w) is given by:

P (u, v, w) = Σijkαijkpijk (1)

Having outlined the basic framework, we can present
the models. The RH model requires little introduction,
the alternative against which it is to be compared we re-
fer to as LINDA (Limited INformation and Differential
Access).

2.1.1 The Recognition Heuristic (RH) model

The distinguishing feature of the RH model is that the
participant chooses the recognized item when only one
item is recognized. So α000 = 0.5 (no item recog-
nized, pure guess); α100, α010, and α001 reflect the suc-
cess of the recognition heuristic (they should be greater
than chance if the recognition heuristic has some valid-
ity, and should be quite large for the clearest LiMEs);
α110, α101, α011, α200, α020, α002 reflect use of knowl-
edge (two items are recognized, so additional knowledge
is used to discriminate them; LiMEs should be clearest if
these knowledge probabilities are close to chance).
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2.1.2 The Limited INformation and Differential
Availability (LINDA) model

As the name implies, this model requires two basic as-
sumptions:

1. The limited information assumption. For each rec-
ognized item, the individual has relevant but limited
information about its size (e.g. that the size is above
the population median). For the sake of simplicity,
this is presented as if it were criterion-based knowl-
edge rather than inference from cues. However,
recent data show little impact on the use (or non-
use) of recognition-based inference when criterion
knowledge is available (Hilbig et al., 2009). Reanal-
ysis of data by Hilbig et al. (2009) also shows that
— at least for the domain they examined (the size
of cities in Belgium) — participants showed some-
thing approximating median knowledge. Hilbig et
al. recorded participants’ estimates of the popula-
tions of each of the cities they were asked to con-
sider so it is possible to calculate, per participant,
the probability that they correctly judged whether
the city in question was above or below the sam-
ple median.2 This information may not be totally
reliable, and we use parameters pA, pB , . . . for
the probabilities that information regarding a recog-
nized item belonging to subsets A, B, . . . is ac-
curate. From Hilbig et al.’s data, participants were
judging an item to be the correct side of the sam-
ple median on 69% of occasions on average (s.d. =
13%). In what follows, for the most part, we assume
pA = pB = pC = 1 as this is the simplest case
but varying this parameter (for example changing it
from 1 to .7, or 70% of cases correct) only alters
the magnitude of the effects observed and does not
affect the general conclusions.

2. The differential availability assumption. Some sub-
sets are more accessible than others so that, for a
given individual, more items may be recognizable
within one subset than within another. Note that this
assumption does not necessarily imply no correla-
tion between magnitude and recognition, but it al-
lows the extent of this correlation to be manipulated
by varying the relative recognizability of the subsets.

The limited information assumption assumes that there
is, at the least, some information available at the time of
decision-making against which to evaluate the usefulness
of choosing the recognized item in any given case. The
reliability of this information may also vary. Either the
information may be incorrect or (potentially) it may be

2Thanks to Ben Hilbig for making these data available.

misapplied in some way. For simplicity, these possibil-
ities are both reflected in the value of a single parame-
ter, as noted in assumption 1. The differential availability
assumption states merely that, within any set, the items
within some subsets are more or less recognizable than
the items within some other subset.

2.1.3 Numerical example

For the LINDA model described above, consider the sit-
uation where individuals have what we will term median
knowledge of items from pool N , i.e. they accurately
know whether each recognized item is above or below
median. Subset A includes items in the top quartile of
the size distribution, subset B includes items in the sec-
ond highest quartile of the size distribution, and subset
C contains all the remaining items. The Appendix gives
the derivations of explicit expressions for all the terms
in Equation (1). In the first example, it is assumed for
purposes of exposition that median knowledge is perfect,
i.e., that the median knowledge about a recognized item
is accurate with no chance of error (pA = pB = pC = 1).
This assumption is relaxed in later examples.

In order to formally compare the RH model with
the LINDA model, the models are designed to perform
equally well when all items are recognized. In the current
simple example, where all items are recognized, u and v
are the number of items recognized from subsets A and
B, which constitute the top two quartiles of the distribu-
tion, respectively, and w is the number of remaining rec-
ognized items (subset C), so if u = v = 25 and w = 50,
the total number recognized, then n = N = 100. The
probabilities of a correct inference when recognizing 2
items in any of the possible combinations that may occur
(e.g., 2 from u, or 1 from u and 1 from v, and so on)
are given by the equations presented in sections 1 and 3
of the Appendix. LINDA’s performance with full recog-
nition is the sum of these probabilities, which works out
as 0.7525, so in the RH model probabilities of success
when both presented items are recognized were also set
to 0.7525. The size of the pool from which the test items
are drawn is set at 100 but the same pattern of results
is obtained for all large values of N . The key prediction
is the relation between the proportion of correct decisions
(P in equation (1)) and n, the number of items in the pool
the participant can recognize.

To examine how these models interact with the recog-
nition of items from different subsets, consider the cases
where there is a close link between the recognition of
items and the subsets from which they are drawn. The no-
tation ABC means that items from subset A are all more
recognizable than the items from subset B, which in turn
are all more recognizable than the items from subset C.
This strict ordering of recognition is obviously unrealistic
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Figure 1: Proportion correct using LINDA and the RH for different orderings of subsets (and hence different
recognition-magnitude correlations). ABC ordering is equivalent to a recognition-magnitude correlation of ρ = .919
and ACB ordering is equivalent to ρ = .306.
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but is useful to demonstrate relations between recognition
and the properties of the two models and could easily be
relaxed to allow some overlap between the recognition
of items from different subsets. If this constraint is en-
forced, and the equations given in the Appendix calcu-
lated accordingly, then the results shown in Figure 1 are
obtained.

Figure 1 shows the performance of LINDA and the RH
model for two different magnitude-recognition orderings:
ABC (items in the top quartile of the size distribution are
most recognizable and items below median are least rec-
ognizable) and ACB (items in the top quartile are most
recognizable, then items from below the median and fi-
nally items from the second quartile). ABC ordering
corresponds to a strong magnitude-recognition correla-
tion (ρ = .919) and ACB ordering to a smaller, but still
positive, correlation between magnitude and recognition
(ρ = .306). The plausibility of such an ordering of recog-
nition might be queried, but it is fairly easy to generate
scenarios in which particularly large items are most rec-
ognizable, then particularly small items. For cities, as al-
ready mentioned, the possession of a good golf course en-
hances its recognizability (in the UK: Carnoustie, Lytham
St Annes, St Andrews, Sunningdale, Turnberry) but good
golf courses are not, for the most part, associated with
large cities because of the space they require. The ABC

ordering produces effects we would expect from the lit-
erature. The RH model, using the recognition heuristic,
shows the expected LiME, while the knowledge-based
LINDA model shows a monotonic relation between pro-
portion correct and number of recognizable items.

The situation is quite different for the ACB ordering:
here it is LINDA that produces an inverted-U shaped
function and a LiME. LiMEs therefore cannot necessar-
ily imply use of the recognition heuristic — even given
a positive magnitude-recognition correlation — but may
occur for other reasons. The inverted-U shaped func-
tions that characterize the LiME indicate that a task be-
comes more difficult once the number of recognizable
items passes a certain level. In the case of the RH model
and the ABC ordering, this is because “easy” decisions
(select the recognized item when only one item is recog-
nized) are gradually outnumbered by “difficult” decisions
(choose between items, both of which have been recog-
nized) as the number of recognizable items increases. In
the case of LINDA and the ACB ordering, moderate lev-
els of recognition produce many easy decisions (discrim-
inating a recognized item drawn from subset A from a
recognized item drawn from subset C) but the decisions
become more difficult when items of intermediate size,
from subset B, begin to join the pool of recognizable
items as the number of recognizable items increases. If
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Figure 2: Proportion correct for the LINDA model when discrimination between two recognized items is at
chance. The same calculations can be made for the RH but are not given here. A spreadsheet to simulate
the RH was produced by McCloy et al. (2008) and can be used for calculating the RH’s predictions for situa-
tions corresponding to those in this Figure depicted for LINDA. The spreadsheet is available to download from
http://www.personal.rdg.ac.uk/~sxs98cpb/philip_beaman.htm although note the calculations in this spreadsheet as-
sume automatic application of the RH, even when recognition is not a good cue.

0 10 20 30 40 50 60 70 80 90 100
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

n: number recognized

P
ro

b
ab

ili
ty

 c
o

rr
ec

t

 

 

rho=0.8
rho=0.5
rho=0.1
rho=0

the size of the LiME is defined as the maximum propor-
tion correct minus the proportion correct when n = N
(e.g., McCloy et al., 2008) then the effect size for the RH
and for LINDA is similar when LINDA has totally re-
liable information (for ordering ABC, RH effect size =
.06, for ordering ACB, LINDA effect size = .06). The
size of the effect is reduced if LINDA’s information is
less reliable (e.g., if pA = pB = pC = 0.7, effect size
for ordering ACB = .03) but increases if the assumption
is made that LINDA has difficulty with discriminations
when both items are recognized.

In calculating LINDA’s predictions, we previously as-
sumed no extra difficulty was involved in having to
choose between two recognized items, but this assump-
tion might not be realistic: choosing between two rec-
ognized items may, in some instances, be extremely dif-
ficult. An extreme version of this is shown in Figure
2. Here it is assumed that LINDA makes decisions in
the way already outlined when only one item is recog-
nized, but does not have the capacity to make a deci-
sion when both items are recognized, and so is obliged
to guess. The situation resembles one outlined in Gold-
stein and Gigerenzer (2002, pp. 84–85) in which German

participants were experimentally exposed to the names
of US cities without being presented with any further in-
formation which might be of use, and is also compara-
ble to Schooler and Hertwig’s (2005) ACT-R implemen-
tation of the recognition heuristic, which also assumed
chance level performance when both items were recog-
nized (Schooler & Hertwig, 2005, p. 614).

Figure 2 shows clear LiMEs also appear for this ver-
sion of LINDA. Interestingly, unlike the RH model,
which requires quite large magnitude-recognition corre-
lations to allow recognition validity to exceed knowledge
validity, LINDA shows LiMEs for all values of ρ, al-
though the largest LiMEs occur for the largest values of
ρ. No “recognition validity” parameter was built into
LINDA a priori (although clearly the validity of recog-
nition is to some extent reflected in the values of ρ) so
these results are not subject to the criticism that it is triv-
ial to show LiMEs if knowledge validity is set sufficiently
low relative to recognition validity (McCloy et al., 2008).
Once again, then, a knowledge-based decision model pro-
duces LiMEs, and thus — once again – LiMEs are not a
unique prediction of the RH model.
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2.2 Discussion

Whilst the RH and LINDA give LiMEs in different cir-
cumstances, the effects are produced for essentially the
same reasons. When relatively few items are recogniz-
able, the task is easier than when many items are rec-
ognizable. In the case of the RH model, when an in-
termediate number of items are recognizable the individ-
ual is more frequently confronted with the easy decision
of selecting the one item recognized, and this position
is reversed when many items are recognizable. For the
LINDA model, performance for intermediate levels of
recognition is good because the participant is often asked
to make the easy discrimination between an item drawn
from top quartile (subset A) and an item drawn from the
bottom quartiles (subset C). Adding items from the sec-
ond highest quartile (subset B), makes the task more dif-
ficult and leads to a drop in performance. Natural exam-
ples of highly recognizable subsets comprised of small
items (C) are required to make this analysis plausible.
In addition to the examples of cities with famous golf
courses already mentioned, there are numerous remote
towns famous for being inaccessible (and therefore nec-
essarily small): Alice Springs, Lerwick, Machu Picchu
and Spitzbergen, and in other domains, e.g., the popula-
tion sizes of various animal species, there are animals fa-
mous for being endangered (e.g., Giant Panda, Gorilla)
which are more immediately recognizable than animal
species with sustainable but by no means large popula-
tions.

The fluency rule, discussed by Schooler and Hertwig
(2005), also produces similar results to LINDA and, once
again, for similar reasons. In the context of the fluency
rule, the “less” of less-is-more refers to forgetting rates
rather than recognition rates as in the RH. In that case, in-
termediate rates of decay allow for better discrimination
between items than low rates of decay (items retrieved
more quickly are presumed to be larger). This leads to
the only other “knowledge” based LiME of which we are
aware. Crucially, however, the fluency rule does not use
or require further knowledge beyond the fact of fast re-
trieval. Thus, although it produces LiMEs of a kind, these
are arguably recognition rather than knowledge-driven.
Knowledge about the item itself is never consulted, only
knowledge pertaining to the act of retrieval or recogni-
tion. Regardless of the validity of this argument, our re-
sults nevertheless suggest that LiMEs might be both more
prevalent, and more difficult to ascribe to a single strat-
egy, than previously assumed. LINDA demonstrates that
LiMEs can occur for knowledge-based decisions and also
that, when discrimination between two recognized items
is sufficiently difficult, these effects can occur regardless
of the recognition-magnitude correlation.

2.2.1 Reasons for the elusiveness of less-is-more

The above argument seems to imply that LiMEs should
be observed empirically far more readily than seems to
be the case. However, whilst the effect has been empiri-
cally verified on some occasions (Borges, Goldstein, Ort-
mann, & Gigerenzer, 1999; Frosch et al., 2007; Goldstein
& Gigerenzer, 2002; Reimer & Katsikopoulos, 2004;
Snook & Cullen, 2006) it has not been observed univer-
sally (Boyd, 2001; Pachur & Biele, 2007; Pohl, 2006).
One reason for this may be that LiMEs occur in differ-
ent situations for different reasons. Whilst it is possible
to find a LiME under circumstances where a LINDA-like
decision-rule might be operating, such an effect would
be easier to discover if the magnitude-recognition cor-
relation was moderate rather than large, and when the
information was particularly reliable, or the discrimina-
tion between two recognized objects particularly diffi-
cult (see Figure 2). Consequently, it would be relatively
easy to miss such an effect if the experimental situation
was deliberately designed to maximize the magnitude-
recognition correlation, as many have been (e.g., Pohl,
2006). There is a clear difference between a model show-
ing a LiME “in principle” when all factors are under con-
trol and a LiME appearing in a standard experimental de-
sign which may be statistically underpowered to show a
small LiME in a noisy environment. One way around
this might be to partition subjects into groups based upon
how much knowledge they appear to employ to inform
nominally “recognition-based” inferences (using e.g., the
methods developed by Hilbig and Pohl (2008) or Hilbig
et al. (2009)). It might then be possible to examine
whether the appearance or size of any LiME is negatively
associated with knowledge used (as proponents of the RH
might propose) or if the relation is more complicated (as
LINDA would predict).

A second and more interesting possibility is that insuf-
ficient attention has been paid to some of the parameters
that need to be controlled for a situation to arise where
LiMEs would be expected. For example, the key pre-
requisite of the LiME produced by the RH is that recog-
nition validity should exceed knowledge validity. Reli-
able manipulation of the recognition and knowledge va-
lidity parameters can be problematic, however. In Gold-
stein and Gigerenzer’s (2002) account, it is implicit that
both recognition and knowledge validity are, or can be,
independent of n, the number of recognizable items in
the pool of items from which the stimuli are drawn. For
example, Figure 2 (p. 79) of their account illustrates the
LiME by holding recognition validity constant and vary-
ing knowledge validity and number recognized indepen-
dently (between and within hypothetical individuals, re-
spectively). This is important because n may not be under
experimental control, hence a priori estimates of recog-
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nition and knowledge validities may be misleading. Later
in their paper, Goldstein and Gigerenzer (2002, p. 80)
acknowledge that, “recognition and knowledge validi-
ties usually vary when one individual learns to recognize
more and more objects from experience” but they also
appear to endorse the view that, if multiple individuals
are involved, who recognize different numbers of objects,
it is possible that “each individual has roughly the same
recognition validity” (Goldstein & Gigerenzer, p. 80).
However, in situations where the recognition-magnitude
correlation is high, an individual who recognizes only a
few items from the pool of items will mostly recognize
very large items. Hence, on any given trial, a recognized
item for that individual is likely to be larger than the un-
recognized item. In contrast, an individual who recog-
nizes more items from the pool will encounter more trials
when the single item they recognize is not larger than the
unrecognized item.

It thus seems a priori unlikely that recognition validity
can be independent of n, where n varies among individ-
uals. Similarly, when both items are recognized and indi-
viduals are obliged to use their knowledge, an individual
who only recognizes a few items from the pool is likely to
encounter items of a similarly large magnitude when both
are recognized. Such items may be less discriminable
than the pairs of items — drawn from a greater range of
sizes — encountered by an individual able to recognize
many items. Hence it also seems a priori unlikely that
knowledge validity can be independent of n.

To formally test the specific question of whether recog-
nition and knowledge validities can be independent of n,
it is possible to derive values associated with both recog-
nition and knowledge validity and examine the effect of
varying n upon these values. First, consider recognition
validity. Goldstein and Gigerenzer (2002) present two
computer simulations (pp. 80–82) that partially address
this by varying recognition validity varied as a function of
either n (number recognized) or N (the size of the pool
from which the stimuli are taken). Their results, how-
ever, are presented only in terms of overall accuracy (the
percentage or proportion of correct inferences calculated
across all choices, including those informed by knowl-
edge or the result of guesswork) rather than directly ex-
amining the effects upon recognition validity itself. Us-
ing the previously presented notation, the probability of
being correct given that only one of the two presented
items is recognized is as follows:

α100p100 + α010p010 + α001p001

p100 + p010 + p001
(2)

The probability expressed in this equation is obvi-
ously equivalent to recognition validity and can be cal-
culated for both LINDA and the RH model according to
the method outlined in the Appendix. Figure 3 shows

recognition probabilities, conditional on recognizing one
item of a stimulus pair (i.e., “recognition validity”), for
two versions of LINDA (high quality knowledge with
pA = pB = pC = 1, and low quality knowledge with
pA = pB = pC = 0.7) and for the RH model. Note
that for LINDA, the “recognition validity” represented by
these graphs represents only the validity of recognition-
consistent inference because LINDA always uses some
(albeit limited) knowledge, whereas for the RH model the
values so expressed represent the validity of recognition-
driven inference. Three correlations (low, medium and
high) between recognizability and size were obtained, as
previously.

As expected, the RH model’s performance when just
one of the two items is recognized improves with ρ. This
is also true for the high quality knowledge version of
LINDA (pA = pB = pC = 1) and the same effect is
present but in a weaker form for the low quality knowl-
edge version of LINDA (pA = pB = pC = 0.7).
Crucially, the performance of both models varies with
n. These results show formally that observed recogni-
tion validity, as assessed from actual performance, can
vary according to other aspects of an individual’s knowl-
edge. This effect is particularly marked for large ρ. Next,
consider knowledge validity. Similarly to recognition va-
lidity, the conditional probability of a correct inference
given that both items are recognized can be derived and
is expressed in our notation as follows:

α110p110 + α101p101 + α011p011

p110 + p101 + p011
(3)

Figure 4 shows probabilities of correct inference, con-
ditional on recognizing both items of a stimulus pair
(knowledge validity), for LINDA, varying recognition-
magnitude correlations. This is the high quality knowl-
edge with pA = pB = pC = 1, a lower quality knowl-
edge version with pA = pB = pC = 0.7 produces
lower levels of performance overall but almost identi-
cal patterns in response to the same variations in n and
ρ. Knowledge validity for situations in which the RH is
the object of attention is often set at an arbitrary value
(e.g., Goldstein & Gigerenzer, 2002; Schooler & Her-
twig, 2005) but we would expect it to vary as a function of
n and ρ for many knowledge-based heuristics, as it does
for LINDA, although the specifics will depend upon the
exact nature of the inference rule.

In conclusion, finding LiMEs is dependent not only
upon identifying the decision rule and circumstances un-
der which they are expected but also upon accurately
estimating — or manipulating — n in order to obtain
the recognition- and knowledge-validity parameters re-
quired. Given this, it is perhaps less surprising than it
initially appeared that such effects, which would appear
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Figure 3: Probability correct, given only one of two items are recognized according to recognition (RH) and
knowledge-based (LINDA) models. This is equivalent to Goldstein and Gigerenzer’s (2002) concept of recognition
validity for the RH model and to the validity of recognition-consistent inference for the LINDA model. The x-axis
only runs from 10–90 items recognized (out of a possible 100) because the graph plots probability correct given that
exactly one of the two presented items is recognized.
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Figure 4: Probability correct, given both items are recognized, for LINDA as a function of n and ρ. This is equivalent
to Goldstein and Gigerenzer’s (2002) concept of knowledge validity.
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to be a mathematical necessity, may sometimes be elusive
when investigated empirically.

3 General discussion

The aim of the current paper was not to present unequivo-
cal support for LINDA as in some way a better, more ac-
curate, or more comprehensive model of decision-making
than the RH, or to refute the RH as a model (indeed, it
has proven far more productive than its underlying sim-
plicity might lead one to believe). We have instead at-
tempted to meet the rather more modest aim of giving an
existence-proof that, generally, disentangling recognition
from other forms of information is more difficult than it
may first appear. In this context, LINDA is best viewed
as an analytical tool to enable us to make these arguments
in a mathematically rigorous way. The counter-intuitive
nature of LiMEs was previously viewed as providing
a strong test of recognition-driven inference given that
LiMEs are predicted by the RH. This position is weak-
ened by the demonstration that LiMEs can easily be pro-
duced using a set of assumptions in which recognition-
only inference plays no part.

Criticisms of LiMEs as a means of promoting
recognition-driven inference could perhaps be interpreted
as an argument against the proposal that inference might

sometimes be recognition-driven. It should be empha-
sized that this was not the intent. Rather, we wished
to provide a demonstration that findings which initially
seem favorable to such a position may not necessarily be
as conclusive as they first appear. The absence, as well as
the presence, of LiMEs is also less informative than some
have assumed (e.g., Boyd, 2001; Dougherty et al., 2008;
Pohl, 2006), and for similar reasons. The recognition va-
lidities for both recognition-consistent and recognition-
driven inferences are similarly dependent upon variations
in n, which is not ordinarily under experimental control.
For at least one form of knowledge-based inference (that
of LINDA) knowledge validity itself is also a function of
n. It is possible therefore that both published demonstra-
tions of LiMEs and published failures to obtain such an
effect employed different de facto recognition and knowl-
edge validities than those assumed a priori. A positive
contribution therefore is to suggest that future studies
along these lines will need to take such factors into ac-
count.

Finally, LINDA can be applied either in tandem or
in opposition to the RH. For example, the rule “Apply
knowledge (e.g., LINDA) if both items are recognized
and apply the RH if only one item is recognized” is stan-
dard procedure for many heuristics (e.g., Gigerenzer &
Goldstein, 1996, examined six different procedures that
made use of the recognition principle when knowledge
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failed and only one item was recognized). However, “Ap-
ply LINDA whenever possible but if LINDA does not
provide usable information for this item, apply the RH” is
also a valid strategy and one which might prove superior
if LINDA is particularly reliable. This latter statement
reduces to the assertion that a minimal level of confirma-
tion or refutation will be sought when only one item is
recognized and that “mere” recognition will be employed
only if and when this minimal test fails to produce usable
knowledge. This assertion is consistent with recent data
by Hilbig and Pohl (2008).

In the current formulation, LINDA always has access
to median knowledge for the recognized items (though
this information may not always be correct). Other
LINDA-like models could be developed where some rec-
ognized items may not have median knowledge associ-
ated with them, although we do not go into detail about
such items here. The key difference between LINDA and
the recognition heuristic is that sometimes LINDA rec-
ognizes items which it believes are below median. This
enables it to guess correctly, in situations where only
one item is recognized, that the recognized item is the
smaller of the pair. In contrast, provided the magnitude-
recognition correlation is positive, the RH always guesses
that the recognized item is larger (the converse also ap-
plies: where the magnitude-recognition correlation is
negative, the RH will always guess that the recognized
item is smaller whereas LINDA will sometimes know
better). In circumstances where LINDA believes all the
items it recognizes are above median, LINDA and the
RH make identical predictions. There is nothing mag-
ical about using median knowledge in our modeling, it
is simply a tractable way of characterizing limited infor-
mation. Any model that has the property that it knows
that some of the items it recognizes are small, but in gen-
eral has very limited information, is likely to behave in a
LINDA-like manner.
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Appendix
1. Derivation of the values of pijk in Equation (1): A
total sample of N = 100 items is assumed, of which n are
recognized. n is systematically varied between 0–100 in
all the studies reported here.

u, v and w are the numbers of items recognized from
each of the subsets A (comprising items only from the
top quartile), B (second quartile) and C (below median).
These can be used to calculate n.

The probabilities associated with recognizing 0, 1 or 2
items from u, v and w on any given trial (pijk) can then
be calculated as follows:

Probabilities associated with recognizing none of the
items from u, v or w:

p000 =
N − u− v − w

N
· N − u− v − w − 1

N − 1

=
(N − u− v − w)(N − u− v − w − 1)

N(N − 1)

Probabilities associated with the recognition of only
one item:

p100 =
2u

N
· N − u− v − w

N − 1
=

2u(N − u− v − w)
N(N − 1)

This is the probability that only one of the two items is
recognized and it is in the top quartile (a member of u).

Probabilities that the item recognized is from the sec-
ond quartile, or is below the median, and that the other
item is not recognized can be calculated by substituting v
or w, respectively, for u in the first term, giving:

p010 =
2v(N − u− v − w)

N(N − 1)

p001 =
2w(N − u− v − w)

N(N − 1)

Probabilities associated with the recognition of both
items:

p110 =
2uv

N(N − 1)

(for u and v, so one item is in the top quartile and one
item is in the second quartile)

p101 =
2uw

N(N − 1)

p011 =
2vw

N(N − 1)

(as above, substituting v and w where appropriate)

p200 =
u(u− 1)

N(N − 1)

(where both items are in the top quartile, both are mem-
bers of u)

p020 =
v(v − 1)

N(N − 1)

p002 =
w(w − 1)
N(N − 1)

(as above, substituting v and w where appropriate).

2. Parameters for the Recognition Heuristic model.
These represent the calculated probabilities of success as-
sociated with recognizing 0, 1 or 2 items where the ap-
propriate probabilities of recognizing 0, 1 or 2 items are
given by the equations calculated in section 1 of this ap-
pendix. Overall performance of each of the strategies (the
RH and LINDA) is then given by equation (1)

Recognize none:
α000 = 0.5 (Chance)

Recognize one item (which happens to be in the top
quartile, i.e., a member of u):

α100 = 0.5 · 0.25N − u

N − u− v − w
+

0.75N − v − w

N − u− v − w

=
0.875N − 0.5u− v − w

N − u− v − w
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For recognition of members of v and w, the chances of
success are similarly:

α010 = 0 + 0.5 · 0.25N − v

N − u− v − w
+

0.5N − w

N − u− v − w

=
0.625N − u− v − w

N − u− v − w

The recognized item is in the second quartile.

α001 = 0 + 0.5
0.5N − w

N − u− v − w
=

0.25N − 0.5w

N − u− v − w

The recognized item is below median.
For all these cases which involve recognition of both

items
α110 = α101 = α011 = α200 = α020 = α002

It is assumed knowledge can be used with a certain
probability of success. This probability is chosen to make
the LINDA and RH models “equivalent” in our examples,
in the sense that they both produce the same probability
of success when all items are recognized.

3. Parameters for the LINDA model. These represent
the calculated probabilities of success associated with
recognizing 0, 1 or 2 items where the appropriate prob-
abilities of recognizing 0, 1 or 2 items are given by the
equations calculated in section 1 of this appendix. The
means of deriving these equations is basic probability the-
ory similar to that used to obtain the corresponding val-
ues for the Recognition Heuristic, although the equations
themselves are necessarily more complex and therefore
explained in a little more detail. Overall performance of
the LINDA model is given by Equation 1.

Recognize none: α000 = 0.5 (Chance).

Recognize one item:

α100 = pA · 0.5 · 0.25N − u

N − u− v − w
2+

pA · 0.75N − v − w

N − u− v − w
+

(1− pA) · 0.5 · 0.25N − u

N − u− v − w
+ 0

=
0.5 · (0.25N − u) + pA · (0.75N − v − w)

N − u− v − w

The participant recognizes one item, which is from the
top quartile. With probability pA they believe it to be
above median and choose it.

The first term is then the probability that the non-
recognized item is also in the top quartile, times the prob-
ability of success (chance).

The second term is the probability that the non-
recognized item is in the second quartile or lower, times
the probability of success.

With probability 1 − pA the participant believes the
recognized item is below median, and so does not choose
it.

The third term is the probability that the non-
recognized item is in the top quartile, with chance proba-
bility of being correct.

The fourth term is the probability that the non-
recognized item is in the second quartile or lower, with
no chance of being correct.

The probability of choosing correctly if one item from
u is recognized is the sum of these terms and the second
line of the equation rewrites the calculation for overall
probability of success into a more succinct form. The
equations for choosing correctly when a single item from
v or w is recognized take similar form:

α010 = 0 + pB · 0.5 · 0.25N − v

N − u− v − w
+

pB · 0.5N − w

N − u− v − w
+

(1− pB) · 0.25N − u

N − u− v − w
+

(1− pB) · 0.5 · 0.25N − v

N − u− v − w
+ 0

=
0.375N − u− 0.5v + pB · (0.25N + u− w)

N − u− v − w

The recognized item is in the second quartile (from v).
With probability pB they believe it is above median.

α001 = 0 + (1− pC) · 0.5 · 0.5N − w

N − u− v − w
+

pC · 0.5N − u− v

N − u− v − w
+

pC · 0.5 · 0.5N − w

N − u− v − w

=
0.25N − 0.5w + pC · (0.5N − u− v)

N − u− v − w

The recognized item is below median (from w). With
probability 1 − pC the participant believes the item is
above median.

Two items are recognized.
With reference to u, v, w, the possible combinations in

which this might occur are: 110, 101, 011, 200, 020, 002.
If two items are recognized and one item is in the first

quartile (from u) and the second item is in the second
quartile (from v). With probability pA the participant be-
lieves the first item is above median and with probability
pB they believe the second item is above median. This
then gives the following derivation:
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α110 = 0.5pApB + pA(1− pB)+
0 + 0.5(1− pA)(1− pB)

= 0.5 + 0.5pA − 0.5pB

Calculations for the other ways in which two items
might be recognized (e.g., one item from the top quartile
and one from below the median) can similarly be com-
bined with the parameters pA, pB and pC as follows:

α101 = 0.5 + 0.5pA − 0.5(1− pC) = 0.5pA + 0.5pC

(As above, substituting 1− pC for pB)
α011 = 0.5pB + 0.5pC

(As above, substituting pB for pA)
α200 = α020 = α002 = 0.5
Both items are from the same subset, and so cannot be

distinguished, performance is chance.
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