JOURNAL OF GLACIOLOGY

INDEX Vol. 46 No. 152-155, 2000

Abe-Ouchi, A., see Payne, A.J. and others

Ablation

A model of ablation-dominated medial moraines and the generation of debris-mantled glacier snouts, 459–469

Accumulation:

The accumulation pattern across Siple Dome, West Antarctica, inferred from radar-detected internal layers, 75–87

The accumulation regime of Blue Glacier, U.S.A., 1914-96, 326-334

Mass balance of the northeast sector of the Greenland ice sheet: a remotesensing perspective, 265–273

Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic, 1–6

Snow accumulation rates in northern Victoria Land, Antarctica, by firncore analysis, $541\!-\!552$

Agassiz Ice Cap (Canada):

Natural and anthropogenic levels of tritium in a Canadian Arctic ice core, Agassiz Ice Cap, Ellesmere Island, and comparison with other radionuclides, 35–40

Ageta, Y., see Fujita, K.

Albedo

Measurement and parameterization of albedo variations at Haut Glacier d'Arolla, Switzerland, 675-688

Alean, J., (review: Post, A. and E. R. LaChapelle. 1999. Glacier ice.) 700

Algae

Himalayan ice-core dating with snow algae, 335-340

Allison, I., see Fricker, H. A. and others

Amery Ice Shelf (Antarctica):

Digital elevation models for the Lambert Glacier–Amery Ice Shelf system, East Antarctica, from ERS-l satellite radar altimetry, 553

Mass balance of the Lambert Glacier–Amery Ice Shelf system, East Antarctica: a comparison of computed balance fluxes and measured fluxes, 561–570

 $Anderson,\,R.\,S.,\,(paper;\,A\ model\ of\ ablation-dominated\ medial\ moraines\ and\ the\ generation\ of\ debris-mantled\ glacier\ snouts)\ 459–469$

Andes

Late Pleistocene climate conditions in the north Chilean Andes drawn from a climate—glacier model, 622-632

Antarctica:

The accumulation pattern across Siple Dome, West Antarctica, inferred from radar-detected internal layers, 75–87

Bed properties of Siple Dome and adjacent ice streams, West Antarctica, inferred from radio-echo sounding measurements, 88–94

Calculating basal thermal zones beneath the Antarctic ice sheet, 297–310 Changes in the margin of Ice Stream C, Antarctica, 102–110

Correspondence. Subglacial water at the heads of Antarctic ice-stream tributaries, $702\!-\!703$

Digital elevation models for the Lambert Glacier–Amery Ice Shelf system, East Antarctica, from ERS-l satellite radar altimetry, 553

Elevation of ice-stream margin scars after stagnation, 111–118

Formaldehyde and peroxide concentrations in Law Dome (Antarctica) firn and ice cores, 15-19

Geophysical investigations of ice-sheet internal layering and deformation in the Dome C region of central East Antarctica, 161-166

Ice discharge of eastern Dome C drainage area, Antarctica, determined from airborne radar survey and satellite image analysis, 253

Ice motion over Lake Vostok, Antarctica: constraints on inferences regarding the accreted ice, 689–694

The link between climate warming and break-up of ice shelves in the Antarctic Peninsula, 516–530

Mass balance of the Lambert Glacier–Amery Ice Shelf system, East Antarctica: a comparison of computed balance fluxes and measured fluxes, 561–570

A millennium of variable ice flow recorded by the Ross Ice Shelf, Antarctica, 652--664

Numerical modelling of ice-sheet dynamics across the Vostok subglacial lake, central East Antarctica, 197–205

Numerical modelling of the ice sheet in western Dronning Maud Land, East Antarctica: impacts of present, past and future climates, 54–66

The onset area of Ice Stream D, West Antarctica, 95–101 Short fluctuations in the density and thickness of a dry firn column, 399–411

Snow accumulation rates in northern Victoria Land, Antarctica, by firncore analysis, $541\!-\!552$

Arcone, S. A. and N. E. Yankielun, (paper: 1.4 GHz radar penetration and evidence of drainage structures in temperate ice: Black Rapids Glacier, Alaska, U.S.A) 477–490

Arcone, S. A., see Moran, M. L. and others

Austria

A geometric glacier model for sea-level change calculations, 357–368 Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic, 1-6

The use of bulk and profile methods for determining surface heat fluxes in the presence of glacier winds, 445

Avalanche

Texture and strength changes of buried surface-hoar layers with implications for dry snow-slab avalanche release, 151-160

Ayers, G. P., see Gillett, R.W. and others

Bach Ice Shelf (Antarctica):

The link between climate warming and break-up of ice shelves in the Antarctic Peninsula, 516-530

Baker, I., see Cullen, D.

Baker, I., see Trickett, Y. L. and others

Baltic Sea On the modelling of ice-thickness redistribution, 427-437

Bamber, J. L. and others, (paper: An analysis of balance velocities over the Greenland ice sheet and comparison with synthetic aperture radar interferometry) 67-74

Bamber, J. L., see Siegert, M. J.

Barton, J. S., see Hall, D. K. and others

Basal conditions:

Bed properties of Siple Dome and adjacent ice streams, West Antarctica, inferred from radio-echo sounding measurements, 88–94

Calculating basal thermal zones beneath the Antarctic ice sheet, 297–310 Changes in the margin of Ice Stream C, Antarctica, 102–110

Coupled ice—till deformation near subglacial channels and cavities, 580–598 Delineation of a complexly dipping temperate glacier bed using short-pulse radar arrays, 274

Diffusive mixing between shearing granular layers: constraints on bed deformation from till contacts, 641-651

Energy balance of ice streams, 665-674

Evidence for extreme pressure pulses in the subglacial water system, 206-212 Glacier motion dominated by processes deep in underlying till, 213-221

Ice-core evidence of the thickness and character of clear-facies basal ice: Glacier de Transfleuron, Switzerland, 140–150

Rheology of ice at the bed of Engabreen, Norway, 611-621

Sliding of ice past an obstacle at Engabreen, Norway, 599-610

Sliding versus till deformation in the fast motion of an ice stream over a viscous till, 633-640

Becagli, S., see Stenni, B. and others

Beer, J., see Eichler, A. and others

Bennett, M. R. and others, (paper: Glaciofluvial crevasse and conduit fills as indicators of supraglacial dewatering during a surge, Skeiðarárjökull, Iceland) 25–34

Bennett, M. R., see Glasser, N. F. and others

Bindschadler, R. and others, (paper: The onset area of Ice Stream D, West Antarctica), p. 352

Bindschadler, R. A., see Fahnestock, M. A. and others

Black Rapids Glacier (U.S.A.):

 $1.4\,\mathrm{GHz}$ radar penetration and evidence of drainage structures in temperate ice: Black Rapids Glacier, Alaska, U.S.A., 477–490

Comparison of SAR-interferometric and surveyed velocities on a mountain glacier: Black Rapids Glacier, Alaska, U.S.A., 119–128

Glacier motion dominated by processes deep in underlying till, 213-221

Blatter, H., see Hubbard, A. and others

Blue Glacier (U.S.A.):

The accumulation regime of Blue Glacier, U.S.A., 1914-96, 326-334

Bohlander, J., see Scambos, T. A. and others

Bolsey, R., see Engelhardt, H. and others

Boyle, P., see Jiskoot, H. and others

Braithwaite, R. J. and Y. Zhang, (paper: Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model) 7-14

Braithwaite, R. J., see Raper, S. C. B. and others

Brock, B.W. and others, (paper: Measurement and parameterization of albedo variations at Haut Glacier d'Arolla, Switzerland) 675–688

Brown, O., see Raper, S. C. B. and others

Brun, E., see Durand, Y. and others

Buscarlet, G., see Rignot, E. and others

Byrd (Antarctica):

Short fluctuations in the density and thickness of a dry firn column, 399-411

Byrd Glacier (Antarctica):

Correspondence. Subglacial water at the heads of Antarctic ice-stream tributaries, $702\!-\!703$

Calov, R., see Payne, A.J. and others

Calving

Glacier calving: a numerical model of forces in the calving-speed/waterdepth relation, 188–196

Camp Century (Greenland):

Short fluctuations in the density and thickness of a dry firn column, 399-411

Canada

Evidence for extreme pressure pulses in the subglacial water system, 206–212 Natural and anthropogenic levels of tritium in a Canadian Arctic ice core, Agassiz Ice Cap, Ellesmere Island, and comparison with other radio-nuclides, 35–40

Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic, 1–6

Texture and strength changes of buried surface-hoar layers with implications for dry snow-slab avalanche release, 151-160

Cantwell Glacier (U.S.A.):

A model of ablation-dominated medial moraines and the generation of debris-mantled glacier snouts, 459-469

Carbon dioxide:

Reconstructing past atmospheric CO_2 -concentration based on ice-core analyses: open questions due to in situ production of CO_2 in ice, 45–53

Carsey, F. D., see Kwok, R. and others

Cecil, L. DeW., see Morin, R. H. and others

Chemistry:

Correspondence. The chemistry of grain boundaries in Greenland ice, 703–706
Formaldehyde and peroxide concentrations in Law Dome (Antarctica)
firn and ice cores, 15–19

Glaciochemical dating of an ice core from upper Grenzgletscher (4200 m a.s.l.), $507{-}515$

Natural and anthropogenic levels of tritium in a Canadian Arctic ice core, Agassiz Ice Cap, Ellesmere Island, and comparison with other radio-nuclides, 35–40

The effects of sulfuric acid on the mechanical properties of ice single crystals, $239\hbox{--}243$

Chen, X., see Bindschadler, R. and others

Chile

Late Pleistocene climate conditions in the north Chilean Andes drawn from a climate–glacier model, 622–632

China:

Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance model, 244–252

Monsoon and dust signals recorded in Dasuopu glacier, Tibetan Plateau, 222–226

Choquielimpie glacier (Chile):

Late Pleistocene climate conditions in the north Chilean Andes drawn from a climate—glacier model, 622–632

Christensen, E. L. and others, (paper: A low-cost glacier-mapping system) 531-537

Clarke, G. K. C., see Kavanaugh, J. L.

Clausen, H. B., see Hempel, L. and others

Climate:

Late Pleistocene climate conditions in the north Chilean Andes drawn from a climate—glacier model, 622–632

The link between climate warming and break-up of ice shelves in the Antarctic Peninsula, 516-530

Numerical modelling of the ice sheet in western Dronning Maud Land, East Antarctica; impacts of present, past and future climates, 54–66

Reconstructing past atmospheric ${\rm CO_2}$ -concentration based on ice-core analyses: open questions due to in situ production of ${\rm CO_2}$ in ice, 45–53

Cohen, D. and others, (paper: Sliding of ice past an obstacle at Engabreen, Norway) 599–610

Cohen, D., (paper: Rheology of ice at the bed of Engabreen, Norway) 611-621

Coleman, R., see Fricker, H. A. and others

Colgan, P. M., see Cutler, P. M. and others

Compression:

The orientation dependence of the strength of ice single crystals, 41-44

Conductivity:

A comparison of radio-echo sounding data and electrical conductivity of the GRIP ice core, 369-374

Conway, H., see Gades, A. M. and others

Conway, H., see Rasmussen, L. A. and others

Correspondence:

Rapid sediment entrainment and englacial deposition during jökulhlaups, 349–351

Subglacial water at the heads of Antarctic ice-stream tributaries, 702–703 The chemistry of grain boundaries in Greenland ice, 703–706

Crabtree, M. D., see Murray, T. and others

Crawford, K. R., see Glasser, N. F. and others

Crevasses

Glaciofluvial crevasse and conduit fills as indicators of supraglacial dewatering during a surge, Skeiðarárjökull, Iceland, 25–34

Csathó, B., see Rignot, E. and others

Cullen, D. and I. Baker, (correspondence: The chemistry of grain boundaries in Greenland ice) 703–706

Cutler, P. M. and others, (paper: A numerical investigation of ice-lobe-permafrost interaction around the southern Laurentide ice sheet) 311–325

Dalton Iceberg Tongue (Antarctica):

Calculating basal thermal zones beneath the Antarctic ice sheet, 297–310

Dasuopu glacier (Tibet):

Monsoon and dust signals recorded in Dasuopu glacier, Tibetan Plateau, 222–226

Dating:

Glaciochemical dating of an ice core from upper Grenzgletscher (4200 m a.s.l.), 507–515

Himalayan ice-core dating with snow algae, 335–340

David Glacier (Antarctica):

Ice discharge of eastern Dome C drainage area, Antarctica, determined from airborne radar survey and satellite image analysis, 253

Correspondence. Subglacial water at the heads of Antarctic ice-stream tributaries, 702-703

Delaney, A. J., see Moran, M. L. and others

Denby, B. and W. Greuell, (paper: The use of bulk and profile methods for determining surface heat fluxes in the presence of glacier winds) 445-452

Descamps, G. E., see Morin, R. H. and others

Dibble Glacier (Antarctica):

Calculating basal thermal zones beneath the Antarctic ice sheet, 297–310

Dixon, T. S., see Rea, B. R. and others

Dome C [Concordia] (Antarctica):

Geophysical investigations of ice-sheet internal layering and deformation in the Dome C region of central East Antarctica, 161–166

Ice discharge of eastern Dome C drainage area, Antarctica, determined from airborne radar survey and satellite image analysis, 253

Dongkemadi glacier (Tibet):

Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance model, 244–252

Dowdeswell, J. A., see Hodgkins, R. and others

Drilling:

A hot-water ice-coring drill, 341-345

Portable system for intermediate-depth ice-core drilling, 167-172

Durand, Y. and others, (erratum: A computer-based system simulating snowpack structures as a tool for regional avalanche forecasting) 173

East Fork Toklat Glacier (U.S.A.):

A model of ablation-dominated medial moraines and the generation of debris-mantled glacier snouts, 459–469

Echelmeyer, K., (review: Petrenko, Victor F. and Robert W. Whitworth. 1999. The physics of ice.) 347–348

Echelmeyer, K. A., see Truffer, M. and others

Eichler, A. and others, (paper: Glaciochemical dating of an ice core from upper Grenzgletscher ($4200\,\mathrm{m}$ a.s.l.)) 507–515

EISMINT

Results from the EISMINT model intercomparison: the effects of thermomechanical coupling, 227–238

El Tatio glacier (Chile):

Late Pleistocene climate conditions in the north Chilean Andes drawn from a climate–glacier model, 622-632

Energy balance:

Analysis of a 3 year meteorological record from the ablation zone of Morteratschgletscher, Switzerland: energy and mass balance, 571–579 Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model, 7–14

The use of bulk and profile methods for determining surface heat fluxes in the presence of glacier winds, 445

Engabreen (Norway):

Rheology of ice at the bed of Engabreen, Norway, 611–621 Sliding of ice past an obstacle at Engabreen, Norway, 599–610

Engelhardt, H. and others, (paper: A hot-water ice-coring drill) 341-345

EPICA:

Geophysical investigations of ice-sheet internal layering and deformation in the Dome C region of central East Antarctica, 161-166

Errata:

A computer-based system simulating snowpack structures as a tool for regional avalanche forecasting, $173\,$

Delineation of a complexly dipping temperate glacier bed using short-pulse radar arrays, 707

Numerical modelling of the ice sheet in western Dronning Maud Land, East Antarctica: impacts of present, past and future climates, 353–354

The structural glaciology of Kongsvegen, Svalbard, and its role in landform genesis, 538

Evans, D. J. A., see Rea, B. R. and others

Fahnestock, M., see Scambos, T. A. and others

Fahnestock, M. A. and others, (paper: A millennium of variable ice flow recorded by the Ross Ice Shelf, Antarctica) $652\hbox{--}664$

Falljökull (Iceland):

Englacial water distribution in a temperate glacier from surface and borehole radar velocity analysis, 389–398

Fastook, J. L., see Näslund, J.-O. and others

Fastook, J. L., see Payne, A. J. and others

Fatland, D. R., see Rabus, B. T.

Forsberg, R., see Christensen, E. L. and others

Fountain, A. G., (review: Knight, Peter G. 1999. Glaciers.) 346

France

Dynamic behaviour analysis of glacier de Saint Sorlin, France, from 40 years of observations, 1957–97, 499–506

Franz Josef Glacier (New Zealand):

Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic, 1–6

Frezzotti, M. and others, (paper: Ice discharge of eastern Dome C drainage area, Antarctica, determined from airborne radar survey and satellite image analysis) 253–264

Frezzotti, M., see Stenni, B. and others

Fricker, H. A. and others, (paper: Digital elevation models for the Lambert Glacier–Amery Ice Shelf system, East Antarctica, from ERS-l satellite radar altimetry) 553-560

Fricker, H. A. and others, (paper: Mass balance of the Lambert Glacier—Amery Ice Shelf system, East Antarctica: a comparison of computed balance fluxes and measured fluxes) 561–570

Fry, M., see Murray, T. and others

Fujita, K. and Y. Ageta, (paper: Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance model) 244–252

Fujita, K., see Yoshimura, Y. and others

Funk, M., see Eichler, A. and others

Furrer, V., see Eichler, A. and others

Gades, A. M. and others, (paper: Bed properties of Siple Dome and adjacent ice streams, West Antarctica, inferred from radio-echo sounding measurements) 88–94

Gäggeler, H.W., see Eichler, A. and others

Gamble, N. H., see Murray, T. and others

Garvin, J. B., see Hall, D. K. and others

George VI Ice Shelf (Antarctica):

The link between climate warming and break-up of ice shelves in the Antarctic Peninsula, 516-530

Gillett, R.W. and others, (paper: Formaldehyde and peroxide concentrations in Law Dome (Antarctica) firn and ice cores) 15–19

Giraud, G., see Durand, Y. and others

GISP2:

Correspondence. The chemistry of grain boundaries in Greenland ice, 703-706

Glacial Geology:

Contemporaneous, localized, basal ice-flow variations: implications for bedrock erosion and the origin of p-forms, 470–476

Diffusive mixing between shearing granular layers: constraints on bed deformation from till contacts, 641-651

Glacier advance, ice-marginal lakes and the routing of meltwater and sediment: Russell Glacier, Greenland, 423–426

A model of ablation-dominated medial moraines and the generation of debris-mantled glacier snouts, 459–469

A numerical investigation of ice-lobe–permafrost interaction around the southern Laurentide ice sheet, 311

Glacier flow

An analysis of balance velocities over the Greenland ice sheet and comparison with synthetic aperture radar interferometry, 67–74

Calculating basal thermal zones beneath the Antarctic ice sheet, 297–310 Changes in the margin of Ice Stream C, Antarctica, 102–110

Comparison of SAR-interferometric and surveyed velocities on a mountain glacier: Black Rapids Glacier, Alaska, U.S.A., 119–128

Coupled ice-till deformation near subglacial channels and cavities, 580–598
Diffusive mixing between shearing granular layers: constraints on bed deformation from till contacts, 641–651

Dynamic behaviour analysis of glacier de Saint Sorlin, France, from 40 years of observations, 1957–97, 499–506

Elevation of ice-stream margin scars after stagnation, lll-ll8 $\,$

Energy balance of ice streams, 665–674

Glacier mass-balance determination by remote sensing and high-resolution modelling, 491-498

Geophysical investigations of ice-sheet internal layering and deformation in the Dome C region of central East Antarctica, 161–166

Glacier motion dominated by processes deep in underlying till, 213-221

Ice discharge of eastern Dome C drainage area, Antarctica, determined from airborne radar survey and satellite image analysis, 253

Ice motion over Lake Vostok, Antarctica: constraints on inferences regarding the accreted ice, $689\!-\!694$

Mass balance of the northeast sector of the Greenland ice sheet: a remote-sensing perspective, 265

A millennium of variable ice flow recorded by the Ross Ice Shelf, Antarctica, 652–664

Modelling dynamics of glaciers in volcanic craters, 177-187

Non-temperate glacier flow over wavy sloping ground, 453-458

Numerical modelling of ice-sheet dynamics across the Vostok subglacial lake, central East Antarctica, 197–205

The onset area of Ice Stream D, West Antarctica, 95-101

Results from the EISMINT model intercomparison: the effects of thermomechanical coupling, 227–238

Rheology of ice at the bed of Engabreen, Norway, 611-621

Sliding of ice past an obstacle at Engabreen, Norway, 599-610

Sliding versus till deformation in the fast motion of an ice stream over a viscous till, 633-640

Glacier hydrology:

 $1.4~\rm GHz$ radar penetration and evidence of drainage structures in temperate ice: Black Rapids Glacier, Alaska, U.S.A., 477-490

Correspondence. Subglacial water at the heads of Antarctic ice-stream tributaries, 702-703

Englacial water distribution in a temperate glacier from surface and borehole radar velocity analysis, 389–398

Evidence for extreme pressure pulses in the subglacial water system, 206-212

Glacier advance, ice-marginal lakes and the routing of meltwater and sediment: Russell Glacier. Greenland, 423–426

Glaciofluvial crevasse and conduit fills as indicators of supraglacial dewatering during a surge, Skeiðarárjökull, Iceland, 25–34

Rapid sediment entrainment and englacial deposition during jökulhlaups, 349–351

Glacier Inventory:

Controls on the distribution of surge-type glaciers in Svalbard, 412-422

Glacier variations:

Evaluation of remote-sensing techniques to measure decadal-scale changes of Hofsjökull ice cap, Iceland, 375–388

A geometric glacier model for sea-level change calculations, 357–368

Glacier advance, ice-marginal lakes and the routing of meltwater and sediment: Russell Glacier, Greenland, 423–426

Glaciers:

 $1.4\,\mathrm{GHz}$ radar penetration and evidence of drainage structures in temperate ice: Black Rapids Glacier, Alaska, U.S.A., 477–490

The accumulation regime of Blue Glacier, U.S.A., 1914-96, 326-334

Acoustic televiewer logging in glacier boreholes, 695-699

Analysis of a 3 year meteorological record from the ablation zone of Morteratschgletscher, Switzerland: energy and mass balance, 571–579

Changes in the margin of Ice Stream C, Antarctica, l02-l10

Comparison of SAR-interferometric and surveyed velocities on a mountain glacier: Black Rapids Glacier, Alaska, U.S.A., 119–128

Contemporaneous, localized, basal ice-flow variations: implications for bedrock erosion and the origin of p-forms, 470-476

Controls on the distribution of surge-type glaciers in Svalbard, 412–422 Coupled ice–till deformation near subglacial channels and cavities, 580–598 Delineation of a complexly dipping temperate glacier bed using short-pulse radar arrays, 274–286

Dynamic behaviour analysis of glacier de Saint Sorlin, France, from $40\,\mathrm{years}$ of observations, 1957-97,499-506

Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance model, $244-252\,$

Elevation of ice-stream margin scars after stagnation, 111–118

Energy balance of ice streams, 665-674

Englacial water distribution in a temperate glacier from surface and borehole radar velocity analysis, 389–398

Evaluation of remote-sensing techniques to measure decadal-scale changes of Hofsjökull ice cap, Iceland, 375–388

Evidence for extreme pressure pulses in the subglacial water system, 206-212 A geometric glacier model for sea-level change calculations, 357-368

Glacier advance, ice-marginal lakes and the routing of meltwater and sediment: Russell Glacier, Greenland, 423–426

Glacier calving: a numerical model of forces in the calving-speed/waterdepth relation, 188–196

Glacier mass-balance determination by remote sensing and high-resolution modelling, $491\!-\!498$

Glacier motion dominated by processes deep in underlying till, 2l3–22l Glaciofluvial crevasse and conduit fills as indicators of supraglacial dewatering during a surge, Skeiðarárjökull, Iceland, 25–34

Ice-core evidence of the thickness and character of clear-facies basal ice: Glacier de Transfleuron, Switzerland, 140–150

Late Pleistocene climate conditions in the north Chilean Andes drawn from a climate–glacier model, 622-632

The link between climate warming and break-up of ice shelves in the Antarctic Peninsula, 516-530

A low-cost glacier-mapping system, 531-537

Measurement and parameterization of albedo variations at Haut Glacier d'Arolla, Switzerland, 675–688

A model of ablation-dominated medial moraines and the generation of debris-mantled glacier snouts, 459–469

Modelling dynamics of glaciers in volcanic craters, 177–187

Non-temperate glacier flow over wavy sloping ground, 453-458

The onset area of Ice Stream D, West Antarctica, 95-101

Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model, 7–14

Sliding versus till deformation in the fast motion of an ice stream over a viscous till, 633-640

Radar glacier zones in southeast Alaska, U.S.A.: field and satellite observations, 287–296

Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic, $1\!-\!6$

The use of bulk and profile methods for determining surface heat fluxes in the presence of glacier winds, 445–452

Glasser, N. F. and others, (erratum: The structural glaciology of Kongsvegen, Svalbard, and its role in landform genesis) 538

Gogineni, S., see Rignot, E. and others

$Ground\text{-penetration radar } (GPR)\!\!:$

Englacial water distribution in a temperate glacier from surface and borehole radar velocity analysis, 389-398

Greenfield, R. J., see Moran, M. L. and others

Greenland

An analysis of balance velocities over the Greenland ice sheet and comparison with synthetic aperture radar interferometry, 67-74

A comparison of radio-echo sounding data and electrical conductivity of the GRIP ice core, 369-374

Correspondence. The chemistry of grain boundaries in Greenland ice, 703–706 Glacier advance, ice-marginal lakes and the routing of meltwater and sediment: Russell Glacier, Greenland, 423–426

A low-cost glacier-mapping system, $531\!-\!537$

Mass balance of the northeast sector of the Greenland ice sheet: a remotesensing perspective, 265

Portable system for intermediate-depth ice-core drilling, 167–172

Reconstructing past atmospheric \dot{CO}_2 -concentration based on ice-core analyses: open questions due to in situ production of \dot{CO}_2 in ice, 45–53 Short fluctuations in the density and thickness of a dry firn column, 399–411

Grenzgletscher (Switzerland):

Glaciochemical dating of an ice core from upper Grenzgletscher (4200 m a.s.l.), 507–515

Greuell, W., see Denby, B.

Greve, R., see Payne, A.J. and others

Griesgletscher (Switzerland) Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model, 7–14

GRIP

A comparison of radio-echo sounding data and electrical conductivity of the GRIP ice core, 369-374

Reconstructing past atmospheric ${\rm CO_2}$ -concentration based on ice-core analyses: open questions due to in situ production of ${\rm CO_2}$ in ice, 45–53

Grosjean, M., see Kull, C.

Gulkana Glacier (U.S.A.):

Delineation of a complexly dipping temperate glacier bed using short-pulse radar arrays, 274

Gundestrup, N., see Hempel, L. and others

Haapala, J., (paper: On the modelling of ice-thickness redistribution) 427–437

Hall, D. K. and others, (paper: Evaluation of remote-sensing techniques to measure decadal-scale changes of Hofsjökull ice cap, Iceland) 375–388

Hambrey, M. J., see Glasser, N. F. and others

Hanson, B. and R. LeB. Hooke, (paper: Glacier calving: a numerical model of forces in the calving-speed/water-depth relation) 188–196

Hardy, R. J., see Bamber, J. L. and others

Harrison, W. D., see Truffer, M. and others

Haut Glacier d'Arolla (Switzerland):

Glacier mass-balance determination by remote sensing and high-resolution modelling, 491--498

Measurement and parameterization of albedo variations at Haut Glacier d'Arolla, Switzerland, 675-688

Haves, P. S., see Rasmussen, L. A. and others

Hempel, L. and others, (paper: A comparison of radio-echo sounding data and electrical conductivity of the GRIP ice core) 369–374

Himalaya:

Himalayan ice-core dating with snow algae, 335-340

Monsoon and dust signals recorded in Dasuopu glacier, Tibetan Plateau, 222–226

Hintereisferner (Austria):

A geometric glacier model for sea-level change calculations, 357–368
Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic, 1–6

Hoar:

Texture and strength changes of buried surface-hoar layers with implications for dry snow-slab avalanche release, $151-160\,$

Hodgkins, R. and others, (paper: Geophysical investigations of ice-sheet internal layering and deformation in the Dome C region of central East Antarctica) 161-166

Hofsjökull (Iceland):

Evaluation of remote-sensing techniques to measure decadal-scale changes of Hofsjökull ice cap, Iceland, 375–388

Holmlund, P., see Näslund, J.-O. and others

Hooke, R. LeB., see Cohen, D. and others

Hooke, R. LeB., see Hanson, B.

Hooyer, T. S. and N. R. Iverson, (paper: Diffusive mixing between shearing granular layers: constraints on bed deformation from till contacts) 641–651

Hubbard, A. and others, (paper: Glacier mass-balance determination by remote sensing and high-resolution modelling) 491–498

Hubbard, B. and others, (paper: Ice-core evidence of the thickness and character of clear-facies basal ice: Glacier de Transfleuron, Switzerland) 140–150

Hubbard, B., see Hubbard, A. and others

Huddart, D., see Bennett, M. R. and others

Huddart, D., see Glasser, N. F. and others

Hughes, T. J., see Wilch, E.

Hulbe, C., see Scambos, T. A. and others

Huybrechts, P., see Payne, A. J. and others

Hyland, G., see Fricker, H. A. and others

Ice cores:

A comparison of radio-echo sounding data and electrical conductivity of the GRIP ice core, 369-374

Correspondence. The chemistry of grain boundaries in Greenland ice, 703–706 Formaldehyde and peroxide concentrations in Law Dome (Antarctica) firn and ice cores, 15-19

Glaciochemical dating of an ice core from upper Grenzgletscher (4200 m a.s.l.), 507–515

Himalayan ice-core dating with snow algae, 335-340

A hot-water ice-coring drill, 341-345

Ice-core evidence of the thickness and character of clear-facies basal ice: Glacier de Transfleuron, Switzerland, 140–150

Monsoon and dust signals recorded in Dasuopu glacier, Tibetan Plateau, 222–226

Natural and anthropogenic levels of tritium in a Canadian Arctic ice core, Agassiz Ice Cap, Ellesmere Island, and comparison with other radionuclides, 35–40

Portable system for intermediate-depth ice-core drilling, 167-172

Reconstructing past atmospheric $\rm CO_2$ -concentration based on ice-core analyses: open questions due to in situ production of $\rm CO_2$ in ice, 45–53

Snow accumulation rates in northern Victoria Land, Antarctica, by firncore analysis, $541\!-\!552$

Ice physics:

The effects of sulfuric acid on the mechanical properties of ice single crystals, 239-243

A new technique for ice-fabric analysis, 129-139

The orientation dependence of the strength of ice single crystals, 41–44

Ice sheets:

The accumulation pattern across Siple Dome, West Antarctica, inferred from radar-detected internal layers, 75-87

An analysis of balance velocities over the Greenland ice sheet and comparison with synthetic aperture radar interferometry, 67–74

Bed properties of Siple Dome and adjacent ice streams, West Antarctica, inferred from radio-echo sounding measurements, 88–94

Calculating basal thermal zones beneath the Antarctic ice sheet, 297–310 A comparison of radio-echo sounding data and electrical conductivity of the GRIP ice core, 369–374

Correspondence. Subglacial water at the heads of Antarctic ice-stream tributaries, $702\!-\!703$

Diffusive mixing between shearing granular layers: constraints on bed deformation from till contacts, $64l\!-\!65l$

Geophysical investigations of ice-sheet internal layering and deformation in the Dome C region of central East Antarctica, 161-166

Ice discharge of eastern Dome C drainage area, Antarctica, determined from airborne radar survey and satellite image analysis, 253–264

Mass balance of the northeast sector of the Greenland ice sheet: a remotesensing perspective, 265

A numerical investigation of ice-lobe—permafrost interaction around the southern Laurentide ice sheet, 311

Numerical modelling of ice-sheet dynamics across the Vostok subglacial lake, central East Antarctica, 197-205

Numerical modelling of the ice sheet in western Dronning Maud Land, East Antarctica: impacts of present, past and future climates, 54–66 Portable system for intermediate-depth ice-core drilling, 167–172

Results from the EISMINT model intercomparison: the effects of thermomechanical coupling, $227\!-\!238$

Ice shelves:

The link between climate warming and break-up of ice shelves in the Antarctic Peninsula, 516-530

A millennium of variable ice flow recorded by the Ross Ice Shelf, Antarctica, 652–664

Ice Stream B (Antarctica):

Correspondence. Subglacial water at the heads of Antarctic ice-stream tributaries, 702-703

Energy balance of ice streams, 665-674

Ice Stream C (Antarctica):

The accumulation pattern across Siple Dome, West Antarctica, inferred from radar-detected internal layers, 75–87

Bed properties of Siple Dome and adjacent ice streams, West Antarctica, inferred from radio-echo sounding measurements, 88–94

Changes in the margin of Ice Stream C, Antarctica, 102–110

Elevation of ice-stream margin scars after stagnation, ll1-ll8

Ice Stream D (Antarctica):

The accumulation pattern across Siple Dome, West Antarctica, inferred from radar-detected internal layers, 75-87

Bed properties of Siple Dome and adjacent ice streams, West Antarctica, inferred from radio-echo sounding measurements, 88–94

Elevation of ice-stream margin scars after stagnation, lll-ll8

Energy balance of ice streams, 665-674

The onset area of Ice Stream D, West Antarctica, 95-101

Ice Stream E (Antarctica):

Energy balance of ice streams, 665-674

Ice thickness:

Ice-core evidence of the thickness and character of clear-facies basal ice: Glacier de Transfleuron, Switzerland, 140–150

The onset area of Ice Stream D, West Antarctica, 95-101

Iceland

Englacial water distribution in a temperate glacier from surface and borehole radar velocity analysis, 389–398

Evaluation of remote-sensing techniques to measure decadal-scale changes of Hofsjökull ice cap, Iceland, 375–388 $\,$

Glaciofluvial crevasse and conduit fills as indicators of supraglacial dewatering during a surge, Skeiðarárjökull, Iceland, 25–34

Rapid sediment entrainment and englacial deposition during jökulhlaups, 349-351

Instruments and methods:

Acoustic televiewer logging in glacier boreholes, 695-699

A hot-water ice-coring drill, 341-345

A low-cost glacier-mapping system, 531-537

A new technique for ice-fabric analysis, 129-139

Portable system for intermediate-depth ice-core drilling, 167-172

Interferometry:

An analysis of balance velocities over the Greenland ice sheet and comparison with synthetic aperture radar interferometry, 67–74

Comparison of SAR-interferometric and surveyed velocities on a mountain glacier: Black Rapids Glacier, Alaska, U.S.A., 119–128

Isacks, B. L., see Ramage, J. M. and others

Iverson, N. R., see Cohen, D. and others

Iverson, N. R., see Hooyer, T. S.

Jackson, A.V., see Gillett, R.W. and others

Jacobel, R.W. and others, (paper: Changes in the margin of Ice Stream C, Antarctica) 102–110

Jacobel, R.W., see Gades, A. M. and others

Jacobel, R.W., see Nereson, N. A. and others

Jamieson, J. B. and J. Schweizer, (paper: Texture and strength changes of buried surface-hoar layers with implications for dry snow-slab avalanche release) 151-160

Janssens, L., see Hubbard, B. and others

Jiskoot, H. and others, (paper: Controls on the distribution of surge-type glaciers in Svalbard) $412\!-\!422$

Jökulhlaups:

Rapid sediment entrainment and englacial deposition during jökulhlaups, 349–351

Glacier advance, ice-marginal lakes and the routing of meltwater and sediment: Russell Glacier, Greenland, 423–426

Jones, A. P., see Knight, P. G. and others

Jörgensen, J. H., see Christensen, E. L. and others

Joughin, I., see Bamber, J. L. and others

Juneau Icefield (U.S.A./Canada):

Radar glacier zones in southeast Alaska, U.S.A.: field and satellite observations, 287–296

Kamb, B., see Engelhardt, H. and others

Kang Shichang and others, (paper: Monsoon and dust signals recorded in Dasuopu glacier, Tibetan Plateau) 222–226

Kavanaugh, J. L. and G. K. C. Clarke, (paper: Evidence for extreme pressure pulses in the subglacial water system) 206-212

Kirghizstan:

Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic, 1–6

Knight, P. G. and others, (paper: Glacier advance, ice-marginal lakes and the routing of meltwater and sediment: Russell Glacier, Greenland) 423–426

Knudsen, Ó., see Roberts, M. J. and others

Kohler, J., see Cohen, D. and others

Kohshima, S., see Yoshimura, Y. and others

Konowbreen (Svalbard):

Contemporaneous, localized, basal ice-flow variations: implications for bedrock erosion and the origin of p-forms, 470–476

Kotzer, T. G. and others, (paper: Natural and anthropogenic levels of tritium in a Canadian Arctic ice core, Agassiz Ice Cap, Ellesmere Island, and comparison with other radionuclides) 35–40

Krabill, W., see Rignot, E. and others

Kudo, A., see Kotzer, T. G. and others

Kull, C. and M. Grosjean, (paper: Late Pleistocene climate conditions in the north Chilean Andes drawn from a climate–glacier model) 622-632

Kvaran, G., see Fahnestock, M. A. and others

Kwok, R. and others, (paper: Ice motion over Lake Vostok, Antarctica: constraints on inferences regarding the accreted ice) 689–694

Lambert Glacier (Antarctica):

Digital elevation models for the Lambert Glacier—Amery Ice Shelf system, East Antarctica, from ERS-l satellite radar altimetry, 553

Mass balance of the Lambert Glacier–Amery Ice Shelf system, East Antarctica: a comparison of computed balance fluxes and measured fluxes, 561-570

Larsen Ice Shelf (Antarctica):

The link between climate warming and break-up of ice shelves in the Antarctic Peninsula, 516-530

Laurentide ice sheet:

A numerical investigation of ice-lobe—permafrost interaction around the southern Laurentide ice sheet, $311\,$

Diffusive mixing between shearing granular layers: constraints on bed deformation from till contacts, 641–651

Law Dome (Antarctica):

Formaldehyde and peroxide concentrations in Law Dome (Antarctica) firn and ice cores, 15-19

Le Meur, E., see Vincent, C. and others

Limmerngletscher (Switzerland):

Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model, 7–14

MacAyeal, D. R., see Cutler, P. M. and others

Mackay Glacier (Antarctica):

Ice discharge of eastern Dome C drainage area, Antarctica, determined from airborne radar survey and satellite image analysis, 253

Maggi, V., see Stenni, B. and others

Mair, D., see Hubbard, A. and others

Mapping: A low-cost glacier-mapping system, 531-537

Mars: A flow model for the polar caps of Mars, 438-444

Marshall, S. J., see Payne, A. J. and others

Marsiat, I., see Payne, A.J. and others

Martin, E., see Durand, Y. and others

Mass balance:

Analysis of a 3 year meteorological record from the ablation zone of Morteratschgletscher, Switzerland: energy and mass balance, 571–579 Dynamic behaviour analysis of glacier de Saint Sorlin, France, from

40 years of observations, 1957–97, 499–506 Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance model, 244–252

A geometric glacier model for sea-level change calculations, 357–368

Glacier mass-balance determination by remote sensing and high-resolution modelling, 491-498

Mass balance of the Lambert Glacier–Amery Ice Shelf system, East Antarctica: a comparison of computed balance fluxes and measured fluxes, 561–570

Mass balance of the northeast sector of the Greenland ice sheet: a remotesensing perspective, 265

Measurement and parameterization of albedo variations at Haut Glacier d'Arolla, Switzerland, 675–688

Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic, 1–6

Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model, 7-14

The use of bulk and profile methods for determining surface heat fluxes in the presence of glacier winds, 445

Matsuoka, K., see Salamatin, A. N. and others

Matthes Glacier (U.S.A.):

Radar glacier zones in southeast Alaska, U.S.A.: field and satellite observations, 287–296

Mätzler, C., (paper: A simple snowpack/cloud reflectance and transmittance model from microwave to ultraviolet: the ice-lamella pack) 20-24

Mawson Glacier (Antarctica):

Ice discharge of eastern Dome C drainage area, Antarctica, determined from airborne radar survey and satellite image analysis, 253

Mayer, C. and M. J. Siegert, (paper: Numerical modelling of ice-sheet dynamics across the Vostok subglacial lake, central East Antarctica) 197–205

Mayewski, P. A., see Kang Shichang and others

Mérindol, L., see Durand, Y. and others

Mickelson, D. M., see Cutler, P. M. and others

Microwaves:

A simple snowpack/cloud reflectance and transmittance model from microwave to ultraviolet: the ice-lamella pack, 20-24

Miles Glacier (U.S.A.):

Radar glacier zones in southeast Alaska, U.S.A.: field and satellite observations, $287\hbox{--}296$

Miller, H., see Hempel, L. and others

Miller, M. M., see Ramage, J. M. and others

Moraines: A model of ablation-dominated medial moraines and the generation of debris-mantled glacier snouts, 459-469

Moran, M. L. and others, (paper: Delineation of a complexly dipping temperate glacier bed using short-pulse radar arrays) 274–286

Moran, M. L. and others, (erratum: Delineation of a complexly dipping temperate glacier bed using short-pulse radar arrays) 707

Morin, R. H. and others, (paper: Acoustic televiewer logging in glacier boreholes) 695–699

Morteratschgletscher (Switzerland):

Analysis of a 3 year meteorological record from the ablation zone of Morteratschgletscher, Switzerland: energy and mass balance, 571–579

Mosley-Thompson, E., see Zagorodnov, V. and others

Murav'yev, Y. D., see Salamatin, A. N. and others

Murray, T. and others, (paper: Englacial water distribution in a temperate glacier from surface and borehole radar velocity analysis) 389–398

Murray, T., see Jiskoot, H. and others

Näslund, J.-O. and others, (paper: Numerical modelling of the ice sheet in western Dronning Maud Land, East Antarctica: impacts of present, past and future climates) 54-66

Näslund, J.-O. and others, (erratum: Numerical modelling of the ice sheet in western Dronning Maud Land, East Antarctica: impacts of present, past and future climates) 353–354

Nepal

Himalayan ice-core dating with snow algae, 335-340

Nereson, N. A., (paper: Elevation of ice-stream margin scars after stagnation)

Nereson, N. A. and others, (paper: The accumulation pattern across Siple Dome, West Antarctica, inferred from radar-detected internal layers) 75–87

Nereson, N. A., see Jacobel, R.W. and others

New Zealand: Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic, 1–6

Ng, F. S. L., (paper: Coupled ice-till deformation near subglacial channels and cavities) 580–598

Ng, F. S. L., (review: Van der Veen, C. J. 1999. Fundamentals of glacier dynamics) 700-701

Nienow, P., see Hubbard, A. and others

Nigardsbreen (Norway):

Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic, 1–6

Nioghalvfjerdsbrae (Greenland):

A low-cost glacier-mapping system, 531-537

Mass balance of the northeast sector of the Greenland ice sheet: a remotesensing perspective, 265

Norway:

Contemporaneous, localized, basal ice-flow variations: implications for bedrock erosion and the origin of p-forms, $470\!-\!476$

Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic, $1\!-\!6$

Rheology of ice at the bed of Engabreen, Norway, 611–621 Sliding of ice past an obstacle at Engabreen, Norway, 599–610

Nye, J. F., (paper: A flow model for the polar caps of Mars) 438-444

Oerlemans, J. and B. K. Reichert, (paper: Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic) 1-6

Oerlemans, J., (paper: Analysis of a 3 year meteorological record from the ablation zone of Morteratschgletscher, Switzerland: energy and mass balance) 571-579

Øksfjordjøkelen (Norway):

Contemporaneous, localized, basal ice-flow variations: implications for bedrock erosion and the origin of p-forms, 470–476

Oxygen isotopes:

Monsoon and dust signals recorded in Dasuopu glacier, Tibetan Plateau, 222–226

Parizek, B. B., see Cutler, P. M. and others

Pasterzenkees (Austria):

The use of bulk and profile methods for determining surface heat fluxes in the presence of glacier winds, 445

Patterson, C. J., see Knight, P. G. and others

Payne, A. J. and others, (paper: Results from the EISMINT model intercomparison: the effects of thermomechanical coupling) 227–238

Permafrost:

A numerical investigation of ice-lobe–permafrost interaction around the southern Laurentide ice sheet, 311

Peyto Glacier (Canada):

Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic, 1-6

Photogrammetry:

Glacier mass-balance determination by remote sensing and high-resolution modelling, 491-498

Pine Island Glacier (Antarctica):

Calculating basal thermal zones beneath the Antarctic ice sheet, 297-310

Plattalvagletscher (Switzerland):

Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model, 7–14

Plogbreen (Antarctica):

Numerical modelling of the ice sheet in western Dronning Maud Land, East Antarctica: impacts of present, past and future climates, 54–66

Pradhan, P. M. S., see Trickett, Y. L. and others

Pradhan, P. M. S., see Trickett, Y. L. and others

Priestley Glacier (Antarctica):

Ice discharge of eastern Dome C drainage area, Antarctica, determined from airborne radar survey and satellite image analysis, 253

Qin Dahe, see Kang Shichang and others

Rabus, B.T. and D. R. Fatland, (paper: Comparison of SAR-interferometric and surveyed velocities on a mountain glacier: Black Rapids Glacier, Alaska, U.S.A) 119–128

Radar

An analysis of balance velocities over the Greenland ice sheet and comparison with synthetic aperture radar interferometry, 67–74

 $1.4~\rm GHz$ radar penetration and evidence of drainage structures in temperate ice: Black Rapids Glacier, Alaska, U.S.A., 477-490

Bed properties of Siple Dome and adjacent ice streams, West Antarctica, inferred from radio-echo sounding measurements, 88–94

Changes in the margin of Ice Stream C, Antarctica, 102-110

Radar glacier zones in southeast Alaska, U.S.A.: field and satellite observations, 287–296

The accumulation pattern across Siple Dome, West Antarctica, inferred from radar-detected internal layers, 75-87

Digital elevation models for the Lambert Glacier—Amery Ice Shelf system, East Antarctica, from ERS-1 satellite radar altimetry, 553–560 Mass balance of the Lambert Glacier—Amery Ice Shelf system, East Antarctica: a comparison of computed balance fluxes and measured fluxes,

Radio-echo sounding (RES):

561 - 570

The accumulation pattern across Siple Dome, West Antarctica, inferred from radar-detected internal layers, 75-87

Bed properties of Siple Dome and adjacent ice streams, West Antarctica, inferred from radio-echo sounding measurements, 88–94

Changes in the margin of Ice Stream C, Antarctica, 102-110

A comparison of radio-echo sounding data and electrical conductivity of the GRIP ice core, 369-374

Delineation of a complexly dipping temperate glacier bed using short-pulse radar arrays, $274\,$

Geophysical investigations of ice-sheet internal layering and deformation in the Dome C region of central East Antarctica, 161–166

Ice discharge of eastern Dome C drainage area, Antarctica, determined from airborne radar survey and satellite image analysis, 253

A low-cost glacier-mapping system, 531-537

Mass balance of the northeast sector of the Greenland ice sheet: a remote-sensing perspective, 265

The onset area of Ice Stream D, West Antarctica, 95-101

Radionuclides:

Natural and anthropogenic levels of tritium in a Canadian Arctic ice core, Agassiz Ice Cap, Ellesmere Island, and comparison with other radionuclides, 35–40

Ramage, J. M. and others, (paper: Radar glacier zones in southeast Alaska, U.S.A.: field and satellite observations) 287–296

Raper, S. C. B. and others, (paper: A geometric glacier model for sea-level change calculations) $357\!-\!368$

Rasmussen, L. A. and others, (paper: The accumulation regime of Blue Glacier, U.S.A., 1914–96) 326–334

Raymond, C. F., (paper: Energy balance of ice streams) 665-674

Raymond, C. F., see Gades, A. M. and others

Raymond, C. F., see Jacobel, R.W. and others

Raymond, C. F., see Nereson, N. A. and others

Raymond, C. F., see Thorsteinsson, T.

Rea, B. R. and others, (paper: Contemporaneous, localized, basal ice-flow variations: implications for bedrock erosion and the origin of p-forms) $470\!-\!476$

Reeh, N., see Christensen, E. L. and others

Reeves Glacier (Antarctica):

Ice discharge of eastern Dome C drainage area, Antarctica, determined from airborne radar survey and satellite image analysis, 253

Reflectance:

A simple snowpack/cloud reflectance and transmittance model from microwave to ultraviolet: the ice-lamella pack, 20-24

Reichert, B. K., see Oerlemans, J.

Remote Sensing:

Evaluation of remote-sensing techniques to measure decadal-scale changes of Hofsjökull ice cap, Iceland, 375–388

Ice discharge of eastern Dome C drainage area, Antarctica, determined from airborne radar survey and satellite image analysis, 253

Mass balance of the northeast sector of the Greenland ice sheet: a remote-sensing perspective, 265

Reviews:

Knight, Peter G. 1999. Glaciers, 346

Petrenko, Victor F. and Robert W. Whitworth. 1999. The physics of ice, 347–348 Post, A. and E. R. La Chapelle. 1999. Glacier ice, 700

Van der Veen, C. J. 1999. Fundamentals of glacier dynamics, 700–701

Reynaud, L., see Vincent, C. and others

Rhonegletscher (Switzerland):

Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model, 7–14

Rignot, E. and others, (paper: Mass balance of the northeast sector of the Greenland ice sheet: a remote-sensing perspective) 265–273

Ritz, C., see Payne, A. J. and others

Roberts, M. J. and others, (correspondence: Rapid sediment entrainment and englacial deposition during jökulhlaups) 349–351

Robinson, Z. P., see Knight, P. G. and others

Ross Ice Shelf (Antarctica):

Calculating basal thermal zones beneath the Antarctic ice sheet, 297–310 A millennium of variable ice flow recorded by the Ross Ice Shelf, Antarctica, 652–664

Russell Glacier (Greenland):

Glacier advance, ice-marginal lakes and the routing of meltwater and sediment: Russell Glacier, Greenland, 423-426

Russell, A. J., see Roberts, M. J. and others

Russia:

Modelling dynamics of glaciers in volcanic craters, 177–187 Portable system for intermediate-depth ice-core drilling, 167–172

Rutford Ice Stream (Antarctica):

Energy balance of ice streams, 665-674

Synthetic-aperture radar (SAR):

Comparison of SAR-interferometric and surveyed velocities on a mountain glacier: Black Rapids Glacier, Alaska, U.S.A., 119–128

An analysis of balance velocities over the Greenland ice sheet and comparison with synthetic aperture radar interferometry, 67–74

Radar glacier zones in southeast Alaska, U.S.A.: field and satellite observations, $287\hbox{--}296$

Saint Sorlin, Glacier de (France):

Dynamic behaviour analysis of glacier de Saint Sorlin, France, from $40~\rm years$ of observations, $1957-97,\,499-506$

Salamatin, A. N. and others, (paper: Modelling dynamics of glaciers in volcanic craters) 177–187

Saurer, M., see Eichler, A. and others

Scambos, T. A. and others, (paper: The link between climate warming and break-up of ice shelves in the Antarctic Peninsula) 516–530

Scambos, T. A., see Fahnestock, M. A. and others

Scambos, T. A., see Jacobel, R.W. and others

Schmeltz, M., see Rignot, E. and others

Schweizer, J., see Jamieson, J. B.

Schwikowski, M., see Eichler, A. and others

Sea ice: On the modelling of ice-thickness redistribution, 427-437

Seko, K., see Yoshimura, Y. and others

Serra, F., see Stenni, B. and others

Sharp, M., see Hubbard, A. and others

Sharp, M.J., see Brock, B.W. and others

Shiraiwa, T., see Salamatin, A. N. and others

Siegert, M. J. and J. L. Bamber, (correspondence: Subglacial water at the heads of Antarctic ice-stream tributaries) 702-703

Siegert, M. J., see Hodgkins, R. and others

Siegert, M. J., see Kwok, R. and others

Siegert, M. J., see Mayer, C.

Sigurðsson, O., see Hall, D. K. and others

Silvrettagletscher (Switzerland):

Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model, 7–14

Siple Dome (Antarctica):

Bed properties of Siple Dome and adjacent ice streams, West Antarctica, inferred from radio-echo sounding measurements, 88–94

Changes in the margin of Ice Stream C, Antarctica, l02-l10

Elevation of ice-stream margin scars after stagnation, 111–118 $\,$

The accumulation pattern across Siple Dome, West Antarctica, inferred from radar-detected internal layers, 75–87

The onset area of Ice Stream D, West Antarctica, 95-101

Skeiðarárjökull (Iceland):

Rapid sediment entrainment and englacial deposition during jökulhlaups, 349-351

Glaciofluvial crevasse and conduit fills as indicators of supraglacial dewatering during a surge, Skeiðarárjökull, Iceland, 25-34

Skou, N., see Christensen, E. L. and others

Smith, L. C., see Hall, D. K. and others

Snow

Formaldehyde and peroxide concentrations in Law Dome (Antarctica) firn and ice cores, 15-19

A simple snowpack/cloud reflectance and transmittance model from microwave to ultraviolet: the ice-lamella pack, 20–24

Himalayan ice-core dating with snow algae, 335-340

Short fluctuations in the density and thickness of a dry firn column, 399–411 Texture and strength changes of buried surface-hoar layers with implications for dry snow-slab avalanche release, 151–160

Spiro, B., see Hubbard, B. and others

Stauffer, B., see Tschumi, J.

Stenni, B. and others, (paper: Snow accumulation rates in northern Victoria Land, Antarctica, by firn-core analysis) 541–552

Stikine Icefield (Canada):

Radar glacier zones in southeast Alaska, U.S.A.: field and satellite observations, 287–296

Stuart, G.W., see Murray, T. and others

Surging glaciers:

Controls on the distribution of surge-type glaciers in Svalbard, 4l2–422 Glaciofluvial crevasse and conduit fills as indicators of supraglacial dewatering during a surge, Skeiðarárjökull, Iceland, 25–34

Svalbard:

Contemporaneous, localized, basal ice-flow variations: implications for bedrock erosion and the origin of p-forms, 470–476

Controls on the distribution of surge-type glaciers in Svalbard, 412-422

Switzerland:

Analysis of a 3 year meteorological record from the ablation zone of Morteratschgletscher, Switzerland: energy and mass balance, 571–579

Glacier mass-balance determination by remote sensing and high-resolution modelling, $491\!-\!498$

Glaciochemical dating of an ice core from upper Grenzgletscher $(4200~\mathrm{m}~\mathrm{a.s.l.}), 507-515$

Ice-core evidence of the thickness and character of clear-facies basal ice: Glacier de Transfleuron, Switzerland, 140-150

Measurement and parameterization of albedo variations at Haut Glacier d'Arolla, Switzerland, 675–688

Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model, 7–14

Synal, H.-A., see Eichler, A. and others

Tabacco, I. E., see Frezzotti, M. and others

Takeuchi, N., see Yoshimura, Y. and others

Taku Glacier (U.S.A.):

Radar glacier zones in southeast Alaska, U.S.A.: field and satellite observations, $287\hbox{--}296$

Talos Dome (Antarctica):

Ice discharge of eastern Dome C drainage area, Antarctica, determined from airborne radar survey and satellite image analysis, 253

Tarasov, L., see Payne, A.J. and others

Taylor Dome (Antarctica):

Ice discharge of eastern Dome C drainage area, Antarctica, determined from airborne radar survey and satellite image analysis, 253

Thomassen, M. P. A., see Payne, A. J. and others

Thompson, L. G., see Zagorodnov, V. and others

Thorsteinsson, T. and C. F. Raymond, (paper: Sliding versus till deformation in the fast motion of an ice stream over a viscous till) 633-640

Thwaites Glacier (Antarctica):

Calculating basal thermal zones beneath the Antarctic ice sheet, 297–310

Thyssen, F., see Hempel, L. and others

Tibetan Plateau:

Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance model, 244–252

Monsoon and dust signals recorded in Dasuopu glacier, Tibetan Plateau, $222\!-\!226$

Till:

Coupled ice-till deformation near subglacial channels and cavities, 580–598 Diffusive mixing between shearing granular layers: constraints on bed deformation from till contacts, 641–651

Glacier motion dominated by processes deep in underlying till, 2l3–22l Sliding versus till deformation in the fast motion of an ice stream over a viscous till, 633–640

Tison, J.-L., see Hubbard, B. and others

Transfleuron, Glacier de (Switzerland):

Ice-core evidence of the thickness and character of clear-facies basal ice: Glacier de Transfleuron, Switzerland, 140–150

Transmittance:

A simple snowpack/cloud reflectance and transmittance model from microwave to ultraviolet: the ice-lamella pack, 20–24

Trapridge Glacier (Canada):

Evidence for extreme pressure pulses in the subglacial water system, 206-212

Traversi, R., see Stenni, B. and others

Trickett, Y. L. and others, (paper: The effects of sulfuric acid on the mechanical properties of ice single crystals) 239-243

Trickett, Y. L. and others, (paper: The orientation dependence of the strength of ice single crystals) 41-44

Tritium

Natural and anthropogenic levels of tritium in a Canadian Arctic ice core, Agassiz Ice Cap, Ellesmere Island, and comparison with other radionuclides, 35–40

Truffer, M. and others, (paper: Glacier motion dominated by processes deep in underlying till) 213-221

Tschumi, J. and B. Stauffer, (paper: Reconstructing past atmospheric CO $_2$ -concentration based on ice-core analyses: open questions due to in situ production of CO $_2$ in ice) 45–53

Tweed, F. S., see Roberts, M. J. and others

USA

Comparison of SAR-interferometric and surveyed velocities on a mountain glacier: Black Rapids Glacier, Alaska, U.S.A., 119–128

Glacier motion dominated by processes deep in underlying till, 213–221 Radar glacier zones in southeast Alaska, U.S.A.: field and satellite observations, 287–296

The accumulation regime of Blue Glacier, U.S.A., 1914-96, 326-334

1.4 GHz radar penetration and evidence of drainage structures in temperate ice: Black Rapids Glacier, Alaska, U.S.A., 477–490

A model of ablation-dominated medial moraines and the generation of debris-mantled glacier snouts, 459-469

Diffusive mixing between shearing granular layers: constraints on bed deformation from till contacts, 641–651

Delineation of a complexly dipping temperate glacier bed using short-pulse radar arrays, 274

A numerical investigation of ice-lobe–perma frost interaction around the southern Laurentide ice sheet, 311-325

Udisti, R., see Stenni, B. and others

Vallon, M., see Vincent, C. and others

Van Ommen, T. D., see Gillett, R.W. and others

Veststraumen (Antarctica):

Numerical modelling of the ice sheet in western Dronning Maud Land, East Antarctica: impacts of present, past and future climates, 54–66

Vincent, C. and others, (paper: Dynamic behaviour analysis of glacier de Saint Sorlin, France, from 40 years of observations, 1957–97) 499–506

Vornberger, P., see Bindschadler, R. and others

Vostok (Antarctica):

Ice motion over Lake Vostok, Antarctica: constraints on inferences regarding the accreted ice, 689–694

Numerical modelling of ice-sheet dynamics across the Vostok subglacial lake, central East Antarctica, 197–205

Waddington, E. D., see Nereson, N. A. and others

Wake, C. P., see Kang Shichang and others

Waller, R. I., see Bennett, M. R. and others

Waller, R. I., see Knight, P. G. and others

Warner, R. C., see Fricker, H. A. and others

Weber, J. E., (paper: Non-temperate glacier flow over wavy sloping ground) $453\!-\!458$

Whalley, W. B., see Rea, B. R. and others

White Glacier (Canada):

Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic, 1–6

Wilch, E. and T. J. Hughes, (paper: Calculating basal thermal zones beneath the Antarctic ice sheet) 297-310

Wilen, L. A., (paper: A new technique for ice-fabric analysis) 129-139

Wilkins Ice Shelf (Antarctica):

The link between climate warming and break-up of ice shelves in the Antarctic Peninsula, 516-530

Williams, R. S., Jr, see Hall, D. K. and others

Willis, I., see Hubbard, A. and others

Willis, I. C., see Brock, B.W. and others

Wingham, D.J., (paper: Short fluctuations in the density and thickness of a dry firn column) 399-411

Woelders, K., see Christensen, E. L. and others

Wordie Ice Shelf (Antarctica):

The link between climate warming and break-up of ice shelves in the Antarctic Peninsula, 516-530

Workman, W., see Kotzer, T. G. and others

Wortmanns Glacier (Ak):

A model of ablation-dominated medial moraines and the generation of debris-mantled glacier snouts, 459-469

Yala Glacier (Nepal):

Himalayan ice-core dating with snow algae, 335-340

Yankielun, N. E., see Arcone, S. A.

Yao Tandong, see Kang Shichang and others

Yoshimura, Y. and others, (paper: Himalayan ice-core dating with snow algae) $335\!-\!340$

Young, N.W., see Fricker, H.A. and others

Zachariae Isstrøm (Greenland):

Mass balance of the northeast sector of the Greenland ice sheet: a remotesensing perspective, 265

Zagorodnov, V. and others, (paper: Portable system for intermediate-depth icecore drilling) 167–172

Zhang, Y., see Braithwaite, R.J.

Zheng, J., see Kotzer, T. G. and others

Zirizzotti, A., see Frezzotti, M. and others