
Mathematical Structures in Computer Science (2021), 31, pp. 144–192
doi:10.1017/S0960129521000116

PAPER

Computing with continuous objects: a uniform
co-inductive approach∗

Dieter Spreen

Department of Mathematics, University of Siegen, Siegen 57068, Germany
Email: spreen@math.uni-siegen.de

(Received 11 April 2020; revised 6 March 2021; accepted 7 June 2021; first published online 19 August 2021)

Abstract
A uniform approach to computing with infinite objects like real numbers, tuples of these, compacts sets
and uniformly continuous maps is presented. In the work of Berger, it was shown how to extract cer-
tified algorithms working with the signed digit representation from constructive proofs. Berger and the
present author generalised this approach to complete metric spaces and showed how to deal with com-
pact sets. Here, we unify this work and lay the foundations for doing a similar thing for the much more
comprehensive class of compact Hausdorff spaces occurring in applications. The approach is of the same
computational power as Weihrauch’s Type-Two Theory of Effectivity.

Keywords: Computing; iterative function system; topology; compact set; inductive/co-inductive definition; program
extraction

1. Introduction
In investigations on exact computations with continuous objects such as the real numbers, objects
are usually represented by streams of finite data. This is true for theoretical studies in the Type-
Two Theory of Effectivity approach (cf. e.g. Weihrauch 2000) as well as for practical research,
where prevalently the signed digit representation is used (cf. Berger and Hou, 2008; Ciaffaglione
and Di Gianantonio, 2006; Marcial-Romero and Hötzel Escardó, 2007), but also others (Edalat
and Heckmann, 2002; Edalat and Sünderhauf, 1998; Tsuiki, 2002). Berger (2011) showed how to
use the method of program extraction from proofs to extract certified algorithms working with
the signed digit representation in a semi-constructive logic allowing inductive and co-inductive
definitions.

In order to generalise from the different finite objects used in the various stream representa-
tions, Berger and the present author (Berger and Spreen, 2016) used the abstract framework of
what was coined digit space, that is, a bounded complete non-empty metric space X enriched with
a finite set D of contractions on X, called digits, that cover the space, that is

X =
⋃

{ d[X] | d ∈D },
where d[X]= { d(x) | x ∈ X }. Spaces of this kind were studied by Hutchinson in his basic theo-
retical work on self-similar sets (Hutchinson, 1981) and used later also by Scriven (2008) in the
context of exact real number computation.

∗This project has received funding from the European Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreement No 731143.
© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116
https://orcid.org/0000-0002-2773-7323
mailto:spreen@math.uni-siegen.de
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129521000116&domain=pdf
https://doi.org/10.1017/S0960129521000116

Mathematical Structures in Computer Science 145

Digit spaces are compact and weakly hyperbolic, where the latter property means that for every
infinite sequence d0, d1, . . . of digits the intersection

⋂
n∈N d0 ◦ · · · ◦ dn[X] contains at most one

point (Edalat, 1996). Compactness, on the other hand, implies that each such intersection contains
at least a point. By this way, every stream of digits denotes a uniquely determined point in X.
Because of the covering property, it follows conversely that each point in X has such a code.

With respect to the operations of adding a digit d to the left side of a stream and applying a
map d in D to an element of X, respectively, the space of digit streams and X are algebras of the
same signature, and the coding map is a morphism respecting these operations.

A central aim of the joint research was to lay the foundation for computing with non-empty
compact sets and for extracting algorithms for such computations from mathematical proofs. It
is a familiar fact that the set of all non-empty compact subsets of a bounded complete metric
space is a bounded and complete space again with respect to the Hausdorff metric (Engelking,
1989; Munkres, 2000). However, as was shown in Berger and Spreen (2016), in general, there is
no finite set of contractions that covers the hyperspace. On the other hand, non-empty compact
subsets can be represented in a natural way by finitely branching infinite trees of digits. Moreover,
all characterisations in Berger and Spreen (2016) derived for the stream representation of the
elements of the digit space hold true for the tree representation of the non-empty compact subsets
of the space.

The goal of the investigation presented in this paper is to show that a uniform approach to
computing with continuous objects comprising the non-empty compact sets case can be obtained
by allowing the contractions of a digit space to be multi-ary. Points are then no longer represented
by digit streams but by finitely branching infinite trees, called D-trees. As we will see, not only a
uniform version of the results in Berger and Spreen (2016) can be derived but also an analogue
of Berger’s inductive co-inductive characterisation of the (constructively) uniformly continuous
endofunctions on the unit interval (Berger, 2011), which allows representing also such functions
as finitely branching infinite trees.

There is also a second objective which results from the observation that the essential proper-
ties needed in the approach pursued in Berger and Spreen (2016) are covering, compactness and
weak hyperbolicity. So, it seems that more generality is gained by starting from spaces with these
properties.

Besides the general framework and the hyperspace of non-empty compact subsets, the con-
struction of product spaces is presented. In both cases, it is investigated whether important
properties are inherited under the constructions. Moreover, to demonstrate the power of the
framework, several results from topology are derived that are relevant for applications.

It is well known that the product and the hyperspace construction are both functorial. Here,
we give proofs of the functoriality on the basis of the co-inductive characterisations of the
spaces involved, which means we use co-induction and/or a combination of induction and
co-induction.

In his seminal 1951 paper on spaces of subsets (Michael, 1951), Michael showed that compact
unions of compact sets are compact again. We give a non-topological proof of this result, based
on co-induction. Other results we derive in a similar way include the fact that singleton sets are
compact, as are direct images of compact sets under uniformly continuous functions. From the
proofs algorithms transforming tree representations of points x into tree representations of the
compact sets {x}, and tree representation of uniformly continuous functions f as well as tree rep-
resentations of compact sets K into tree representations of the compact sets f [K], respectively, can
be extracted.

The paper is organised as follows: Section 2 contains a short introduction to inductive and co-
inductive definitions and the proof methods they come equipped with. As a first application, finite
and finitely branching infinite trees are defined in Section 3. Digit spaces are iterated function sys-
tems. In Section 4, function systems with multi-ary functions are considered and essential results
derived.

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

146 D. Spreen

As said, the central aim of this paper is to present a uniform approach to computing with infi-
nite objects like real numbers and tuples or compact sets of such. In Section 5, we restrict our study
to the case of extended iterated function systems where the underlying space is a compact metric
space and the maps making up the function system are contractions. There are a vast number of
effectivity studies for metric spaces. Here, the aim is to show that what was obtained in Berger
and Spreen (2016) remains true in the more general case of multi-ary digit maps. A particular
consequence is the equivalence of the present approach with Weihrauch’s Type-Two Theory of
Effectivity (Weihrauch, 2000).

In Weihrauch’s approach, one has to deal with representations explicitly. Often this requires
involved codings that make it hard for the usual mathematician to follow the proof argument.
Proof extraction is an approach that avoids dealing with representations: the representations of
objects as well as the algorithms computing with them are automatically extracted from formal
proofs. Section 6 contains a short introduction. As is shown, the tree representation considered in
Section 4 results from the co-inductive characterisation of the space.

In Section 7, the equivalence between the property that every point of a digit space is the limit of
a regular Cauchy sequence of elements of a dense base and the co-inductive characterisation of the
space is derived in a constructive fashion. Via proof extraction computable translations between
the Cauchy representation used in Type-Two Theory of Effectivity and the tree representation can
be obtained.

In the following two sections, the construction of new spaces from given ones is considered. In
Section 8, products are examined. All properties of extended iterated function systems and digit
spaces, respectively, considered in this paper are inherited from the factor spaces to their product.

The hyperspace of non-empty compact subsets is studied in Section 9. All but one of the prop-
erties investigated are inherited to the hyperspace. Only for weak hyperbolicity this is still open
in the general case. If the underlying space is a metric one and all digits are contracting, also this
property holds.

As a consequence, in both cases, the equivalence result derived in Section 7 carries over to the
derived spaces. In Berger and Spreen (2016), separate proofs had to be given for digit spaces and
their hyperspaces. Particularly in the latter case, the proof was quite involved.

Section 10 contains a generalisation of Berger’s inductive co-inductive characterisation of the
uniformly continuous functions on the unit interval to the digit space case. On the basis of the
characterisation, it is shown that the function class is closed under composition.

The last two sections address applications of the framework to topology. In Section 11, the func-
toriality of the hyperspace construction and properties of continuous functions that map into the
hyperspace are derived. Section 12, finally, contains a co-inductive treatment of Michael’s result.

The paper finishes with a Conclusion.

2. Inductive and Co-inductive Definitions
LetX be a set andP(X) its powerset. An operator� : P(X)→P(X) ismonotone if for allY , Z ⊆ X,

if Y ⊆ Z, then �(Y)⊆ �(Z);

and a set Y ⊆ X is �-closed (or a pre-fixed point of �) if �(Y)⊆ Y . Since P(X) is a complete
lattice, � has a least fixed point μ� by the Knaster–Tarski Theorem. If P ⊆ X, we mostly write

P(x) μ= �(P)(x),

instead of P = μ�. μ� can be defined to be the least �-closed subset of X. Thus, we have the
induction principle stating that for every Y ⊆ X.

If �(Y)⊆ Y then μ� ⊆ Y

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

Mathematical Structures in Computer Science 147

For monotone operators �,� : P(X)→P(X) define

� ⊆ � :⇔ (∀Y ⊆ X)�(Y)⊆ �(Y).

It is easy to see that the operation μ is monotone, that is, if � ⊆ � , then μ� ⊆ μ� . This allows
us to derive the following strengthening of the induction principle.

Lemma 2.1 (Strong Induction Principle Berger, 2011). Let � : P(X)→P(X) be a monotone
operator. Then,

If �(Y ∩ μ�)⊆ Y, then μ� ⊆ Y.

Proof. Let�(Y) := �(Y ∩ μ�) and assume that�(Y)⊆ Y . Thenμ� ⊆ Y , by the induction prin-
ciple. Since Y ∩ μ� ⊆ Y , we moreover have that �(Y)⊇ �(Y ∩ μ�)= �(Y). Hence, μ� ⊆ μ�.
It follows that

μ� = �(μ�)= �(μ� ∩ μ�)= �(μ�).

Therefore, μ� ⊆ μ� , again by induction, and whence μ� ⊆ Y .

Dual to inductive definitions are co-inductive definitions. A subseteq Y of X is called �-co-
closed (or a post-fixed point of �) if Y ⊆ �(Y). By duality, � has a largest fixed point ν� which
can be defined as the largest �-co-closed subset of �. So, we have the co-induction and the strong
co-induction principle, respectively, stating that for all Y ⊆ X.

If Y ⊆ �(Y), then Y ⊆ ν�.

and

If Y ⊆ �(Y ∪ ν�), then Y ⊆ ν�.

Note that for P ⊆ X we also write

P(x) ν= �(P)(x)

instead of P = ν�.

Lemma 2.2 (Half-strong Co-induction Principle Berger, 2017). Let � : P(X)→P(X) be a
monotone operator. Then,

if Y ⊆ �(Y)∪ ν� then Y ⊆ ν�.

Proof. Let �(Y) := �(Y)∪ ν�. Then � is monotone and pointwise larger than �. Hence,

ν� ⊆ ν� . (1)

On the other hand

ν� = �(ν�)= �(ν�)∪ ν� = �(ν�)

since ν� = �(ν�)⊆ �(ν�), by (1). Hence,

ν� ⊆ ν�, (2)

by co-induction.
The premise of half-strong co-induction means Y ⊆ �(Y). Therefore, Y ⊆ ν� , by co-

induction, from which we obtain with (2) that Y ⊆ ν�.

The following examples are taken from Berger (2011).

Example 2.3. (natural numbers) Define � : P(R)→P(R) by

�(Y) := {0} ∪ { y+ 1 | y ∈ Y }.

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

148 D. Spreen

Then μ� =N= { 0, 1, . . . }. The induction principle is logically equivalent to the usual zero-
successor-induction on N: if 0 ∈ Y and (∀y ∈ Y)(y ∈ Y → y+ 1 ∈ Y), then (∀y ∈N) y ∈ Y .

Example 2.4. (signed digits and the interval [− 1, 1]) Set I := [− 1, 1] and for every signed digit
d ∈ SD := {−1, 0, 1} define avd : I→ I by

avd(x) := (x+ d)/2.
Let Id := range (avd). Then Id = [d/2− 1/2, d/2+ 1/2] and I is the union of the Id.

Define � : P(I)→P(I) by
�(Z) := { x ∈ I | (∃d ∈ SD)(∃y ∈ Z) x= avd(y) }

and let CI := ν�. Then CI ⊆ I. Since, moreover, I⊆ �(I), it follows with co-induction that also
I⊆CI. Hence, CI = I. The point of this definition is that the proof of I⊆ �(I) has an interesting
computational content: x ∈ Imust be given in such a way that it is possible to find d ∈ SD so that
x ∈ Id. This means that d/2 is a first approximation of x. The computational content of the proof
of I⊆CI, roughly speaking, iterates the process of finding approximations to x ad infinitum, that
is, it computes a signed digit representation of x, that is, a stream a0 : a1 : · · · of signed digits with

x= ava0 (ava1 (· · ·))=
∑
i� 0

ai · 2−(i+1).

3. D-Trees
Let N0 :=N \ {0} and Nn

0 be the set of words of length n over N0. Define N∗
0 := ⋃

n∈N Nn
0 . The

empty word will be denoted by 〈 〉 and concatenation by �. We identify single-letter words with
the corresponding letter. Moreover, for S⊆N∗

0 and i ∈N0 we set i � S := { i � s | s ∈ S }.
A tree is a subset of N∗

0 that is closed under initial segments. We will consider trees the nodes
of which are labelled with elements of a fixed non-empty set D that comes equipped with an
outdegree ar : D→N0.

The subsequent definition says when T = (S, L) with S⊆N∗
0 and L : S→D is a finite D-tree of

height n.

Definition 3.1.

• T is a D-tree of height 0, if S= {〈 〉} and for some d ∈D, L(〈 〉)= d;
• T is a D-tree of height n+ 1, if S⊆Dn+1 and there are d ∈D and D-trees T1, . . . , Tar(d) of
height n such that

S= {〈 〉} ∪
ar(d)⋃
i=1

i � Si,

L(〈 〉)= d and L(i � s)= Li(s),
for 1� i� ar(d) and s ∈ Si. We write T = [d;T1, . . . , Tar(d)] in this case.

Let T (n)
D be the set of all D-trees of height n and T ∗

D := ⋃
n∈N T (n)

D .

Definition 3.2. For D-trees T and T′ of height n and n+ 1, respectively, we say that T is an
immediate prefix of T′ and write T ≺ T′, if

• either n= 0, T = ({〈 〉}, 〈 〉 �→ d), and T′ = [d;T1, . . . , Tar(d)],
• or T = [e;T1, . . . , Tar(e)] and T′ = [d;T′

1, . . . , T
′
ar(d)] so that e= d and Tν ≺ T′

ν , for all
1� ν � ar(e).

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

Mathematical Structures in Computer Science 149

Let S⊆N∗
0 be a tree. A labelling L : S→D is compatible if for all s ∈ S,

{ i ∈N0 | (∃s ∈ S) s � i ∈ S } = {1, . . . , ar(L(s))}.
Define the set T ω

D of infinite D-trees by
T ω
D := { (S, L) | S is a tree with compatible labelling L }.

Since every node d has finite outdegree ar(d), every infinite D-tree is a finitely branching tree
with only infinite paths.

For T = (S, L) ∈ T ω
D set

root(T) := L(〈 〉),
subtree(T) := ((S1, L1), . . . , (Sar(L(〈 〉)), Lar(L(〈 〉)))),

where Si := { s ∈N∗
0 | i � s ∈ S } and Li(s) := L(i � s), for 1� i� ar(L(〈 〉)) and s ∈ Si.

Theorem 3.3. Define the functor �D : Set→ Set by

�D(X) :=
⋃
d∈D

{d} × Xar(d).

Then (T ω
D , root× subtree) is a terminal co-algebra of �D.

The theorem is a consequence of general results on the existence of terminal co-algebras in
Adámek et al. (2019), Rutten (2000).

Definition 3.4. A relation R⊆ T ω
D × T ω

D is a bisimulation if for T, T′ ∈ T ω
D with root(T)= e,

root(T′)= d, subtree(T)= (T1, . . . , Tar(e)), and subtree(T′)= (T′
1, . . . , T

′
ar(d)),

R(T, T′)→ e= d ∧ (∀1� ν � ar(e)) R(Tν , T′
ν).

Lemma 3.5. For T, T′ ∈ T ω
D , T = T′ if, and only if, there is a bisimulation R⊆ T ω

D × T ω
D with

R(T, T′).
The ‘only-if ’ part is obvious as the identity on T ω

D is a bisimulation. The ‘if ’ part is known as the
co-induction proof principle and holds as (T ω

D , root× subtree) is a terminal co-algebra (Adámek
et al., 2019; Rutten, 2000).

As we will see, each infinite D-tree T with root(T)= d and subtree(T)= (T1, . . . , Tar(d)) is
uniquely determined by its finite initial segments T(n) recursively defined by

T(0) := ({〈 〉}, 〈 〉 �→ d),

T(n+1) := [d;T(n)
1 , . . . , T(n)

ar(d)].

Lemma 3.6. For every n ∈N,

1. T(n) is a D-tree of height n.
2. T(n) ≺ T(n+1).

Let TD be the set of all infinite sequences (Tν)ν∈N with Tν ∈ T (ν)
D and Tν ≺ Tν+1. Then

(T(n))n∈N ∈TD. Define G : T ω
D →TD by G(T) := (T(n))n∈N.

Next, let conversely (Tν)ν∈N ∈TD. Then T0 = ({〈 〉}, 〈 〉 �→ d0) and Tν ≺ Tν+1, for ν � 0. Since
Tν+1 ∈ T (ν+1)

D , there are dν+1 ∈D and Q〈1〉
ν , . . . ,Q〈ar(dν+1)〉

ν ∈ T (ν)
D so that

Tν+1 = [dν+1;Q〈1〉
ν , . . . ,Q〈ar(dν+1)〉

ν].

If ν > 0, similarly Tν = [dν ;Q〈1〉
ν−1, . . . ,Q

〈ar(dν)〉
ν−1] with dν ∈D and Q〈1〉

ν−1, . . . ,Q
〈ar(dν)〉
ν−1 ∈ T (ν−1)

D .
As Tν ≺ Tν+1, it follows that dν = dν+1 and Q〈κ〉

ν−1 ≺Q〈κ〉
ν , for 1� κ � ar(dν). Let d := d0.

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

150 D. Spreen

Then dν = d, for all ν � 0. In addition, set Q〈κ〉 := (Q〈κ〉
ν)ν∈N, for 1� κ � ar(d). It follows that

Q〈κ〉 ∈TD. Set

hd((Tν)ν∈N) := d and tl((Tν)ν∈N) := (Q〈1〉, . . . ,Q〈ar(d)〉).

Then (TD, hd× tl) is a �D-co-algebra. Now, co-recursively define F : TD → T ω
D by

root(F((Tν)ν∈N)) := hd((Tν)ν∈N) and subtree(F((Tν)ν∈N)) := tl((Tν)ν∈N).

Then

F((Tν)ν∈N)(κ) = Tκ , (3)

for κ ∈N. Moreover, it follows with the co-induction proof principle that F ◦G is the identity
on T ω

D .

Proposition 3.7. T ω
D and TD are isomorphic �D-co-algebras.

In what follows we will mostly assume that D is finite, with one exception where in different
tree levels different labels may be used. However, for each level the set of labels used for nodes of
that level is finite. We will now extend the above consideration to this case.

Let �D= (Dn)n∈N be a family of finite sets, and D̂ := ⋃
n∈N Dn. For a tree S⊆N∗

0 a labelling
L : S→ D̂ is appropriate, if for all n ∈N and all s ∈ S of length n, L(s) ∈Dn. Then

T ω
�D := { (S, L) | S is a tree with appropriate compatible labelling L }

is the set of infinite �D-trees. Obviously, every infinite �D-tree is an infinite D̂-tree with appropriate
labelling, and vice versa.

For m ∈N let �D(m) := (Dm+n)n∈N. Set
−→T ω

�D := (T ω
�D(n))n∈N. Moreover, for n ∈N and T = (S, L) ∈

T ω
�D(n) define

rootn(T) := L(〈 〉),
subtreen(T) := ((S1, L1), . . . , (Sar(rootn(T)), Lar(rootn(T)))),

where Si := { s ∈N∗
0 | i � s ∈ S } and Li(s) := L(i � s), for 1� i� ar(rootn(T)) and s ∈ Si. Then

rootn(T) ∈Dn and (Si, Li) ∈ T ω
�D(n+1) .

Let Setω be the ω-fold product of the category Set with itself: objects are infinite sequences of
sets (Xn)n∈N and morphisms infinite sequences of functions (fn : Xn → Yn)n∈N with component-
wise composition.

Theorem 3.8. Define the functor ��D : Setω → Setω by

(��D(�X))n∈N := (
⋃
d∈Dn

{d} × Xar(d)
n+1)n∈N.

Then (
−→T ω

�D , (rootn × subtreen)n∈N) is a terminal co-algebra of ��D.

The set of all infinite �D-trees comes equipped with a canonical metric:

δ(T, T′)=
{
0 if T = T′,
2−min{n|T(n) �=T′(n)} otherwise.

Obviously, δ(T, T′)� 1, for all T, T′ ∈ T ω
�D , i.e. (T ω

�D , δ) is bounded. By definition, the metric
topology on T ω

�D is generated by the collection of all balls Bδ(T, 2−n) of radius 2−n around T.

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

Mathematical Structures in Computer Science 151

Proposition 3.9. (T ω
�D , δ) is complete.

Proof. Let (Ti)i∈N be a regular Cauchy sequence in T ω
�D . Then δ(Tn, Tm)< 2−n, for allm� n. Thus,

T(n)
m = T(n)

n , for all m� n. In particular, we have that T(n)
n = T(n)

n+1. By Lemma 3.6, T(n)
n+1 ≺ T(n+1)

n+1 .
Moreover, T(n)

n ∈ T (n)
D̂ . Therefore, (T(n)

n)n∈N ∈TD̂. Let T := F((T(n)
n)n∈N). Then T ∈ T ω

D̂ . In addi-
tion, T has appropriate labelling. Hence, T ∈ T ω

�D . By (3), T(n) = T(n)
n = T(n)

m , for all m� n, which
means that δ(Tm, T)< 2−n, for allm� n. Thus, (Ti)i∈N converges to T.

Since there are only finitely many D̂-trees of height n with appropriate labelling, for every nat-
ural number n, and, on the other hand, every infinite �D-tree has an initial segment of height n,
(T ω

�D , δ) is also totally bounded.

Theorem 3.10. (T ω
�D , δ) is compact.

Corollary 3.11. (T ω
�D , δ) is separable.

Proof. Consider the countable family of coverings Cn := { Bδ(x, 2−n) | x ∈ X } with n ∈N and
apply compactness to obtain a countable dense set of points.

4. Extended Iterated Function Systems
In the remainder of this paper X is a Hausdorff space and D a finite set of continuous self-maps
on X.

Definition 4.1. (X,D) is an iterated function system (IFS) if X is a non-empty Hausdorff space
and D a finite set of unary self-maps d : X → X.

For our aims we will extend this notion by allowing the maps d to be of any positive finite arity
ar(d).

Definition 4.2. An extended IFS (X,D) consists of a non-empty Hausdorff space X and a finite set
D of continuous maps d : Xar(d) → X of positive finite arity ar(d).

Definition 4.3. An extended IFS (X,D) is covering if

X =
⋃

{ range (d) | d ∈D },
where range (d) := d[Xar(d)].

In the context of iterated function systems the notion self-similar is used instead. We think,
however, that in a topological context the above notion is more appropriate.

Covering extended IFS can be characterised co-inductively. Define CX ⊆ X by

CX(x)
ν= (∃d ∈D)(∃y1, . . . , yar(d) ∈ X) x= d(y1, . . . , yar(d))∧ (∀1� κ � ar(d))CX(yκ).

Lemma 4.4. Let (X,D) be covering. Then X =CX.

Proof. By definition, CX ⊆ X. The converse inclusion follows with co-induction. Observe to this
end that because of the covering property the defining right-hand side in the definition of CX
remains true when CX is replaced by X.

Note that in general, d and y1, . . . , yar(d) are not uniquely determined by x. So, there is no
canonical way to turn (X,D) into a �D-co-algebra. Moreover, bear in mind that the lemma holds
only classically: there is no way, in general, to compute d and y1, . . . , yar(d).

Each finite D-tree T defines a continuous map fT : Xar(T) → X of arity ar(T):

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

152 D. Spreen

• If T = {d}, for some d ∈D, then ar(T)= ar(d) and fT = d.
• If T = [d;T1, . . . , Tar(d)], then ar(T)= ∑ar(d)

κ=1 ar(Tκ) and fT = d ◦ (fT1 × · · · × fTar(d)).

The next result follows by induction on n.

Lemma 4.5. Let (X,D) be covering. Then for every n ∈N,

X =
⋃

{ range (fT) | T ∈ T (n)
D }.

Obviously, by increasing n one obtains finer coverings. So, one can use finite D-trees as a road
map to find elements of X. Can we therefore use infinite D-trees as their exact addresses?

Lemma 4.6. Let (X,D) be an extended IFS so that X is compact. Then, for any T ∈ T ω
D ,⋂

n∈N range (fT(n)) �= ∅.
Proof. By induction it follows that for every T ∈ T ω

D and each n ∈N, range (fT(n+1))⊆ range (fT(n)).
Moreover, range (fT(n)) �= ∅, as X is not empty. Since X is compact, the same holds for Xar(T(n)).
Hence, fT(n) [Xar(T(n))], as continuous image of a compact set, is compact as well and thus
closed, since X is Hausdorff. Thus, every finite intersection of members of the family of
sets {range (fT(n))}n∈N is non-empty and, therefore, by the finite intersection property, also⋂

n∈N range (fT(n)) is non-empty.

If X is a metric space and all maps in D are contracting, the above intersection will also contain
at most one element. However, this need not hold in general.

Definition 4.7. An extended IFS (X,D) is

1. compact if X is compact,
2. weakly hyperbolic, if for all T ∈ T ω

D , ‖⋂n∈N range (fT(n))‖� 1,

Proposition 4.8. Let (X,D) be compact and weakly hyperbolic. Then for all T ∈ T ω
D ,

‖
⋂

n∈N range (fT(n))‖ = 1.

We denote the uniquely determined element in
⋂

n∈N range (fT(n)) by [[T]]. [[·]] : T ω
D → X is

called the coding map.

Corollary 4.9. Let (X,D) be compact as well as weakly hyperbolic, and T ∈ T ω
D with T =

[d;T1, . . . , Tar(d)]. Then

[[T]]= d([[T1]], . . . , [[Tar(d)]]).

Proof. By definition, {[[T]]} = ⋂
n∈N range (fT(n)). Thus,

{[[T]]} =
⋂

n� 1
range (fT(n))

=
⋂

n� 1
d[range (fT(n−1)

1
)× · · · × range (fT(n−1)

ar(d)
)]

⊇ d[
⋂

n� 1
range (fT(n−1)

1
)× · · · × range (fT(n−1)

ar(d)
)]

= d[
⋂

n� 1
range (fT(n−1)

1
)× · · · ×

⋂
n� 0

range (fT(n−1)
ar(d)

)]

= {d([[T1]], . . . , [[Tar(d)]])},
from which the statement follows.

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

Mathematical Structures in Computer Science 153

In what follows we mostly deal with extended IFS that are covering, compact and weakly
hyperbolic.

Definition 4.10. A topological digit space (X,D) is a compact, covering and weakly hyperbolic
extended IFS.

The next question to be addressed is whether every element of X can be coded in the above
way. We start with a technical result.

Lemma 4.11. Let (X,D) be covering. Then for all n ∈N, all D-trees S ∈ T (n)
D and all x ∈ range (fS)

there is a D-tree T ∈ T (n+1)
D with x ∈ range (fT) so that S≺ T.

Proof. We prove the statement by induction on n. If n= 0, S= {e}, for some e ∈D. Otherwise,
S= [e;S1, . . . , Sar(d)]. Since x ∈ range (fS), it follows that there is some �y ∈ Xar(e), say �y=
(y1, . . . , yar(e)), so that x= e(�y). If n= 0, yκ ∈ X, for 1� κ � ar(e). Otherwise, yκ ∈ range (fSκ).

Let us first consider the case that n= 0. As (X,D) is covering, there is some dκ ∈D and with
yκ ∈ range (dκ), for each 1� κ � ar(e). Set T := [e;d1, . . . , dar(e)]. Then T ∈ T (1) so that S≺ T and
x ∈ range (fT).

If n> 0, it follows by the induction hypothesis that for each 1� κ � ar(e) there exists Tκ ∈ T (n)
D

such that yκ ∈ range (fTκ
) and Sκ ≺ Tκ . Let T := [e;T1, . . . , Tar(e)]. Then T ∈ T (n+1)

D . Moreover,
S≺ T and x ∈ range (fT).

With the Axiom of Dependent Choice, it now follows that for every x ∈ X there is a sequence
(Tν)ν∈N ∈TD with x ∈ range (fTν

), from which in turn we obtain with Proposition 3.7 that there
exists a D-tree T ∈ T ω

D with x ∈ range (fT(n)), for every n ∈N.

Lemma 4.12. Let (X,D) be a topological digit space. For all n ∈N, every S ∈ T (n)
D and all x ∈ X with

x ∈ range (fS) there is some T ∈ T ω
D so that T(n) = S and x= [[T]].

It follows that [[·]] is onto.
Theorem 4.13. Let (X,D) be a topological digit space. Then the following four statements hold:

(1) [[·]] : T ω
D → X is onto and uniformly continuous.

(2) The topology on X is equivalent to the quotient topology induced by [[·]].
(3) X is metrisable.
(4) X is separable.

Proof.

(1) Onto-ness is a consequence of what has just been said. Moreover, because of com-
pactness we only need to prove continuity. We show that for each T ∈ T ω

D and every open setO in
the Hausdorff topology on X with [[T]] ∈O there is some numberm such that range (fT(m))⊆O.

Since O is open, its complement is closed and hence compact. Moreover,⋂
n
range (fT(n))∩ (X \O)= ∅,

as
⋂

n range (fT(n))= {[[T]]} and [[T]] ∈O. Because of the compactness of X there is thus some
m ∈N so that also

range (fT(m))∩ (X \O)= ∅
Hence, range (fT(m))⊆O, which implies that for all S ∈ Bδ(T, 2−m), [[S]] ∈O.

(2) As a continuous map on a compact Hausdorff space, [[·]] is a closed. Continuous closed
maps are well known to be quotient maps (cf. Willard, 1970, Theorem 9.2).

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

154 D. Spreen

(3) X is Hausdorff and, by statement (1), the continuous image of a compact metric space.
As consequence of Urysohn’s metrisation theorem, it is therefore metrisable (cf. Willard, 1970,
Corollary 23.2).

(4) As a consequence of Corollary 3.11, as continuous images of separable spaces are separable
(cf. Willard, 1970, Theorem 16.4a).

Corollary 4.14 (Edalat, 1996). Let (X,D) be a topological digit space, and T ∈ T ω
D . Then for any

x ∈ X,

lim
n→∞ fT(n) (x(ar(T

(n))))= [[T]],

where for n> 0, x(n) = (x, . . . , x) (n times).

By Theorem 4.13(4), X is separable. As we will see, several dense subsets of X can be
constructed. Let to this end x ∈ X and define

Q(x)
D := { fS(x(ar(S))) | S ∈ T ∗

D }.
Lemma 4.15. Let (X,D) be a topological digit space. Moreover, let z ∈ X. Then Q(z)

D is dense in X.

Proof. Let O be open in the topology on X and z ∈ X. Then there are T ∈ T ω
D and m ∈N so that

fT(m) [Xar(T(m))]⊆O. In particular, it follows that fT(m) (z(ar(T
(m)))) ∈O. Note that T(m) ∈ T ∗

D .

As follows from the second statement of the preceding theorem, X is homeomorph to a quo-
tient of T ω

D . In the classical setting of IFS with all maps in D being unary, Kameyama (2000)
showed how the equivalence classes are generated by the kneading invariant of the system. As a
consequence, the topology on X is determined by the kneading invariant of the system.

Theorem 4.13(3) shows that no generality is lost if we restrict our considerations to topological
digit spaces (X,D) such thatX is a metric space. The central problem of the research in Kameyama
(2000) was the question whether the metrisation result can be improved in such a way that the
maps in D will be contracting as well. Kameyama gave an example showing that this is not the
case in general. However, important function classes have been found since this study allowing
such a choice, that is, if the maps in D are chosen from one of these classes then there is a metric
that as well generates the given topology on X and turns the maps in D into contractions. (See
Barnsley et al., 2014 for further hints.)

Definition 4.16. A digit space (X,D) is a compact covering extended IFS such that X is a metric
space, say with metric ρ, and all maps in D are contracting, where powers of X are endowed with
the maximum metric.1

Every digit space is in particular a topological digit space. The maps inDwill also be called digit
maps, or simply digits. As X is compact and the metric ρ is continuous, we have that X is bounded,
that is, there is a number M ∈N, the bound of X, so that for all x, y, ∈ X, ρ(x, y)�M. Let q< 1
be the maximum of the contraction factors of the digit maps. Then for all d ∈D and �x, �y ∈ Xar(d),
ρ(d(�x), d(�y))� q · ρ(�x, �y). It follows that every digit space is weakly hyperbolic.

5. Computable Digit Spaces
The aim of the research in Berger (2011), Berger and Hou (2008), Berger and Spreen (2016),
and the present paper is to provide a logic-based approach to computing with continuous data.
The generally accepted approach to compute with such data is Weihrauch’s Type-Two Theory of
Effectivity (Weihrauch, 2000). In this section, the equivalence of both approaches will be derived.

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

Mathematical Structures in Computer Science 155

To this end we restrict our considerations to digit spaces. This is the case generally used in applica-
tion. Moreover, metric spaces have a well-developed computability theory. We need to adapt the
notions and proofs presented in Berger and Spreen (2016) to the case of multi-ary digit functions.

Definition 5.1. (Brattka and Presser 2003) Let (X, ρ) be a metric space with countable dense
subspace Q, say

Q= {u0, u1, . . .},
the elements of which are called basic elements. Then (X, ρ,Q) is computable if the two sets

{ (u, v, r) ∈Q×Q×Q | ρ(u, v)< r }
{ (u, v, r) ∈Q×Q×Q | ρ(u, v)> r }

are effectively enumerable, i.e. the function λ(u, v) ∈Q2. ρ(u, v) is computable.

Note that usually computability is defined on the natural numbers or the set of finite words
over some finite alphabet. Computability in a more abstract setting is then reduced to this case by
using appropriate coding functions. In what follows we will work with finite objects such as basic
elements, tuples as well as finite sets of basic elements, digits or D-trees directly as in the above
definition and leave it to the reader to make statements precise, if wanted. By doing so, we will
identify a digit d with the letter d, as we did already in the preceding sections.

Definition 5.2. Let (X, ρ,Q), (X′, ρ′,Q′) be metric spaces with countable dense subspaces Q and
Q′, respectively. A map h : Xi → X′ is

(1) Uniformly continuous if there is a map ζ : Q+ →Q+, called modulus of continuity, such
that for all ε ∈Q+ and �x, �y ∈ Xi, whenever ρ(�x, �y)< ζ (ε) then ρ′(h(�x), h(�y))< ε.

(2) Computable if it has a computable modulus of continuity and there is a procedure Gh, which
given �u ∈Qi and n ∈N computes a basic element v ∈Q′ with ρ′(h(�u), v)< 2−n.

It is readily seen that the set of computable maps on X is closed under composition.

Definition 5.3. Let (X,D) be a digit space such that the underlying metric space (X, ρ) has a count-
able dense subset Q with respect to which it is computable. (X,D,Q) is said to be a computable digit
space if, in addition, all digits d ∈D are computable.

As will be shown in Section 8, each power of a computable digit space is a computable digit
space again.

Let
Aeff
X := { x ∈ X | there is a procedure that given n ∈N

computes a basic element u ∈Q with ρ(x, u)< 2−n }.
We have seen that besides Q computable digit spaces possess other canonical dense subspaces

Q(z)
D , for z ∈Aeff

X , generated by the digit maps. We want to show that Q and Q(z)
D are effectively

equivalent in the sense that given u ∈Q and n ∈N a finite D-tree S ∈ T ∗
D can be computed so that

ρ(u, fS(z(ar(S))))< 2−n, and that similarly there is a computable function ϕ : N× T ∗
D →Q with

ρ(fS(z(ar(S))), ϕ(n, S))< 2−n,
for all n ∈N and S ∈ T ∗

D . To achieve this, some additional conditions have to hold.

Definition 5.4. An extended IFS (X,D) is well covering if every element of X is contained in the
interior int (range (d)) of range (d), for some d ∈D.

Lemma 5.5 (Berger and Spreen, 2016). Let (X,D) be a well-covering digit space. Then there exists
ε ∈Q+ such that for every x ∈ X there exists d ∈D with Bρ(x, ε)⊆ range (d).

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

156 D. Spreen

Each such ε ∈Q+ will be called well-covering number. Note that in the proof one only uses that
the sets range (d) are closed; the d are just indices. Obviously, if ε is a well-covering number, then
every ε′ ∈Q+ with ε′ < ε is a well-covering number as well.

Definition 5.6. Let (X,D,Q) be a computable digit space. We call (X,D,Q)

(1) decidable if for u ∈Q, θ ∈Q+ and d ∈D it can be decided whether Bρ(u, θ)⊆ range (d);
(2) constructively dense if there is a procedure that, given θ ∈Q+, d ∈D and u ∈ range (d)∩Q,

computes a �v ∈Qar(d) with ρ(u, d(�v))< θ .

Lemma 5.7. Let (X,D,Q) be a well-covering, decidable and constructively dense computable digit
space and z ∈Aeff

X . Then, for every u ∈Q and n ∈N, a finite D-tree S can effectively be found such
that ρ(u, fS(z(ar(S))))< 2−n.

Proof. LetM be a bound of X and q< 1 the maximum of the contraction factors of the digit maps.
Moreover, let ε be a well-covering number for (X,D) and set

j(n) :=min { i ∈N | qi ·M < 2−n }. (4)

For k ∈N and v ∈Q, let H(k, v) be the following recursive procedure:

Use the decidability of (X,D,Q) to find some e ∈D with Bρ(v, ε)⊆ range (e). If k= 0, output e.
Otherwise, let

θ := qk ·M/j(n+ 1)

and use computable density to find some �v′ ∈Qar(e) such that ρ(v, e(�v′))� θ . Output the D-tree

[e;H(k− 1, v′
1), . . . ,H(k− 1, v′

ar(e))].

Let T :=H(k, v). We show by induction on k that

ρ(v, fT(z(ar(T))))� (1+ k/j(n+ 1)) · qk ·M.

If k= 0, we have that T = e, for some e ∈D. Hence,

ρ(v, e(z(ar(e))))�M� 1 · q0 ·M.

If k> 0, there are e ∈D, �v′ ∈Qar(e) and T1, . . . , Tar(e) ∈ T ∗
D with Tκ =H(k− 1, v′

κ), for 1� κ �
ar(e), so that T = [e;T1, . . . , Tar(e)] and ρ(v, e(�v′))� qk ·M/j(n+ 1). Then,

ρ(v, fT(z(ar(T))))� ρ(v, e(�v′))+ ρ(e(�v′), fT(z(ar(T))))
= ρ(v, e(�v′))+ ρ(e(�v′), e(fT1 (z(ar(T1))), . . . , fTar(e) (z

(ar(Tar(e))))))

� qk ·M/j(n+ 1)+ q ·max
κ

ρ(v′
κ , fTκ

(z(ar(Tκ))))

� qk ·M/j(n+ 1)+ q · (1+ (k− 1))/j(n+ 1) · qk−1 ·M
= (1+ k/j(n+ 1)) · qk ·M.

With S :=H(j(n+ 1), u) we thus have that ρ(u, fS(z(ar(S))))< 2−n.

Lemma 5.8. Let (X,D,Q) be a computable digit space and z ∈Aeff
X . Then there is a procedure H′,

which given S ∈ T ∗
D and n ∈N, produces a basic element v ∈Q so that ρ(fS(z(ar(S))), v)< 2−n.

Proof. Since z ∈Aeff
X , there is a procedure F which on input n ∈N computes a basic element u ∈Q

with ρ(z, u)< 2−n. Now, define H′ to be the following recursive procedure:

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

Mathematical Structures in Computer Science 157

On input n, if S= d, first apply the procedure F on input n+ 1, say the output is u ∈Q, and then
apply Gd to u(ar(d)) and n+ 1. Otherwise, assume that T = [e;T1, . . . , Tar(e)] and that the results of
applyingH′ on input Tκ and n+ 1, for each 1� κ � ar(e), are u1, . . . , uar(e) ∈Q. Then output the
result of applying Ge to input (u1, . . . , uar(e)) and n+ 1.

Summing up we obtain the following result.

Proposition 5.9. Let (X,D,Q) be a well-covering, decidable and constructively dense computable
digit space. Then, for each z ∈Aeff

X , the topological bases Q and Q(z)
D are effectively equivalent.

Next, we will consider the set of computable elements of a digit space. Usually an element of
some abstract space is considered computable when it has a computable representative. Elements
of an IFS are represented by infinite D-trees.

Definition 5.10. Let (X,D) be an extended IFS. A D-tree T ∈ T ω
D is said to be computable if its

associated sequence (T(n))n∈N of finite D-trees is computable.

An element x of an IFS (X,D) is computable if there is a computable tree T ∈ T ω
D with [[T]]= x.

We denote the set of all computable elements of X by Xc.
Let (X,D) be a digit space and x ∈ X be computable. Moreover, let this be witnessed by T ∈

T ω
D . Then we have for any z ∈Aeff

X and n ∈N that ρ(x, fT(n) (zar(T
(n))))� qn ·M, where q< 1 is the

maximum of the contraction factors of the digit maps andM a bound of X. Assume that (X,D,Q)
is computable. Then it follows with Lemma 5.8 that, for any given n ∈N, we can compute a basic
element v ∈Q with ρ(fT(j(n+1)) (z(ar(T

(j(n+1))))), v)< 2−n−1. Here, the function j is as in (4). It follows
that ρ(x, v)< 2−n. This shows that Xc ⊆Aeff

X . The converse implication will be a consequence of
Theorem 7.2 derived in Section 7 in a constructive fashion. To this end a further condition is
needed.

Definition 5.11. 2 A computable digit space (X,D,Q) has approximable choice if for every d ∈
D there is an effective procedure λ(θ , u). vθ

u : Q+ × int (range (d))∩Q→Qar(d) such that for all
θ ∈Q+:

(1) For all u ∈ int (range (d))∩Q and all θ̃ ∈Q+, ρ(vθ
u, vθ̃

u)<max{θ , θ̃}.
(2) One can compute θ ′ ∈Q+ such that for all u, u′ ∈ int (range (d))∩Q, if ρ(u, u′)< θ ′ then

ρ(vθ
u, vθ

u′)< θ .
(3) For all u ∈ int (range (d))∩Q there is some �y ∈ d−1[{u}] with ρ(�y, vθ

u)< θ .

Obviously, every computable digit space with approximable choice is constructively dense.

Proposition 5.12. Let (X,D,Q) be a well covering and decidable computable digit space with
approximable choice. Then Xc =Aeff.

Proposition 5.13. Let (X,D,QX) and (Y , E,QY) be computable digit spaces such that (Y , E,
QY) is decidable and well covering. Then a map f : Xar(f) → Y is computable if, and only if, there is
a computable map ζ : Q+ →Q+ and a procedure H so that for any ε ∈Q+ and every �u ∈Qar(f)

X , H
outputs a v ∈QY with f [BρX (�u, ζ (ε))]⊆ BρY (v, ε).

Proof. Assume that f : Xm → Y is computable. Then f has a computable modulus of continuity
ζ : Q+ →Q+. Moreover, let ε, ε′ ∈Q+ such that ε is a well-covering number of (Y , E,QY). Set
δ := ζ (ε′/2) and, without restriction, suppose that ε′ � ε. Then for �u ∈Qm use decidability to
pick some e ∈ E with BρY (f (�u), ε̄′)⊆ range (e). Since e is computable, we can effectively find some
v ∈QY with ρY (f (�u), v)< ε′/2. Then it follows for �x ∈ Bρx(�u, δ) that ρY (f (�x), f (�u))< ε′/2. Hence,
ρY (f (�x), v)� ρY (f (�x), f (�u))+ ρY (f (�u), v)< ε′.

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

158 D. Spreen

For the converse implication let ε ∈Q+ and �x ∈ Xm. Set δ := ζ (ε/2). Because of the density of
QX there is some �u ∈Qm

X with ρX(�x, �u)< δ/2. Then we have for �x ′ ∈ Xm with ρX(�x, �x ′)< δ/2 that
�x, �x ′ ∈ BρX (�u, δ), which implies that f (�x), f (�x ′) ∈ BρY (v, ε/2), i.e., ρY (f (�x), f (�x ′))< ε.

Since we have in addition that for any n ∈N and all �u ∈Qm
X a v ∈QY with

f [BρX (�u, ζ (2−n))]⊆ BρY (v, 2−n)
can effectively be found, which in particular means that ρY (f (�u), v)< 2−n, it follows that f is
computable.

Thus, the computable maps between decidable and well-covering computable digit spaces are
exactly the maps that are uniformly continuous in a constructive sense.

Definition 5.14. For f : Xar(f) → X, a map f ′ : range (f)→ Xar(f) is a right inverse of f , if f ◦ f ′ is
the identity on range (f).

Proposition 5.15. A computable digit space (X,D,Q) has approximable choice if, and only if, every
d ∈D has a computable right inverse.

Proof. Assume that (X,D,Q) has approximable choice, and let d ∈D and x ∈ range (d). Because
of density there is some um ∈Q∩ int (range (d)) with ρ(x, um)< 2−m, for allm ∈N.

Use approximable choice to pick the function λ(θ , u).vθ
u. For θn := 2−n−4, pick θ ′ ∈Q+ accord-

ing to approximable choice, part (2). Let Nn � 0 such that ρ(x, um)< θ ′/3, for m�Nn. Without
restriction let Nn be such that Nn �Ni, for all i< n. Set vn := vθn

uNn . By approximable choice, part
(3), there is some zn ∈ d−1[{uNn}] with ρ(zn, vn)< θn. Because of the assumption on Nn, we have
that ρ(uNm , uNn)< θ ′, for m� n. Hence, ρ(vm, vn)< θn. It follows that ρ(zm, zn)< 3θn < 2−n.
Thus, (zn)n∈N is a regular Cauchy sequence. Since (Xar(d), ρ) is complete, it converges to some
y(ui) ∈ Xar(d). As d is continuous, we obtain that

d(y(um))= lim
n→∞ d(zn)= lim

n→∞ un = x.

Now, let x′ ∈ range (d) with ρ(x, x′)< θ ′/3 as well as u′
i ∈Q∩ int (range (d)) with ρ(x′, u′

m)<
2−m, form ∈N. Moreover, let N′

n � 0 such that ρ(x′, u′
m)< θ ′/3, form�N′

n. Without restriction
assume that N′

n �N′
i , for all i< n. Finally, let v′

n := vθn
u′
N′n

and z′n ∈ d−1[{uN′
n}] with ρ(z′n, v′

n)<

θn. Then ρ(uNn , u′
N′
n
)< θ ′ and hence ρ(vn, v′

n)< θn. It follows that ρ(zn, z′n)< 3θn and thus
ρ(y(um), y(u′

m))< 9θn < 2−n.
For x= x′, we obtain that y(um) = y(u′

m), i.e., y does not depend on the choice of the approximat-
ing sequence (um)m∈N. Define d′(x) := y. By what we have just shown, d′ is uniformly continuous
with computable modulus of continuity. Moreover, since ρ(d′(x), vn)� ρ(d′(x), zn)+ ρ(zn, vn)<
4θn = 2−n, it follows that d′ is also computable.

Conversely, let d′ be a right inverse of d. For θ ∈Q+ let
m(θ) :=min {m ∈N | 2−m � θ }.

Since d′ is computable, we can compute for any given u ∈Q∩ int (range (d)) and n ∈N a basic
element vn ∈Qar(d) so that ρ(d′(u), vn)< 2−n. Set vθ

u := vm(θ)+2. It remains to verify the conditions
in Definition 5.11:

(1) Let θ , θ̄ ∈Q+. Without restriction let θ � θ̄ . Then

ρ(vθ
u, v

θ̄
u)� ρ(vθ

u, d
′(u))+ ρ(d′(u), vθ̄

u)< 2−m(θ)−1 < θ .
(2) As d′ has a computable modulus of continuity, for given θ ∈Q+ we can compute a θ ′ ∈Q+

such that for u, u′ ∈Q∩ int (range (d)), if ρ(u, u′)< θ ′ then ρ(d′(u), d′(u′))< θ/2, from which it
follows that ρ(vθ

u, vθ
u′)< θ .

(3) is obvious: choose �y := d′(u).
https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

Mathematical Structures in Computer Science 159

In Type-Two Theory of Effectivity, an element x ∈ X is defined to be computable, if it is con-
tained in Aeff

X . So, it follows that both computability notions coincide. In the present approach,
elements ofX are represented by infiniteD-trees T, and/or the corresponding sequences (T(n))n∈N
of initial segments. Similarly, in Type-Two Theory of Effectivity, an element x is represented
by an infinite sequence (un)n∈N of basic elements with ρ(x, un)< 2−n. The resulting repre-
sentation is called Cauchy representation ρC. As follows from the results in this section, one
can computably pass from an infinite stream T(0) : T(1) : · · · of finite D-trees to an infinite
sequence (un)n∈N of basic elements so that ρ([[T]], un)< 2−n, and vice versa. This means that
there are computable translations between both representations as summarised by the next
result.

Theorem 5.16. Let (X,D,Q) be a well-covering and decidable computable digit space with approx-
imable choice. Then there are computable operators F : T ω

D →Qω and G : Qω ⇀ T ω
D such that for

T ∈ T ω
D and w ∈ dom (G),3

ρC(F(T))= [[T]] and [[G(w)]]= ρC(w).

6. Extracting Digital Trees from Co-inductive Proofs
In this section, we recast the theory of topological digit spaces in a constructive setting with the
aim to extract programs that provide effective representations of certain objects or transforma-
tions between different representations. As one of the main results on this basis, we will obtain
effective transformations between the Cauchy representation of digit spaces and the digital tree
representation showing that the two representations are effectively equivalent. The method of
program extraction is based on a version of realisability, and the main constructive definition and
proof principles will be induction and co-induction. The advantage of the constructive approach
lies in the fact that proofs can be carried out in a representation-free way. Constructive logic
and the Soundness Theorem guarantee automatically that proofs are witnessed by effective and
provably correct transformations on the level of representations.

Regarding the theory of realisability and its applications to constructive analysis, we refer the
reader to Schwichtenberg andWainer (2012), Berger and Seisenberger (2010), and Berger (2011).
Here, we only recall main facts. We largely follow the exposition in Berger and Spreen (2016).
The logic used is many-sorted first-order logic extended by the formation of inductive and co-
inductive predicates. Note that although the logic is based on intuitionistic logic a fair amount of
classical logic is available. For example, any disjunction-free formula that is classically true may be
admitted as an axiom (Berger and Tsuiki, 2021).

Realisability assigns to each formula A an unary predicate R(A) to be thought of as the set
of realisers of A. Instead of R(A)(a) one often writes a rA (“a realises A”). The realiser a can
be typed or untyped, but for the understanding of what follows, details about the nature of
realisers are irrelevant. It suffices to think of them as being (idealised, but executable) functional
programs or (Oracle-)Turing machines. The crucial clauses of realisability for the propositional
connectives are

c r (A∨ B) := (∃a)(c= (0, a)∧ a rA)∨ (∃b)(c= (1, b)∧ b r B)
f r (A→ B) := (∀a)(a rA→ f (a) r B)
c r (A∧ B) := p0(c) rA∧ p1(c) r B
c r⊥ := ⊥.

Hence, an implication is realised by a function and a conjunction by a pair (accessed by left and
right projections, p0(·), p1(·)).

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

160 D. Spreen

Quantifiers are treated uniformly in this version of realisability:
a r (∀x)A(x) := (∀x) a rA(x)
a r (∃x)A(x) := (∃x) a rA(x).

By this way, variables x are allowed to range over abstract mathematical objects without pre-
scribed computational meaning. Therefore, the usual interpretation of a r (∀x)A(x) to mean
(∀x) a(x) rA(x) makes no sense as one would use the abstract object x as input to the
program a.

For atomic formulas P(�t), where P is a predicate and �t are terms, realisability is defined in terms
of a chosen predicate P̃ with one extra argument place, that is,

a r P(�t) := P̃(a, �t). (5)
The choice of the predicate P̃ allows to fine tune the computational content of proofs.

So far, only first-order logic has been covered. Next, we explain how inductive and co-
inductive definitions are realised. An inductively defined predicate P is defined as the least fixed
point of a monotone predicate transformer �(X, �x), that is, the formula (∀�x)(X(�x)→ Y(�x))→
(∀�x)(�(X, �x)→ �(Y , �x)), with free predicate variables X and Y , must be provable. Then one has
the closure axiom

(∀�x)(�(P, �x)→ P(�x))
as well as the induction schema

(∀�x)(�(A, �x)→A(�x))→ (∀�x)(P(�x)→A(�x))
for every predicateA defined by some formula A(�x) asA(�x)↔A(�x). Realisability for P is defined
as in (5) by defining P̃ inductively via the operator �̃(X̃, a, �x), where �̃ is obtained from � by
replacing every occurrence of the form a r X(�x) in the expression obtained by unravelling the
formula a r�(X, �x) according to the definition of �, by X̃(a, �x), for a fresh predicate variable X̃.
Then one has the closure axiom

(∀a, �x)(a r�(P, �x)→ P̃(a, �x))
as well as the induction schema:

(∀a, �x)(a r�(A, �x)→ a rA(�x))→ (∀a, �x)(P̃(a, �x)→ a rA(�x)).
Dually, � also gives rise to a co-inductively defined predicate Q defined as the greatest fixed

point of �. Hence, one has the co-closure axiom
(∀�x)(Q(�x)→ �(Q, �x))

and the co-induction schema:
(∀�x)(A(�x)→ �(A, �x))→ (∀�x)(A(�x)→Q(�x)).

Realisability forQ is defined by defining Q̃ co-inductively by the same operator �̃ as above, hence,
the co-closure axiom

(∀a, �x)(Q̃(a, �x)→ a r�(Q, �x))
and the co-induction schema:

(∀a, �x)(a rA(�x)→ a r�(A, �x))→ (∀a, �x)(a rA(�x)→ Q̃(a, �x)).
The basis of program extraction from proofs is the Soundness Theorem.

Theorem 6.1 (Soundness Theorem Berger, 2010; Berger and Seisenberger, 2012). From a
constructive proof of a formula A from assumptions B1, . . . , Bn one can extract a program
M(a1, . . . , an) such that M(a1, . . . , an) rA is provable from the assumptions a1 r B1, . . . , an r Bn.

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

Mathematical Structures in Computer Science 161

If one wants to apply this theorem to obtain a program realising formula A one must
provide terms K1, . . . ,Kn realising the assumptions B1, . . . , Bn. Then it follows that the term
M(K1, . . . ,Kn) realises A.

That realisers do actually compute witnesses is shown in Berger (2010) and Berger and
Seisenberger (2010) by a Computational Witness Theorem that relates the denotational definition
of realisability with a lazy operational semantics.

There is an important class of formulas where realisers do not matter: A formula B is non-
computational if

(∀a)(a r B↔ B).

Non-computational formulas can simplify program extraction of realisers dramatically. We will,
however, not go into further details here and refer the reader to Berger and Spreen (2016).

In formalising the theory of topological digit spaces, the real number set and the underlying
space X are regarded as a sort. All arithmetic constants and functions we wish to talk about as
well as the metric ρ, in case X is a metric space, are admitted as constant or function symbols.
The predicates =, < and ≤ are considered as non-computational. Furthermore, all true non-
computational statements about real number as well as the axioms of a metric space are admitted
as axioms.

In order to be able to deal with the hyperspace of non-empty compact sets, which will
be studied in Section 9, a powersort P(x) is added for every sort x, equipped with a non-
computational element-hood relation ε, as well as a function sort s→ t for any two sorts s and
t, equipped with an application operation and operations such as composition. In addition, for
every non-computational formula A(x) the comprehension axiom

(∃u)(∀x)(x ε u↔A(x))

is added. (A(x) may contain other free variables than x.) This is an example of a non-
computational formula we wish to accept as true. Again, we refer to Berger and Spreen (2016)
for further details and examples.

In Lemma 4.4, a co-inductive characterisation for covering extended IFS was derived.
Classically, this is rather uninteresting, but, constructively, it is significant, since, as we will see
next, from a constructive proof of CX(x) one can extract a D-tree T ∈ T ω

D so that [[T]]= x.

Theorem 6.2. Let (X,D) be a topological digit space. Then the realisers of a statement CX(x) are
exactly the D-trees T ∈ T ω

D representing x, that is

T r (CX(x))⇐⇒ [[T]]= x.

In particular, from a constructive proof of CX(x) one can extract an infinite D-tree representation
of x.

Proof. By the realisability definition above the predicate T rCX(x) is defined co-inductively as

[d;T1, . . . , Tar(d)] rCX(x)
ν=

(∃y1, . . . , yar(d) ∈ X) x= d(y1, . . . , yar(d))∧ (∀1� κ � ar(d)) Tκ rCX(yκ).
(6)

This allows us to show the ‘if ’ part by co-induction. That means we have to show that the impli-
cation from left to right in (6) holds if the relation · r · is replaced by the relation [[·]]= ·. This,
however, is consequence of Corollary 4.9.

For the converse implication it is sufficient to show that

(∀n ∈N)(∀T ∈ T ω
D)(∀x ∈ X) (T rCX(x)⇒ x ∈ range (fT(n))),

which we do by induction on n. Assume that T rCX(x). Then T = [d;T1, . . . , Tar(d)] and there are
y1, . . . , yar(d) ∈ X so that x= d(y1, . . . , yar(d)) and Tκ rCX(yκ), for 1� κ � ar(d). It follows that

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

162 D. Spreen

x ∈ range (d). Thus, the case n= 0 is true. If n> 0, it follows by the induction hypothesis that
yκ ∈ range (fT(n−1)

κ
). Hence, x ∈ range (fT(n)).

7. Equivalence with the Cauchy Representation
As pointed out above, we will now derive the equivalence between the Cauchy representation
used in Type-Two Theory of Effectivity and the tree representation introduced here in a construc-
tive fashion. Formalised in many-sorted first-order logic extended by the formation of inductive
and co-inductive predicates, the proofs allow the extraction of programs computing translations
between the two representations. The method of proof extraction is based on a version of real-
isability. As said, the advantage of the constructive approach lies in the fact that proofs can be
carried out in a representation-free way.

Let (X,D,Q) be a computable digit space and let the predicate AX ⊆ X be defined by:

AX(x) :⇔ (∀n ∈N)(∃u ∈Q) ρ(x, u)< 2−n.

A realiser of AX(x) is a regular Cauchy sequence in X converging to x and a realiser of CX(x) is a
D-tree T ∈ T ω

D such that x= [[T]].

Theorem 7.1. Let (X,D,Q) be a computable digit space. Then CX ⊆AX.

Proof. Fix z ∈Aeff
X . Because of Lemma 5.8 it suffices to show that

(∀n ∈N)(∀x ∈ X)(CX(x)→ (∃u ∈Q(z)
D) ρ(x, u)�M · qn),

which will be done by induction on n. If n= 0, let u be any element in Q(z)
D . For n+ 1,

assume CX(x). Then there are d ∈D and y1, . . . , yar(d) ∈ X with CX(yκ), for 1� κ � ar(d), so
that x= d(y1, . . . , yar(d)). By induction hypothesis, there exist v1, . . . , var(d) ∈Q(z)

D such that for
all 1� κ � ar(d), ρ(yκ , vκ)<M · qn. Set u := d(v1, . . . , var(d)). Then u ∈Q(z)

D and ρ(x, u)� q ·
maxκ ρ(yκ , vκ)�M · qn+1.

Theorem 7.2. Let (X,D,Q) be a well covering and decidable computable digit space with
approximable choice. Then AX ⊆CX.

Proof. The theorem is derived by co-induction. Hence, assume AX(x). We have to find d ∈D
and y1, . . . , yar(d) ∈ X so that x= d(y1, . . . , yar(d)) and AX(yκ), for 1� κ � ar(d). Let ε ∈Q+ be
a well-covering number. Using AX(x), pick û ∈Q such that ρ(x, û)< ε/2. Pick d ∈D such that
Bρ(û, ε)⊆ range (d). Then x ∈ Bρ(û, ε).

By Proposition 5.15, d has a computable right inverse d′. Set �y := d′(x). Since d′ has a com-
putable modulus of continuity, we can, given n ∈N, compute a number k(n) so that for x′, x′′ ∈
range (d), if ρ(x′, x′′)< 2−k(n) then ρ(d′(x′), d′(x′′))< 2−n−1. Using assumption AX(x) again, we
find u ∈Q such that ρ(x, u)< 2−k(n). It follows that ρ(d′(x), d′(u))< 2−n−1. By the computabil-
ity of d′ we can moreover compute a basic element �v ∈Qar(d) with ρ(d′(u), �v)< 2−n−1. Hence,
ρ(�y, �v)< 2−n. Let �y= (y1, . . . , yar(d)) and �v= (v1, . . . , var(d)), then we have that ρ(yκ , vκ)< 2−n,
for 1� κ � ar(d), which shows that AX(yκ).

8. Products
In this and the following section, we study how canonical IFS structures can be introduced on
spaces obtained by the usual constructions of new spaces from given ones, and whether the
properties examined so far are inherited in these cases. We start with the product construction.

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

Mathematical Structures in Computer Science 163

Let X1, . . . , Xn be non-empty topological spaces and X1 × · · · × Xn endowed with the product
topology. As is well known, X1 × · · · × Xn is Hausdorff, exactly if Xi is Hausdorff, for each
1� i� n; and analogously for compactness by Tychonov’s Theorem (Willard, 1970).

Now, assume that (X1,D1), . . . , (Xn,Dn) are extended IFS. Without restriction suppose that
all d ∈ ⋃n

i=1 Di have the same arity, say sD. Otherwise, let sD :=max { ar(d) | d ∈ ⋃n
i=1 Di } and

replace d ∈Di by d̂ defined by

d̂(x1, . . . , xsD) := d(x1, . . . , xar(d)),

for x1, . . . , xsD ∈ Xi.
We will introduce an IFS structure on

Śn
i=1 Xi. For (d1, . . . , dn) ∈ Śn

i=1 Di define

〈d1, . . . , dn〉 : (Śn
i=1 Xi)sD → Śn

i=1 Xi

by

〈d1, . . . , dn〉((x(1)1 , . . . , x(1)n), . . . , (x(sD)1 , . . . , x(sD)n)) :=
(d1(x(1)1 , . . . , x(sD)1), . . . , dn(x(1)n , . . . , x(sD)n)),

for (x(1)1 , . . . , x(1)n), . . . , (x(sD)1 , . . . , x(sD)n) ∈ Śn
i=1 Xi, and let

D× := { 〈d1, . . . , dn〉 | (d1, . . . , dn) ∈ Śn
i=1 Di }.

Proposition 8.1. Let (X1,D1), . . . , (Xn,Dn) be extended IFS. Then also (
Śn

i=1 Xi,D×) is an
extended IFS. Moreover, the following statements hold:

(1) If (Xi,Di) is compact, for all 1� i� n, so is (
Śn

i=1 Xi,D×).
(2) If (Xi,Di) is covering, for all 1� i� n, so is (

Śn
i=1 Xi,D×).

(3) If (Xi,Di) is well-covering, for all 1� i� n, so is (
Śn

i=1 Xi,D×).

Proof.

(1) follows with Tychonov’s Theorem.
(2) As is ensued by the definition of 〈d1, . . . , dn〉,

range (〈d1, . . . , dn〉)=
ną

i=1
range (di). (7)

Hence, ⋃
{ range (〈d1, . . . , dn〉) | (d1, . . . , dn) ∈ Śn

i=1 Di }
=

⋃
{ Śn

i=1 range (di) | (d1, . . . , dn) ∈
Śn

i=1 Di }

=
ną

i=1

⋃
{ range (di) | di ∈Di }

=
ną

i=1
Xi.

(3) follows similarly as int (
Śn

i=1 range (di))=
Śn

i=1 int (range (di)).

When dealing with a tuple �x via the extended IFS (Śn
i=1 Xi,D×), �x is considered as a structure-

less object, not as a composed one. We will now investigate how from a tree representing �x we can
access the components of �x.

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

164 D. Spreen

For 1� i� n define the map Pr(n)i : T ω
D× → T ω

Di
co-recursively by

root(Pr(n)i ([〈d1, . . . , dn〉;T1, . . . , TsD])) := di
subtree(Pr(n)i ([〈d1, . . . , dn〉;T1, . . . , TsD])) := (Pr(n)i (T1), . . . , Pr(n)i (TsD)).

Similarly, define Cons(n) : Śn
i=1 T ω

Di
→ T ω

D× by

root(Cons(n) ([d1;T(1)
1 , . . . , T(1)

sD], . . . , [dn;T(n)
1 , . . . , T(n)

sD])) := 〈d1, . . . , dn〉
subtree(Cons(n) ([d1;T(1)

1 , . . . , T(1)
sD], . . . , [dn;T(n)

1 , . . . , T(n)
sD])) :=

(Cons(n) (T(1)
1 , . . . , T(n)

1), . . . , Cons(n) (T(1)
sD , . . . , T(n)

sD)).

Proposition 8.2. Let (X1,D1), . . . , (Xn,Dn) be extended IFS. Then for every infinite D×-tree T ∈
T ω
D× ,

T =Cons(n) (Pr(n)1 (T), . . . , Pr(n)n (T)).

Proof. Apply the co-induction proof principle.

This result allows us to study the inheritability of weak hyperbolicity of extended IFS to their
product.

Lemma 8.3. For all m ∈N and all T ∈ T ω
D× ,

range (fT(m))=
ną

i=1
range (fPr(n)i (T)(m)).

Proof. We proof the statement by induction onm. Let T = [〈d1, . . . , dn〉;T1, . . . , TsD].
In case m= 0, we have that T(0) = {〈d1, . . . , dn〉} and Pr(n)i (T)(0) = {di}. Hence, fT(0) =

〈d1, . . . , dn〉 and fPr(n)i (T)(0) = di. As seen in (7), the statement thus holds in this case.
Now, suppose thatm> 0. Then

fT(m) = 〈d1, . . . , dn〉 ◦ (fT(m−1)
1

× · · · × fT(m−1)
sD

)

and

fPr(n)i (T)(m) = di ◦ (fPr(n)i (T1)(m−1) × · · · × fPr(n)i (TsD)(m−1)).

Therefore, it follows with the induction hypothesis that

range (fT(m))= 〈d1, . . . , dn〉[
sDą

i=1
range (fT(m−1)

i
)]

= 〈d1, . . . , dn〉[
sDą

i=1

ną

j=1
range (fPr(n)j (Ti)(m−1))]

=
ną

j=1
dj[

sDą

i=1
range (fPr(n)j (Ti)m−1)]

=
ną

j=1
range (fPr(n)j (T)m−1).

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

Mathematical Structures in Computer Science 165

As a consequence of the preceding lemma, we obtain for T ∈ T ω
D× that⋂

m� 1
range (fT(n))=

⋂
m� 1

ną

i=1
range (fPr(n)i (T)(m))=

ną

i=1

⋂
m� 1

range (fPr(n)i (T)(m)),

form which the subsequent results immediately follow.

Proposition 8.4. Let (X1,D1), . . . , (Xn,Dn) be extended IFS. Then the following two statements
hold:

(1) If (Xi,Di) is weakly hyperbolic, for 1� i� n, so is (
Śn

i=1 Xi,D×).
(2) If (Xi,Di) is both, compact and weakly hyperbolic, for 1� i� n, then

[[T]]= ([[Pr(n)1 (T)]], . . . , [[Pr(n)n (T)]]).

Let us sum up what we have obtained so far in this section.

Theorem 8.5. Let (X1,D1), . . . , (Xn,Dn) be topological digit spaces. Then (
Śn

i=1 Xi,D×) is a
topological digit space as well.

For the remainder of this section we will restrict our investigations to the special case of digit
spaces.

Proposition 8.6. For 1� i� n, let (Xi,Di) be a digit space with metric ρi. Then the following
statements hold:

(1) (
Śn

i=1 Xi,D×) is a digit space with respect to the maximum metric ρ.
(2) If for each 1� i� n, Qi is a countable dense subset of Xi so that (Xi, ρi,Qi) is computable,

then
Śn

i=1 Qi is a countable dense subset of
Śn

i=1 Xi with (
Śn

i=1 Xi, ρ,
Śn

i=1 Qi) being
computable as well.

(3) If for every 1� i� n, (Xi,Di,Qi) is a computable digit space, then so is (
Śn

i=1 Xi,D×,Śn
i=1 Qi).

Proof. (1) As we have already seen, (
Śn

i=1 Xi,D×) is a compact covering extended IFS. It remains
to show that all maps in D× are contractive.

For 1� i� n, let qi be the contraction factor of di, and be q their maximum. For 1� j� sD, let
�x(j), �y(j) ∈ Śn

i=1 Xi with �x(j) = (x(j)1 , . . . , x(j)n) and similarly for �y(j). Then
ρ(〈d1, . . . , dn〉(�x(1), . . . , �x(sD)), 〈d1, . . . , dn〉(�y(1), . . . , �y(sD)))

= ρ((d1(x(1)1 , . . . , x(sD)1), . . . , dn(x(1)n , . . . , x(sD)n)),

(d1(y(1)1 , . . . , y(sD)1), . . . , dn(y(1)n , . . . , y(sD)n)))

= nmax
i=1

ρi(di(x(1)i , . . . , x(sD)i), di(y(1)i , . . . , y(sD)i))

� qi · nmax
i=1

ρ((x(1)i , . . . , x(sD)i), (y(1)i , . . . , y(sD)i))

� q · nmax
i=1

sDmax
j=1

ρj(x
(j)
i , y(j)i)

= q · sDmax
j=1

nmax
i=1

ρj(x
(j)
i , y(j)i)

= q · sDmax
j=1

ρ(�x(j), �y(j))

= q · ρ((�x(1), . . . , �x(sD)), (�y(1), . . . , �y(sD))).
https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

166 D. Spreen

(2) As is well known,
Śn

i=1 Qi is a countable dense subset of
Śn

i=1, and obviously (
Śn

i=1 Xi,
ρ,

Śn
i=1 Qi) is a computable metric space.

(3) It remains to verify that all digits in D× are computable. For 1� i� n, let ki be a com-
putable modulus of continuity for digit di and set k(θ) :=min { ki(θ) | 1� i� n }, where θ ∈Q+.
Moreover, for 1� j� sD, let �u(j), �v(j) ∈ Śn

i=1 Qi with �u(j) = (u(j)1 , . . . , u(j)n) and similarly for �v(j). If
we assume that

ρ((�u(1), . . . , �u(sD)), (�v(1), . . . , �v(sD)))� k(θ)

then we obtain for all 1� i� n that

ρi((u(1)i , . . . , u(sD)i), (v(1)i , . . . , v(sD)i))� ki(θ).

Hence,

ρi(di(u(1)i , . . . , u(sD)i), di(v(1)i , . . . , v(sD)i))� θ ,

for all 1� i� n. Thus,

ρ(〈d1, . . . , dn〉(�u(1), . . . , �u(sD)), 〈d1, . . . , dn〉(�v(1), . . . , �v(sD)))� θ .

By our assumption there is a procedure G(i)
d , for each 1� i� n and d ∈Di, such that for any

given �u ∈QsD
i andm ∈N, G(i)

d computes a basic element v ∈Qi with ρi(d(�u), v)< 2−m.
Now, let 〈d1, . . . , dn〉 ∈D× and let G〈d1,...,dn〉 be the procedure that operates as follows:

Givenm ∈N and �u(1), . . . , �u(sd) ∈ Śn
i=1 Qi with �u(j) = (u(j)1 , . . . , u(j)n): For each 1� i� n, apply

G(i)
di to (u

(1)
i , . . . , u(sD)i) andm, and let vi be the corresponding output. Then output (v1, . . . , vn).

It follows that

ρ(〈d1, . . . , dn〉(�u(1), . . . , �u(sD)), (v1,vn))
= ρ((d1(u(1)1 , . . . , u(sD)1), . . . , dn(u(1)n , . . . , u(sD)n)), (v1, . . . , vn))

= nmax
i=1

ρi(di(u(1)i , . . . , u(sD)i), vi)

< 2−m.

Proposition 8.7. Let (X1,D1,Q1), . . . , (Xn,Dn,Qn) be decidable computable digit spaces. Then
(
Śn

i=1 Xi,D×,
Śn

i=1 Qi) is decidable as well.

Proof. Note that for �u ∈ Śn
i=1 Qi with �u= (u1, . . . , un) and θ ∈Q+,

Bρ(�u, θ)=
ną

i=1
Bρi(ui, θ).

With (7) we therefore obtain that for 〈d1, . . . , dn〉 ∈D×,
Bρ(�u, θ)⊆ range (〈d1, . . . , dn〉)⇔ (∀1� i� n) Bρi(ui, θ)⊆ range (di),

from which the statement follows.

Proposition 8.8. Let (X1,D1,Q1), . . . , (Xn,Dn,Qn) be computable digit spaces having approx-
imable choice. Then also (

Śn
i=1 Xi,D×,

Śn
i=1 Qi) has approximable choice.

Proof. For 1� i� n and d ∈Di, let λ(θ , u). dvθ
u : Q+ × int (range (d))∩Qi →QsD

i be the effec-
tive procedure existing for d, as (Xi,Di,Qi) has approximable choice. Then for 〈d1, . . . , dn〉 ∈D×,
define the procedure

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

Mathematical Structures in Computer Science 167

λ(θ , (u1, . . . , un)). vθ
(u1,...,un) : Q+ × int (range (〈d1, . . . , dn〉))∩ Śn

i=1 Qi → (
Śn

i=1 Qi)sD

as follows:
For 1� i� n, let divθ

ui =: (v(1)i , . . . , v(sD)i). Then set

vθ
(u1,...,un) := ((v(1)1 , . . . , v(1)n), . . . , (v(sD)1 , . . . , v(sD)n)).

It remains to verify the conditions in Definition 5.11.
(1) By our assumption we have for 1� i� n and θ̃ ∈Q+ that ρi(divθ

ui ,
divθ̃

ui)<max{θ , θ̃}.
Therefore,

ρ(vθ
(u1,...,un), v

θ̃
(u1,...,un))=

sDmax
j=1

nmax
i=1

ρi(v
(j)
i , ṽ(j)i)<max{θ , θ̃},

where (ṽ(1)i , . . . , ṽ(sD)i) := divθ̃
ui .

(2)Let (u1, . . . , un), (u′
1, . . . , u′

n) ∈ int (range (〈d1, . . . , dn〉))∩ Śn
i=1 Qi. As follows from our

supposition, some θ ′
i ∈Q+ can be computed, for each 1� i� n, so that, if ρi(ui, u′

i)< θ ′
i then

ρ(divθ
ui ,

divθ
u′
i
)< θ . Set θ ′ :=min { θ ′

i | 1� i� n } and assume that ρ((u1, . . . , un), (u′
1, . . . , u′

n))<
θ ′. Then we have that ρi(ui, u′

i)< θ ′
i , for all 1� i� n, and therefore that

ρ(vθ
(u1,...,un), v

θ
(u′

1,...,u′
n)
)= sDmax

j=1

nmax
i=1

ρi(v
(j)
i , v′(j)

i)= nmax
i=1

ρ(divθ
ui ,

divθ
u′
i
)< θ .

Here (v′(1)
i , . . . , v′(sD)

i) := divθ
u′
i
.

(3) By our assumption, for every 1� i� n, given ui ∈ int (range (di))∩Qi, there is some �yi ∈
d−1
i [{ui}] so that ρ(�yi, divθ

ui)< θ .
Let �yi =: (y(1)i , . . . , y(sD)i) and set �y := ((y(1)1 , . . . , y(1)n), . . . , (y(sD)1 , . . . , y(sD)n)). Then

�y ∈ 〈d1, . . . , dn〉−1[{(u1, . . . , un)}] and
ρ(�y, vθ

(u1,...,un))=
nmax
i=1

ρ(�yi, divθ
ui)< θ .

As a consequence of Theorems 7.1 and 7.2, we now obtain that the equivalence between the
Cauchy representation used in Type-Two Theory of Effectivity and the tree representation used
in the present approach holds in a constructive fashion also in case of products of computable
digit spaces. Recall that for �x ∈ Śn

i=1 Xi,

AŚn
i=1 Xi(�x)⇔ (∀n ∈N)(∃�u ∈

ną

i=1
Qi) ρ(�x, �u)< 2−n

and CŚn
i=1 Xi ⊆

Śn
i=1 Xi is given by

CŚn
i=1 Xi(�x)

ν= (∃〈d1, . . . , dr〉 ∈D×)(∃�y1, . . . , �ysD ∈
ną

i=1
Xi)

�x= 〈d1, . . . , dr〉(�y1, . . . , �ysD)∧ (∀1� κ � sD)CŚn
i=1 Xi(�yκ).

By the above-mentioned two results, we obtain the following consequence which permits to
extract computable translations between the realisers resulting from the two definitions.

Theorem 8.9. Let (X1,D1,Q1), . . . , (Xn,Dn,Qn) be a well covering and decidable computable digit
spaces with approximable choice. Then AŚn

i=1 Xi =CŚn
i=1 Xi .

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

168 D. Spreen

9. The Hyperspace of Non-empty Compact Subsets
In many applications, e.g. in mathematical economics, one needs to deal with multi-valued func-
tions that when considered as set-valued maps have compact sets as values. In this section, we will
study how spaces of compact sets fit into the framework developed so far.

For a topological space X with topology τ , letK(X) be the set of all non-empty compact subsets
of X, endowed with the Vietoris Topology τV (also called the finite topology), that is, the topology
generated by the sets

(U;V1, . . . ,Vn) := {K ∈K(X) |K ⊆U ∧ (∀1� κ � n)K ∩Vκ �= ∅ }
withU,V1, . . . ,Vn ∈ τ . The following facts are well known (Klein and Thompson, 1984; Michael,
1951).

Theorem 9.1. Let (X, τ) and (Y , η) be topological spaces, and f : X → Y. Then the following
statements hold:

(1) If Q is dense in (X, τ), then the set QK(X) of all non-empty finite subsets of Q is dense in
(K(X), τV). Moreover, if Q is countable, so isQK(X).

(2) (K(X), τV) is Hausdorff if, and only if, (X, τ) is Hausdorff.
(3) (K(X), τV) is a compact Hausdorff space if, and only if, (X, τ) is a compact Hausdorff space.
(4) If f is continuous, so is the map K ∈K(X) �→ f [K] with respect to the Vietoris topologies on

K(X) and K(Y).
(5) The operation of taking the union of two compact sets is continuous with respect to the Vietoris

topology.

In case of the first statement, the elements of QK(X) will be called basic subsets. For compact
Hausdorff spaces X and Y , and continuous f : X → Y define K(f) : K(X)→K(Y) by K(f)(K) :=
f [K], for K ∈K(X). Then K is an endo-functor on the category of compact Hausdorff spaces and
continuous maps.

Next, assume that (X,D) is a compact extended IFS. For r > 0 and pairwise distinct d1, . . . , dr ∈
D define [d1, . . . , dr] : Śr

κ=1 K(Xar(dκ))→K(X) by

[d1, . . . , dr](K1, . . . ,Kr)=
r⋃

κ=1
dκ [Kκ].

Since the dκ are continuous, the sets dκ [Kκ] are compact and so is their finite union. As follows
from the definition,

range ([d1, . . . , dr])= {K ∈K(X) | (∃K1, . . . ,Kr ∈K(X))K =
r⋃

κ=1
Kκ ∧

(∀1� κ � r)Kκ ∈K(range (dκ)) }.
Let m be the cardinality of D. If (d1, . . . , dr) ∈Dr such that the dκ are pairwise distinct, then

r�m. Hence, there are at most
∑m

κ=1 mκ such maps. Set
K(D) := { [d1, . . . , dr] | d1, . . . , dr ∈D pairwise distinct with r > 0 }.

Note that according to Definition 4.2, in an extended IFS (X,D) the maps d ∈D have to be of
type Xar(d) → X. In case of the maps [d1, . . . , dn] this is only true if d1, . . . , dn are unary.

Proposition 9.2. Let (X,D) be a compact IFS. Then (K(X),K(D)) is a compact extended IFS.
Moreover, the following statements hold:

(1) If (X,D) is covering, so is (K(X),K(D)).
(2) If (X,D) is well-covering, so is (K(X),K(D)).

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

Mathematical Structures in Computer Science 169

Proof.

(1) It suffices to show that

K(X)⊆
⋃

{ range (d̄) | d̄ ∈K(D) }. (8)

Let K ∈K(X), E := { d ∈D |K ∩ range (d) �= ∅ }, say E= {e1, . . . , er}, and for d ∈ E, Kd :=
d−1[K ∩ range (d)]. As compact sets, K and d[X] are closed, whence Kd is closed as well and thus
compact.

Since (X,D) is covering, it follows for x ∈K that there is some d ∈ E with x ∈ range (d)∩K.
Hence, x ∈ ⋃

d∈E d[Kd]. This shows that K = [e1, . . . , er](Ke1 , . . . ,Ker), which means that K is
contained in the right hand side of (8).

(2) We need to show that for every K ∈K(X) there is some d̄ ∈K(D) and some O ∈ τV so that
K ∈O⊆ range (d̄).

Let K ∈K(X) and E := { d ∈D | int (range (d))∩K �= ∅ }, say E= {e1, . . . , er}. Then, we have
that

K ∈
[r⋃

κ=1
int (range (eκ)); int (range (e1)), . . . , int (range (er))

]
.

It remains to show that[r⋃
κ=1

int (range (eκ)); int (range (e1)), . . . , int (range (er))
]

⊆ range ([e1, . . . , er]).

Let to this endK ′ ∈ [
⋃r

κ=1 int (range (eκ)); int (range (e1)), . . . , int (range (er))] and for 1�κ�r,
set K ′

κ := e−1
κ [K ′ ∩ range (eκ)]. Then K ′

κ �= ∅. Moreover, since K ′ ⊆ ⋃r
κ=1 int (range (eκ)), we

have that K ′ = [e1, . . . , er](K ′
1, . . . ,K ′

r). Thus, K ′ ∈ range ([e1, . . . , er]).

Similar to the product case, when dealing with a compact set K via the extended IFS
(K(X),K(D)), K is dealt with as an abstract object, not as a set of other objects. We will now
study how from a tree representing K we can access elements of K. Note that we are assuming that
all digits d ∈D have arity 1.

Definition 9.3. The relation S ∈ T ω
D is a derived tree of T ∈ T ω

K(D) (short: S ∈ ∂T) is co-inductively
defined by

[d;S1] ∈ ∂[[d1, . . . , dr];T1, . . . , Tr]
ν= (∃1� κ � r) d = dκ ∧ S1 ∈ ∂Tκ .

Lemma 9.4. Let (X,D) be a compact IFS. Then for all n ∈N and T ∈ T ω
K(D),

fT(n) (X(ar(T(n))))=
⋃

{ fS(n) [Xar(S(n))] | S ∈ ∂T }.
Proof. We use induction on n. Assume that T = [[d1, . . . , dr];T1, . . . , Tr]. For n= 0, we have that
T(0) = [d1, . . . , dr] and { S(0) | S ∈ ∂T } = {d1, . . . , dr}. So the statement holds in this case. For n>

0, we obtain with the induction hypothesis that

fT(n) (X(ar(T(n))))=
r⋃

κ=1
dκ [fT(n−1)

κ
(X(ar(T(n−1)

κ)))]

=
r⋃

κ=1
dκ [

⋃
Sκ∈∂Tκ

fS(n−1)
κ

[Xar(S(n−1)
κ)]]

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

170 D. Spreen

=
r⋃

κ=1

⋃
Sκ∈∂Tκ

dκ [fS(n−1)
κ

[Xar(S(n−1)
κ)]]

=
⋃
S∈∂T

fS(n) [X
ar(S(n))].

Theorem 9.5. Let (X,D) be a topological digit space with unary digits only, and (K(X),K(D)) be
weakly hyperbolic. Then, for every T ∈ T ω

K (D),

[[T]]= { [[S]] | S ∈ ∂T }.
Proof. Let S ∈ ∂T. Then it follows with the preceding lemma that for every n ∈N,

[[S]] ∈ fS(n) [X
ar(S(n))]⊆ fT(n) (X(ar(T(n)))).

Moreover, by Corollary 4.14, we have that [[T]]= limn→∞ fT(n) (X(ar(T(n)))). Now, let U be an open
neighbourhood of [[T]] in X. Then [U;X] is an open neighbourhood of [[T]] in K(X). Hence, there
is some n ∈N so that fT(m) (X(ar(T(m))))⊆U, for allm� n, which implies that [[S]] ∈U. Thus,

[[S]] ∈
⋂

{U ∈ τ | [[T]]⊆U }.
Obviously, [[T]]⊆ ⋂ {U ∈ τ | [[T]]⊆U }. To show the converse inclusion, assume that there

is some x ∈ ⋂ {U ∈ τ | [[T]]⊆U } \ [[T]]. Since compact Hausdorff spaces are regular (Willard,
1970), there exist disjoint open sets V ,W ∈ τ with x ∈V and [[T]]⊆W. So, x /∈W and thus x /∈⋂ {U ∈ τ | [[T]]⊆U }, a contradiction. It follows that [[S]] ∈ [[T]].

Note that for each n ∈N, fT(n) (X(ar(T(n)))) ∈ fT(n) [K(X)ar(T(n))] and therefore

fT(n) (X(ar(T(n))))⊆
⋃

fT(n) [K(X)ar(T
(n))]

=
⋃

{ fT(n) (�K) | �K ∈K(X)ar(T(n)) } ⊆ fT(n) (X(ar(T(n)))).

Now, conversely, let x ∈ [[T]]. According to the definition, {[[T]]} ∈ fT(n) [K(X)ar(T(n))], for all
n ∈N, that is, [[T]] ∈ fT(n) (X(ar(T(n)))), by what we have just seen. Thus, x ∈ fS(n) [Xar(S(n))], for some
S ∈ ∂T. Observe that for each such tree S the sequence (fS(κ) [Xar(S(κ))])κ∈N is decreasing.

It follows that for every n ∈N there is a finite D-tree N of height n with x ∈ fN[Xar(N)] and
N = S(n), for some S ∈ ∂T. With respect to the prefix relation the set of these finite D-trees N is a
finitely branching infinite tree. By König’s Lemma it must have an infinite path, which in our case
is a sequence (Nn)n∈N of initial subtrees of derived trees of T such thatNn ≺Nn+1. In other words,
there is some Ŝ ∈ T ω

D with Nn = Ŝ(n), for all n. Hence, x ∈ ⋂
n∈N fŜ(n) [X

ar(Ŝ(n))], that is, x= [[Ŝ]].
It remains to verify that Ŝ ∈ ∂T. Set

R := { (N,M) ∈ T ω
D × Tω

K(D) | (∀n ∈N)(∃Ln ∈ ∂M)N(n) = L(n)n }.
Then (Ŝ, T) ∈ R. We use co-induction to show that, if (N,M) ∈ R, then N ∈ ∂M.

Define � : P(Tω
D × Tω

K(D))→P(Tω
D × Tω

K(D)) by

�(W) := { ([d;N′], [[d1, . . . , dr];M1, . . . ,Mr]) | (∃1� κ � r) d = dκ ∧ (N′, Tκ) ∈W }.
Then N ∈ ∂M, exactly if (N,M) ∈ ν�. We need to prove that R⊆ �(R).

Let (N,M) ∈ R with N = [d;N′] and M = [[d1, . . . , dr];T1, . . . , Tr]. Then there are Ln ∈ ∂M
with N(n) = L(n)n , for all n ∈N. It follows that for all n, root(Ln)= root(N)= d. Since Ln ∈ ∂M
and the d1, . . . , dr are pairwise distinct, there is exactly one κ ∈ {1, . . . , r} with d = dκ and

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

Mathematical Structures in Computer Science 171

subtree(Ln) ∈ ∂Mκ , for all n. Let L′
n = subtree(Ln+1). Then L′

n ∈ ∂Mκ and

L′(n)
n = subtree(Ln+1)(n) =N′(n),

where the last equation holds as L(n+1)
n+1 =N(n+1). This shows that (N′,Mκ) ∈ R. Hence, (N,M) ∈

�(R).

Besides covering and well covering, there are further central properties of which it will be
important to know if they are also inherited from (X,D) to (K(X),K(D)). Unfortunately, in case
of weak hyperbolicity, this has to remain an open problem in the general case.

If, however, X is a metric space and all digit maps are contracting, then K(X) is also a metric
space with respect to the Hausdorff metric, ρH, given by

ρH(K,K ′) := inf { ε � 0 |K ⊆ Bρ(K ′, ε)∧K ′ ⊆ Bρ(K, ε) }
with Bρ(K, ε) := { x ∈ X | (∃y ∈K) ρ(x, y)< ε }, and the maps in K(D) are contracting. The con-
traction factor even remains the same. The topology induced by the Hausdorff metric is equivalent
to the Vietoris topology. So, in this case, which is also the prevalent case in applications, both IFS
are weakly hyperbolic. As we know from Theorem 4.13, the assumption that X comes equipped
with a metric from which the topology on X is induced, is not a restriction.

Finally in this section, let us study how computability properties are inherited to the hyper-
space.

Lemma 9.6. Let (X,Q) be a computable metric space. Then (K(X),QK(X)) is computable as well.

Proof. Since (X,Q) is computable, there is a program P which on input (u, v, r) ∈Q×Q×Q ter-
minates its computation after finitely many steps and outputs ACCEPT, if ρ(u, v)< r. Otherwise,
the computation does not terminate. Let PK be the following program:

Given (U,V , r) ∈QK(X) ×QK(X) ×Q, say with U = {u1, . . . , um} and V = {v1, . . . vn}, pro-
ceed as follows

(0) Set i := 1 and go to (1).
(1) Simultaneously start the computation of P on inputs (ui, v1, r), . . . , (ui, vn, r). If one of these

computations halts after finitely many steps with ACCEPT, halt. Then if i<m, increase i
by 1 and go to (1); otherwise output ACCEPT.

It follows that if ρH(U,V)< r, then PK(U,V , r) halts after finitely many steps with out-
put ACCEPT. Otherwise the computation does not terminate. The second requirement in
Definition 5.1 can be dealt with analogously.

Proposition 9.7. Let (X,D,Q) be a computable digit space with only unary digits. Then
(K(X),K(D),QK(X)) is a computable digit space as well.

Proof. Let [d1, . . . , dr] ∈K(D). As we have seen, the domain of this map is the spaceK(X)r , which
has r-tuples (U1, . . . ,Ur) as basic elements with Uκ a basic subset of K(X).

Every digit dκ (1� κ � r) has a computable modulus of continuity kκ . For θ ∈Q+, let
k(θ) :=min { kκ (θ) | 1� κ � r }. Moreover, let �U, �V be basic elements of the domain, say �U =
(U1, . . . ,Ur) and similarly for �V , such that ρH(Uκ ,Vκ)< k(θ). Then we have for each κ and every
u ∈Uκ that there is some v ∈Vκ with ρ(u, v)< k(θ) and hence ρ(dκ (u), dκ (v))< θ . Conversely,
there is some u ∈Uκ with ρ(u, v)< k(θ), for each v ∈Vκ . Again it follows that ρ(dκ (u), dκ (v))< θ .
This shows that ρH([d1, . . . , dr](�U), [d1, . . . , dr](�V))< θ .

Next, we have to show that there is a procedure Gd̄ with d̄ = [d1, . . . , dr], which given a basic
element �U of the domain of d̄ and n ∈N computes some V ∈K(Q) with ρH([d1, . . . , dr](�U),V)<
2−n. By assumption, for every 1� κ � r, there are procedures Gdκ

that given u ∈Q and n ∈N

compute a basic element v ∈Q so that ρ(dκ (u), v)< 2−n. Gd̄ proceeds as follows:

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

172 D. Spreen

Given n ∈N and �U = (U(1), . . . ,U(r)) with U(κ) a basic subset of K(X), say U(κ) =
{u(κ)1 , . . . , u(κ)mκ

}, do: For each 1� κ � r, and every 1� ι�mκ , use Gdκ
to compute v(κ)ι ∈Q such

that ρ(dκ (u(κ)ι), v(κ)ι)< 2−n. Then output the set V of all v(κ)ι with 1� ι�mκ and 1� κ � r.
As is readily verified, ρH([d1, . . . , dr](�U),V)< 2−n.

Inheritability of decidability is an immediate consequence of the subsequent technical lemma.

Lemma 9.8. Let (X,D) be a digit space. Then for any finite subset U ⊆ X, [d1, . . . , dr] ∈K(D), and
θ ∈Q+, BρH(U, θ)⊆ range ([d1, . . . , dr]) if, and only if,

(1) (∀u ∈U)(∃1� κ � r) Bρ(u, θ)⊆ range (dκ) and
(2) (∀1� κ � r)(∃u ∈U) Bρ(u, θ)⊆ range (dκ).

Proof. LetU = {u1, . . . , un}. For the ‘if ’ part assume thatK ∈ BρH(U, θ). Then there is some ratio-
nal number θ ′ < θ with ρH(U,K)� θ ′. For 1� σ � n let Kσ := { y ∈K | ρ(uσ , y)� θ ′ }. Then Kσ

is non-empty and compact. Moreover,K = ⋃n
σ=1 Kσ . By our assumption there is some 1� κσ � r

so that Bρ(uσ , θ)⊆ range (dκσ). Hence, there is some non-empty compact K′
σ ⊆ Xar(dκσ) with

Kσ = dκσ [K ′
σ]. Because of our second assumption, every 1� κ � r is among the κσ with this

property. Thus, K ∈ range ([d1, . . . , dr]).
In case of the ‘only-if ’ part, we show the contrapositive. First, assume that there is some

1� κ0 � r so that for every 1� σ � n, Bρ(uσ , θ) �⊆ range (dκ0). Let yσ ∈ Bρ(uσ , θ) \ range (dκ0)
and set K := { yσ | 1� σ � n }. Then K ∈ BρH(U, θ), but K �∈ range ([d1, . . . , dr]).

Next, assume that there is some 1� σ0 � n such that for all 1� κ � r, Bρ(uσ0 , θ) �⊆ range (dκ).
Let zκ ∈ Bρ(uσ0 , θ) \ range (dκ), and for K ∈ BρH(U, θ), set

K ′ :=K ∪ { zκ | 1� κ � r }.
Then K ′ ∈ BρH(U, θ), but K ′ �∈ range ([d1, . . . , dr]).

Proposition 9.9. Let (X,D,Q) be a computable digit space with only unary digits. If (X,D,Q) is
decidable, so is (K(X),K(D),QK(X)).

We have seen so far that (K(X),K(D),QK(X)) is a well covering, decidable computable digit
space, if also (X,D,Q) is a space of this type and all d ∈D are unary.

Proposition 9.10. Let (X,D,Q) be a well covering and decidable computable digit space with only
unary digits. If (X,D,Q) has approximable choice, then also (K(X),K(D),QK(X)) has approximable
choice.

Proof. Let d̄ ∈K(D) with d̄ = [d1, . . . , dr] and U ∈QK(X) ∩ int (range (d̄)) with U =
{u1, . . . , un}. Then there is some m ∈N so that BρH(U, 2−m)⊆ range (d̄). As we have just
seen, (K(X),K(D),QK(X)) is decidable. Therefore, a number m with this property can effectively
be found. For 1� κ � r set

Uκ := { u ∈U | Bρ(u, 2−m−1)⊆ range (dκ) }.
Then Uκ is non-empty, by Lemma 9.8(2), and U = ⋃r

κ=1 Uκ , by Lemma 9.8(1). By using the
decidability of (X,D,Q), Uκ can be computed from U and dκ .

Now, for 1� κ � r, use approximable choice to pick the function λ(θ , u). vθ
u, and for θ ∈Q+

set
Vθ
Uκ

:= { vθ
u | u ∈Uκ },

and Vθ
U := (Vθ

U1
, . . . ,Vθ

Ur
). We have to verify Conditions 5.11(1)–(3).

(1) For θ ′ ∈Q+, we have to show that ρH(Vθ
U ,V

θ ′
U)<max{θ , θ ′}, that is, we need to verify that

for 1� κ � r, ρH(Vθ
κ ,Vθ ′

κ)<max{θ , θ ′}, which is obvious, as for all u ∈U, ρ(vθ
u, vθ ′

u)<max{θ , θ ′}.

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

Mathematical Structures in Computer Science 173

(2) For 1� κ � r, pick θ ′
κ according to approximable choice, part (2) and let θ ′ :=

min{θ ′
1, . . . , θ

′
r , 2−m−3}.

For U ′ ∈QK(X) ∩ int (range (d̄)) assume that ρH(U,U ′)< θ ′ and let u ∈U. Then there
is some u′ ∈U ′ with ρ(u, u′)< θ ′. Moreover, by Lemma 9.8(1), there is some 1� κ � r
so that Bρ(u, 2−m)⊆ range (dκ) and hence also Bρ(u, 2−m−1)⊆ range (dκ), that is, u ∈
Uκ . Since θ ′ � 2−m−3, it follows that Bρ(u′, 2−m−1)⊆ Bρ(u, 2−m)⊆ range (dκ), that is u′ ∈
U ′

κ . Consequently, ρ(vθ
u, vθ

u′)< θ . By symmetry we obtain that ρH(Vθ
Uκ
,Vθ

U ′
κ
)< θ and thus

ρH(Vθ
U ,V

θ
U ′)< θ .

(3) By approximable choice, part (3), there is some zθu ∈ d−1
κ [{u}] with ρ(zθu , vθ

u)< θ , for each
u ∈Uκ and 1� κ � r. Set Zθ

Uκ
:= { zθu | u ∈Uκ }. Then we have that ρH(Zθ

Uκ
,Vθ

Uκ
)< θ , and hence

for Zθ
U := (Zθ

U1
, . . . , Zθ

Ur
) that ρH(Zθ

U ,V
θ
U)< θ .

Just as in the product case, we now obtain that the equivalence between the Cauchy repre-
sentation used in Type-Two Theory of Effectivity and the tree representation used in the present
approach holds in a constructive fashion also in case of the space of all non-empty compact sub-
sets of a computable digit space. Note again that we need to assume that all maps in D are unary.
Remember that for K ∈K(X),

AK(X)(K)⇔ (∀n ∈N)(∃U ∈QK(X)) ρH(K,U)< 2−n

and CK(X) ⊆K(X) is given by

CK(X)(K)
ν= (∃[d1, . . . , dr] ∈K(D))(∃K1, . . . ,Kr ∈K(X))

K = [d1, . . . , dr](K1, . . . ,Kr)∧ (∀1� κ � r)CK(X)(Kκ).
The following result is again a consequence of Theorems 7.1 and 7.2. It allows to extract
computable translations between the realisers resulting from the two definitions.

Theorem 9.11. Let (X,D,Q) be a well covering and decidable computable digit space with
approximable choice and only unary digits. Then AK(X) =CK(X).

10. Uniformly Continuous Functions
In Berger (2011), working in a constructive setting, Berger presented a co-inductive induc-
tive characterisation of the uniformly continuous functions f : [− 1, 1]m → [− 1, 1] and showed
how it can be used to extract tree representations of such functions. Here, we will lift the
characterisation to the general framework of computable digit spaces.

Assume that (X,D) is an extended IFS. For f : Xn → X, m ∈N0 and 1� i�m, define
f (i,m) : Xn+m−1 → Xm by

f (i,m)(x1, . . . , xi−1, y1, . . . , yn, xi+1, . . . , xm) := (x1, . . . , xi−1, f (y1, . . . , yn), xi+1, . . . , xm).
If f has a right inverse f ′, set

f ′(i,m)(x1, . . . , xm) := (x1, . . . , xi−1, f ′(xi), xi+1, . . . , xm).

Then f ′(i,m) is a right inverse of f (i,m).
Now, assume (Y , E) to be a further extended IFS, define F(X, Y) := { f : Xm → Y |m� 0 } to

be the set of all maps from X to Y of some aritym� 0, and form ∈N and F ⊆ F(X, Y), set

F(m) := { f ∈ F(X, Y) | ar(f)=m }.
Moreover, let the operator �X,Y : P(F(X, Y))→ (P(F(X, Y))→P(F(X, Y))) be given by

�X,Y (F)(G) := { f | (∃e ∈ E)(∃f1, . . . , far(e) ∈ F) f = e ◦ (f1 × · · · × far(e))∨
(∃1� i� ar(f))(∀d ∈D) f ◦ d(i,ar(f)) ∈G }. (9)

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

174 D. Spreen

Obviously, �X,Y (F) is monotone in G, for all F ⊆ F(X, Y). Thus, J X,Y (F) := μ�X,Y (F) exists.
It follows that J X,Y (F) is the smallest subset G of F(X, Y) such that

(W) If e ∈ E and f1, . . . , far(e) ∈ F, then e ◦ (f1 × · · · × far(e)) ∈G.
(R) If h ∈ F(X, Y) and 1� i� ar(h) so that h ◦ d(i,ar(h)) ∈G, for all d ∈D, then h ∈G.

Since J X,Y is monotone as well, also CF(X,Y) := νJ X,Y exists. Observe that if h ∈CF(X,Y), then
range (h)⊆ range (e), for some e ∈ E, since

CF(X,Y) = μG.�X,Y (CF(X,Y))(G)= �X,Y (CF(X,Y))(CF(X,Y)).
Note that we will suppress the superscripts in case the spaces X, Y are clear from the context.

For i ∈N let Ri be a letter with ar(Ri) := ‖D‖. Then a realiser for a map h ∈CF(X,Y) extracted
from the definition of CF(X,Y) by following the exposition in Section 6 is an infinite (En)n∈N-tree,
for some family (En)n∈N of finite subsets of E∪ { Ri | i ∈N }, such that

• each node is either a

writing node labelled with a digit e ∈ E and ar(e) immediate subtrees, or a
reading node labelled with Ri and ‖D‖ immediate subtrees;

• each path has infinitely many writing nodes.

Writing nodes correspond to (inverted) Rule (W), respectively, the left part in the disjunction
defining �X,Y (F)(G). The label e ∈ E realises the existential quantifier. Reading notes correspond
to (inverted) Rule (R). The index i of Ri realises the existential quantifier in the right part of the
disjunction. Digit d ∈D is the root of the tree realising the ith argument. The condition that every
path has infinitely many writing notes reflects the co-inductive nature of the definition ofCF(X,Y),
that is, the fact that the greatest fixed point of �X,Y is taken with respect to the first argument F.
It particularly implies that between two writing nodes on a path there may only be finitely many
reading notes, which reflects the inductive part in the definition of CF(X,Y), that is, the fact that
the least fixed point of �X,Y is taken with respect to the second argument G.

The interpretation of such a tree as a tree transformer is easy. Given ar(h) trees T1, . . . , Tar(h) ∈
T ω
D as inputs, run through the tree and output a tree in T ω

E as follows:

(1) At a writing node [e;S1, . . . , Sar(e)] output e and continue with the subtrees S1, . . . , Sar(e).
(2) At a reading node [Ri;(S′

d)d∈D] continue with S′
d, where d is the root of Ti, and replace Ti

by its ar(d) immediate subtrees.

Next, we show that the predicates CF(X,Y) are closed under composition. We will need the
following lemma.

Lemma 10.1. Let (X,D) be an extended IFS. If f ∈CF(X,Y), then f ◦ d(i,ar(f)) ∈CF(X,Y), for all d ∈D
and 1� i� ar(f).

Proof. Up to minor modifications, the result follows as the corresponding (Berger, 2011, Lemma
4.1). We include the proof for completeness reasons. Let d ∈D. Moreover, set

F := { f ◦ d(i,ar(f)) | f ∈CF(X,Y) ∧ 1� i� ar(f) }.
We use strong co-induction to prove that F ⊆CF(X,Y). That is, we derive F ⊆J (F ∪CF(X,Y)). In
other words, we show that CF(X,Y) ⊆G, where

G := { f ∈ F(X, Y) | (∀1� i� ar(f)) f ◦ d(i,ar(f)) ∈J (F ∪CF(X,Y)) }.

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

Mathematical Structures in Computer Science 175

Since CF(X,Y) =J (CF(X,Y)), it suffices to prove J (CF(X,Y))⊆G, which will be done by strong
induction on J (CF(X,Y)), i.e. we show �(CF(X,Y))(G∩J (CF(X,Y)))⊆G. We have to verify
Rules (W) and (R).

(W) Let e ∈ E and f1, . . . , far(f) ∈CF(X,Y). We must show that e ◦ (f1 × · · · × far(e)) ∈G, i.e. for
m := ∑ar(e)

κ=1 ar(fκ) and all 1� i�m we have to prove that e ◦ (f1 × · · · × far(e)) ◦ d(i,m) ∈J (F ∪
CF(X,Y)). Letmi :=max { 1� n� ar(e) | ∑n

κ=1 ar(fκ)� i } and ı̂ := i−mi. Then

(f1 × · · · × far(e)) ◦ d(i,m) = f1 × · · · × fmi−1 × (fmi ◦ d(ı̂ ,mi))× fmi+1 × · · · × far(e).

By definition of F, we have that fmi ◦ d(ı̂ ,mi) ∈ F. Since J (F ∪CF(X,Y)) is closed under Rule (W), it
therefore follows that e ◦ (f1 × · · · × far(e)) ∈G.

(R) Let h ∈ F(X, Y) and 1� i′ � ar(h). Assume that for all d′ ∈D, h ◦ d′(i′,ar(h)) ∈G∩
J (CF(X,Y)). We must show that h ∈G, i.e. for all 1� i� ar(h) we have to demonstrate that
h ◦ d(i,ar(h)) ∈J (F ∪CF(X,Y)).

Hereto, let 1� i� ar(h). In case i= i′, we obtain from our assumption that h ◦ d(i,ar(h)) ∈
J (CF(X,Y)) and hence by the monotonicity of J , that h ◦ d(i,ar(h)) ∈J (F ∪CF(X,Y)). If i �= i′,
then we have that for all d′ ∈D, d′(i′,ar(h)) ◦ d(i,ar(h)) = d(i,ar(h)) ◦ d′(i′,ar(h)). Therefore, since by our
assumption, h ◦ d′(i′,ar(h)) ∈G, for all d′ ∈D, we have that for all d′ ∈D, h ◦ d(i,ar(h)) ◦ d′(i′,ar(h)) ∈
J (F ∪CF(X,Y)). As J (F ∪CF(X,Y)) is closed under Rule (R), it follows that h ◦ d(i,ar(h)) ∈J (F ∪
CF(X,Y)).

Proposition 10.2. Let (X,D), (Y , E), and (Z, C) be extended IFS. If f ∈CF(Y ,Z) and gκ ∈CF(X,Y),
for 1� κ � ar(f), then f ◦ (g1 × · · · × gar(f)) ∈CF(X,Z).

Proof. The proof is a modification of the proof of Berger (2011, Proposition 4.2). It proceeds by
co-induction. Set

F := { f ◦ (g1 × · · · × gar(f)) | f ∈CF(Y ,Z) ∧ g1, . . . , gar(f) ∈CF(X,Y) }.
Then we show that F ⊆J X,Z(F), that is, we show CF(Y ,Z) ⊆G, where

G := { f ∈ F(Y , Z) | (∀g1, . . . , gar(f) ∈CF(X,Y)) f ◦ (g1 × · · · × gar(f)) ∈J X,Z(F) }.
SinceCF(Y ,Z) =J Y ,Z(CF(Y ,Z)) it suffices to show J Y ,Z(CF(Y ,Z))⊆G. Hence, by the inductive def-
inition of J Y ,Z(CF(Y ,Z)), it is sufficient to demonstrate that�Y ,Z(CF(Y ,Z))(G)⊆G, that is, we have
to show that Rules (W) and (R) hold.

(W) Assume that c ∈ C and f1, . . . , far(c) ∈CF(Y ,Z). We need to show that c ◦ (f1 × · · · × far(c)) ∈
G. For 1� κ � ar(c) assume that g(κ)1 , . . . , g(κ)ar(fκ) ∈CF(X,Y). Then we must prove that c ◦ (f1 ×
· · · × far(c)) ◦ (g(1)1 × · · · × g(ar(c))ar(far(c))) ∈J X,Z(F). Because J X,Z(F) is closed under Rule (W), it suf-

fices to demonstrate that for each 1� κ � ar(c), fκ ◦ (g(κ)1 × · · · × g(κ)ar(fκ)) ∈ F, which holds by the
definition of F.

(R) Let f ∈ F(n)(Y , Z) and 1� i� n. Suppose, as induction hypothesis, that for all e ∈ E, f ◦
e(i,n) ∈G. We have to show that f ∈G, i.e. CF(X,Y) ⊆H(i), where

H(i) := { g ∈ F(X, Y) | (∀g1, . . . , gn ∈CF(X,Y))[gi = g → f ◦ (g1 × · · · × gn) ∈J X,Z(F)] }.
Since CF(X,Y) =J X,Y (CF(X,Y)), it suffices to show that J X,Y (CF(X,Y))⊆H(i), which we do by side
induction, that is, we show that

�X,Y (CF(X,Y))(H(i))⊆H(i).

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

176 D. Spreen

(Wside) Let e ∈ E and g1, . . . , gn, g′
1, . . . , g

′
ar(e) ∈CF(X,Y) so that gi = e ◦ (g′

1 × · · · × g′
ar(e)). Then

f ◦ (g1 × · · · × gn)= f ◦ (g1 × · · · × gi−1 × (e ◦ (g′
1 × · · · × g′

ar(e)))× gi+1 × · · · × gn)

= f ◦ (e(i,n) ◦ (g1 × · · · × gi−1 × g′
1 × · · · × g′

ar(e) × gi+1 × · · · × gn))

= (f ◦ e(i,n)) ◦ (g1 × · · · × gi−1 × g′
1 × · · · × g′

ar(e) × gi+1 × · · · × gn).

By the main induction hypothesis, f ◦ e(i,n) ∈G and hence

(f ◦ e(i,n)) ◦ (g1 × · · · × gi−1 × g′
1 × · · · × g′

ar(e) × gi+1 × · · · × gn) ∈J X,Z(F).

Therefore, e ◦ (g′
1 × · · · × g′

ar(e)) ∈H(i).
(Rside) Let g ∈CF(X,Y) and 1� j� ar(g). Suppose that for all d ∈D, g ◦ d(j,ar(g)) ∈H(i). We have

to show that g ∈H(i). Assume to this end that h1, . . . , hn ∈CF(X,Y) with hi = g. We must derive
that f ◦ (h1 × · · · × hn) ∈J X,Z(F). Let m := ∑n

κ=1 ar(hκ) and ĵ := j+ ∑i−1
κ=1 ar(hκ). Because

J X,Z(F) is closed under Rule (R), it suffices to show that for all d ∈D, (f ◦ (h1 × · · · × hn)) ◦
d(ĵ ,m) ∈J X,Z(F), which is the case as the ith element of (h1 × · · · × hn) ◦ d(ĵ ,m) is g ◦ d(j,ar(g)) and
g ◦ d(j,ar(g)) ∈CF(X,Y) by Lemma 10.1.

Lemma 10.3. Let (X,D) be an extended IFS. Then the following statements hold:

(1) Let idX : X → X be the identity on X. Then idX ∈CF(X,X).
(2) For any n ∈N0 and 1� i� n, let pr(n)i : Xn → X be the projection onto the ith component.

Then pr(n)i ∈C
(n)
F(X,X).

(3) For n> 0, let diag(n)X : X → Xn be given by diag(n) (x) := x(n). Then diag(n)X ∈CF(X,Xn).

Proof. For all statements the proof proceeds by co-induction.
(1) We show that {idX} ⊆J ({idX}). Because of Rule (R) it suffices to show that for all d ∈D,

idX ◦ d ∈J ({idX}). By Rule (W) we have that for d ∈D, d ◦ (idX × · · · × idX) ∈J ({idX}). Since
d ◦ (idX × · · · × idX)= idX ◦ d, we are done.

(2) Since for d ∈D,

d ◦ (pr(n+ar(d))
i × · · · × pr(n+ar(d))

i+ar(d)−1)= pr(n)i ◦ d(i,n),
it follows in the same way that

{ pr(m)
j |m> 0∧ 1� j�m } ⊆J ({ pr(m)

j |m> 0∧ 1� j�m }).
(3) Let d ∈D and note that for x1, . . . , xar(d) ∈ X,

(〈d, . . . , d〉 ◦ (diag(n)X × · · · × diag(n)X))(x1, . . . , xar(d))= 〈d, . . . , d〉(x(n)1 , . . . , x(n)ar(d))

= (d(x1, . . . , xar(d)), . . . , d(x1, . . . , xar(d)))

= (diag(n)X ◦ d)(x1, . . . , xar(d)).
Thus, 〈d, . . . , d〉 ◦ (diag(n)X × · · · × diag(n)X)= diag(n)X ◦ d, from which the statement follows as in
Case (1).

In the above case of the nth power of a given space X, the projections were treated as
n-ary maps. Let us now consider the general case of the product of spaces. Let to this end
(X1,D1), . . . , (Xn,Dn) be extended IFS, and let pr(n)i : Śn

j=1 Xj → Xi again denote the projection
onto the ith component. Then we have for 〈d1, . . . , dn〉 ∈D× that

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

Mathematical Structures in Computer Science 177

pr(n)i ◦ 〈d1, . . . , dn〉 = di ◦ (pr(n)i × · · · × pr(n)i) (sD-times),

which leads to the next result.

Lemma 10.4. Let (X1,D1), . . . , (Xn,Dn) be extended IFS. Then pr(n)i ∈C
(1)
F(

Śn
j=1 Xj,Xi)

, for 1� i� n.

Proposition 10.5. Let (X,D) and (Y , E) be extended IFS. Moreover, for m ∈N, let

ev : F(m)(X, Y)× Xm → Y

with ev (f , x) := f (x) be the evaluation map. Then

ev [C(m)
F(X,Y) ×Cm

X]⊆CY .

Proof. The statement is derived by co-induction. Let the operator � : P(Y)→P(Y) be defined
by

�(L) := { y | (∃e ∈ E)(∃y1, . . . , yar(e) ∈ L) y= e(y1, . . . , yar(e)) }.
Then CY = ν� . Set

Z := { y ∈ Y | (∃f ∈CF(X,Y))(∃x1, . . . xar(f) ∈CX) y= f (x1, . . . , xar(f)) }.
We need to show that Z ⊆ �(Z). Let to this end

G := { f ∈ F(X, Y) | f [Car(f)
X]⊆ �(Z) }.

Then we have to verify that CF(X,Y) ⊆G. Since CF(X,Y) =J (CF(X,Y)), it is equivalent to prove
that J (CF(X,Y))⊆G. By the inductive definition of J (CF(X,Y)), it suffices in addition to derive
that �(CF(X,Y))(G)⊆G, that is, we need to show that

(W) If e ∈ E and (f1, . . . , far(e)) ∈CF(X,Y), then e ◦ (f1 × · · · × far(e)) ∈G.
(R) If f ∈ F(m)(X, Y) and 1� i� ar(f) so that f ◦ d(i,m) ∈G, for all d ∈D, then f ∈G.
(W) Let e ∈ E, f1, . . . , far(e) ∈CF(X,Y), and �xκ ∈C

ar(fκ)
X , for 1� κ � ar(e). Then fκ (�xκ) ∈ Z.

Hence, e(f1(�x1), . . . , far(e)(�xar(e))) ∈ �(Z).
(R) Let f ∈ F(m)(X, Y) and 1� i�mwith f ◦ d(i,m) ∈G, for all d ∈D. Let x1, . . . , xm ∈CX . Then

there is some di ∈D and some �x′
i ∈C

ar(di)
X so that xi = di(�x′

i). It follows that

f (x1, . . . , xm)= f (x1, . . . , xi−1, di(�x′
i), xi+1, . . . , xm)

= (f ◦ d(i,m))(x1, . . . , xi−1, �x′
i, xi+1, . . . , xm) ∈ �(Z).

For n ∈N0, let the set n := {0, . . . , n− 1} be endowed with the discrete topology. Moreover,
for i ∈ n, let gi : n→ n map n constantly onto i. Then (n, {g1, . . . , gn−1}) is a covering IFS with
n=Cn.

Corollary 10.6. Let (X,D) be an IFS. Then C
(1)
F(n,X) =Cn

X.

Proof. As a consequence of the preceding proposition, we have that C(1)
F(n,X) ⊆Cn

X . The converse
inclusion follows by co-induction. We show that F(1)(n,CX)⊆J (F(1)(n,CX)).

Let f ∈ F(1)(n,CX) and i ∈ n. Then there are di ∈D and xi ∈CX so that f (i)= di(xi). Set
hi(a)= xi, for a ∈ n. Then hi ∈ F(1)(n,CX). Moreover, f ◦ gi = di ◦ hi. As J (F(1)(n,CX)) is closed
under Rule (W), we obtain that di ◦ hi ∈J (F(1)(n,CX)). Hence, f ◦ gi ∈J (F(1)(n,CX)), for all
i ∈ n. With Rule (R), we therefore obtain that f ∈J (F(1)(n,CX)).

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

178 D. Spreen

Observe the difference between CXn and Cn
X . In the first case, the digits operate on all com-

ponents simultaneously, whereas in the other case they do this in an uncoordinated way and
approximate the single components just as needed.

Proposition 10.7. Let (X,D), (Y1, E1), and (Y2, E2) be extended IFS. Then for f ∈CF(X,Y1) and
g ∈CF(X,Y2), f × g ∈CF(X,Y1×Y2).

Proof. Without loss of generality, we assume that all maps in E1 ∪ E2 have the same arity, say m.
The proof of the statement proceeds by co-induction. Let

F := { f × g | f ∈CF(X,Y1) ∧ g ∈CF(X,Y2) }.
Then we must show that F ⊆J X,Y1×Y2 (F). Set

A := { f ∈ F(X, Y1) | (∀g ∈CF(X,Y2)) f × g ∈J X,Y1×Y2 (F) }.
We show that CF(X,Y1) ⊆A. Since CF(X,Y1) =J X,Y1 (CF(X,Y1)), it suffices to prove that
J X,Y1 (CF(X,Y1))⊆A. By induction we show that �X,Y1 (CF(X,Y1))(A)⊆A, which means that we
have to verify Rules (W) and (R).

(Wmain) Let e1 ∈ E1 and f1, . . . , fm ∈CF(X,Y1). We need to demonstrate that e1 ◦ (f1 × · · · ×
fm) ∈A. To this end, we have to show that for all g ∈CF(X,Y2), (e1 ◦ (f1 × · · · × fm))× g ∈
J X,Y1×Y2 (F). Let

B(h) := { g ∈ F(X, Y2) | h× g ∈J X,Y1×Y2 (F) }.
For h := e1 ◦ (f1 × · · · × fm) we prove that CF(X,Y2) ⊆ B(h), for which it suffices to demonstrate
that

�X,Y2 (CF(X,Y2))(B(h))⊆ B(h), (10)
which is done by side induction.

(Wside) Let e2 ∈ E2 and g1, . . . , gm ∈CF(X,Y2). We need to show that

(e1 ◦ (f1 × · · · × fm))× (e2 ◦ (g1 × · · · × gm)) ∈J X1×X2,Y1×Y2 (F).
We have that

(e1 ◦ (f1 × · · · × fm))× (e2 ◦ (g1 × · · · × gm))= 〈e1, e2〉 ◦ ((f1 × g1)× · · · × (fm × gm)),

where 〈e1, e2〉 ∈ E× and f1 × g1, . . . , fm × gm ∈ F. Hence, (e1 ◦ (f1 × · · · × fm))× (e2 ◦ (g1 × · · · ×
gm)) ∈J X,Y1×Y2 (F), by Rule (W).

(Rside) Let g ∈ F(X, Y2) and 1� i� ar(g) so that g ◦ d(i,ar(g)) ∈ B(h), for all d ∈D. Then h× (g ◦
d(i,ar(g))) ∈J X,Y1×Y2 (F). Let h̃ := h× g. Then ar(h̃)= ar(h)+ ar(g). For j := ar(h)+ iwe therefore
have that h̃ ◦ d(j,ar(h)+ar(g)) = h× (g ◦ d(i,ar(g))). It follows that h̃ ◦ d(j,ar(h)+ar(g)) ∈J X,Y1×Y2 , for all
d ∈D, from which we obtain by Rule (R) that h̃ ∈J X,Y1×Y2 . Hence, g ∈ B(h). This proves (10).

(Rmain) It remains to verify Rule (R) in themain induction. Let f ∈A and 1� i� ar(f) such that
for all d ∈D, f ◦ d(i,ar(f)) ∈A. Thus, (f ◦ d(i,ar(f)))× g ∈J X,Y1×Y2 (F), for all d ∈D and g ∈CF(X,Y2).
Set h̄g := f × g. Then ar(h̄g)= ar(f)+ ar(g) and for all d ∈D,

h̄g ◦ d(i,ar(f)+ar(g)) = (f ◦ d(i,ar(f)))× g.

Since (f ◦ d(i,ar(f)))× g ∈J X,Y1×Y2 (F) by our assumption, we obtain with Rule (R) that h̄g ∈
J X,Y1×Y2 (F). Thus, f ∈A.

Let eIFS be the category with extended IFS (X,D) as objects, and for two objects (X1,D1)
and (X2,D2), CF(X1,X2) as set of morphisms from (X1,D1) to (X2,D2). Then it follows that∏2

i=1 (Xi,Di) := (X1 × X2,D×) with canonical projection pr(2)i , for i= 1, 2, is the categorical
product of (X1,D1) and (X2,D2).

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

Mathematical Structures in Computer Science 179

Let (Y1,D1) and (Y2,D2) be further objects in eIFS and fi ∈CF(Xi,Yi), for i= 1, 2. Set hi :=
fi ◦ (pr(2)i × · · · × pr(2)i) (ar(fi)-times). Then hi ∈CF(X1×X2,Yi). Hence, h1 × h2 ∈CF(X1×X2,Y1×Y2).
Define the action of

∏
on f1, f2 by

∏
(f1, f2) := h1 × h2. Then

∏ : eIFS× eIFS→ eIFS is a functor,
showing that the product construction presented in Section 8 is functorial.

As we have already seen, in the framework of computable digit spaces computability is the
appropriate requirement for a map between such spaces to be considered uniformly continuous,
constructively. We will now show that the above co-inductive-inductively defined function class
captures exactly these functions. Let

C(X, Y) := { f ∈ F(X, Y) | f computable }.
Proposition 10.8. Let (X,D,QX) and (Y , E,QY) be computable digit spaces so that (Y , E,QY) is
decidable and well covering with approximable choice. Then C(X, Y)⊆CF(X,Y).

Proof. We show the statement by co-induction, that is, we prove that
C(X, Y)⊆J (C(X, Y)).

Let εY ∈Q+ be a well-covering number for Y and set
V := { (y, y′) ∈ Y × Y | ρY (y, y′)< εY/2 }.

Moreover, let MX be a bound of X and qX < 1 the maximum of the contraction factors of the
d ∈D. Let �x ∈ Xm denote them-tuple (x1, . . . , xm), and similarly for �x′ and �ı . Define

U(m)
�ı := { (�x, �x′) ∈ Xm × Xm | (∀1� κ �m)ρX(xκ , x′

κ)� qiκX ·MX },
and set

C(m)
�ı := { f ∈ C(m)(X, Y) |U(m)

�ı ⊆ (f × f)−1[V] }.
Since every f ∈ C(m)(X, Y) comes equipped with a computable modulus of continuity, an �i ∈
Nm can be computed for each such f so that f ∈ C(m)

�i . Therefore, it suffices to show that
C(m)
�ı ⊆J (C(X, Y)), for all m and every �ı ∈Nm, which will be done by induction on i :=
max { iκ | 1� κ �m }.

For i= 0 we have that U(m)
�ı = Xm × Xm. Therefore, it follows for f ∈ C(m)

�ı and �u ∈Qm
X that

f [Xm]⊆ BρY (f (�u), εY/2). Since f is computable, a basic element v ∈QY can be found with
ρY (f (�u), v)< εY/2. Use decidability to pick some e ∈ Ewith BρY (v, εY)⊆ range (e). Then f [Xm]⊆
BρY (v, εY)⊆ range (e).

Note that by Proposition 5.15, digit e has a computable right inverse e′. For 1� κ � ar(e), set
gκ := pr(ar(e))κ ◦ e′ ◦ f . Then gκ is computable, that is, gκ ∈ C(m)(X, Y). Since f = e ◦ (g1 × · · · ×
gar(e)), we therefore obtain with Rule (W) that f ∈J (C(X, Y)).

Now, assume that i> 0 and let f ∈ C(m)
�ı . Then (f × f)−1[V]⊇U(m)

�ı . Choose 1� j�m such
that ij > 0. We want to apply Rule (R). Therefore, we have to show that for all d ∈D, f ◦ d(j,m) ∈
J (C(X, Y)). Since d ∈D is a contraction, there is some � < ij so that

(d × d)−1[U(1)
ij]⊇ { (�z, �z′) ∈ Xar(d) × Xar(d) | (∀1� σ � ar(d)) ρX(zσ , z′σ)� q�

X ·MX }.
For 1� κ � ar(d)+m− 1 set

kκ :=
{
iκ if 1� κ < j or ar(d)+ j� κ < ar(d)+m,
� if j� κ < ar(d)+ j.

Let k̄ :=max { kκ | 1� κ � ar(d)+m− 1 }. Then k̄< i. Moreover, we have that (d(j,m) ×
d(j,m))−1[U(m)

�ı]⊇U(ar(d)+m−1)
�k . Hence, (f ◦ d(j,m) × f ◦ d(j,m))−1[V]⊇U(ar(d)+m−1)

�k , from which it
follows with the induction hypothesis that f ◦ d(j,m) ∈J (C(X, Y)).

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

180 D. Spreen

Proposition 10.9. Let (X,D,QX) and (Y , E,QY) be decidable and well-covering computable digit
spaces with approximable choice. Then CF(X,Y) ⊆ C(X, Y).
Proof. Since computable digit spaces with approximable choice are constructively dense,
Proposition 5.9 permits to derive the assertion for the dense subspaces Q(z)

D and Q(z′)
E , respec-

tively, instead of QX and QY . To simplify notation we write QD instead of Q(z)
D and similarly for

Q(z′)
E . Let z ∈QX and z′ ∈QY be fixed for the rest of the proof.
Now, let MX and MY , respectively, be bounds of X and Y , and qX , qY < 1 be the maximum of

the contraction factors of the d ∈D and/or e ∈ E. For j ∈N, set

Vj := { (y, y′) ∈ Y × Y | ρY (y, y′)� qjY ·MY }.
Moreover, let

U(m)
i := { (�x, �x′) ∈ Xm × Xm | (∀1� κ �m) ρX(xκ , x′

κ)� qiX ·MX }
and define

Gj := { f ∈ F(X, Y) | (∃i ∈N)U(ar(f))
i ⊆ (f × f)−1[Vj]∧

(∀�u ∈Qar(f)
D)(∃v ∈QE) (f (�u), v) ∈Vj }.

Then we have to show that CF(X,Y) ⊆Gj, for all j ∈N. We proceed by induction on j.
The case j= 0 is obvious, as Vj = Y × Y and hence for i := 0, (f × f)−1[Vj]⊇U(ar(f))

i , for every
f ∈ F(X, Y). In addition, (f (�u), v) ∈Vj, for any �u ∈Qar(f)

D and v ∈QE.
Now, assume that j> 0. We show by side induction that J (CF(X,Y))⊆Gj. Note here that

CF(X,Y) =J (CF(X,Y)). By the inductive definition of J (CF(X,Y)) it therefore suffices to show that
�(CF(X,Y))(Gj)⊆Gj, that is, we need to show that

(W) If e ∈ E and f1, . . . , far(e) ∈CF(X,Y), then e ◦ (f1 × · · · × far(e)) ∈Gj.
(R) If f ∈ F(X, Y) and 1� k� ar(f) so that f ◦ d(k,ar(f)) ∈Gj, for all d ∈D, then f ∈Gj.

(W) Let e ∈ E and f1, . . . , far(e) ∈CF(X,Y). As a digit map, e in particular has a computable
modulus of continuity. Thus, we can effectively find some � ∈N so that (e× e)−1[Vj]⊇Var(e)

� .
Since e is a contraction, it follows that � < j. By the main induction hypothesis fκ ∈G�,
for 1� κ � ar(e). Thus, we are given i1, . . . , iar(e) ∈N so that U(ar(fκ))

iκ ⊆ (fκ × fκ)−1[V�], for
1� κ � ar(e). Furthermore, for each such κ and every �uκ ∈Qar(fκ)

D , we can effectively find some
vκ ∈QE with (fκ (�uκ), vκ) ∈V�. Let ı̄ :=max { iκ | 1� κ � ar(e) } and n := ∑ar(e)

κ=1 ar(fκ). Then
U(ar(fκ))

ı̄ ⊆U(ar(fκ))
iκ , for 1� κ � ar(e), and

((e ◦ (f1 × · · · × far(e)))× (e ◦ (f1 × · · · × far(e))))[U(n)
ı̄]

= (e× E) ◦ ((f1 × f1)× · · · × (far(e) × far(e)))[U
(ar(f1))
i1 × · · · ×U(ar(far(e)))

iar(e)]

= (e× e)[(f1 × f1)[U
(ar(f1))
i1]× · · · × (far(e) × far(e))[U

(ar(far(e)))
iar(e)]]

⊆ (e× e)[Var(e)
�]

⊆Vj.

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

Mathematical Structures in Computer Science 181

Moreover, we have that

((e ◦ (f1 × · · · × far(e)))(�u1, . . . , �uar(e)), e(v1, . . . , var(e)))
= (e(f1(�u1), . . . , far(e)(�uar(e))), e(v1, . . . , var(e)))
∈ (e× e)[Var(e)

�]

⊆Vj.

Note that by definition, e(v1, . . . , var(e)) ∈QE. Thus, we have that e ◦ (f1 × · · · × far(e)) ∈Gj.
(R) Let f ∈ F(X, Y) and 1� i� ar(f) so that f ◦ d(i,ar(f)) ∈Gj, for all d ∈D. Then, for every

d ∈D, we are given some �d ∈N with ((f ◦ d(i,ar(f)))× (f ◦ d(i,ar(f))))[U(ar(d)+ar(f)−1)
�d

]⊆Vj. By
Proposition 5.15, each d ∈D has a computable right inverse d′. Thus, some rd ∈N can
effectively be found with (d′ × d′)−1[U(ar(d))

�d
]⊇U(1)

rd . Define r̄ :=max { rd | d ∈D } and r̂ :=
min { r� r̄ | qrX � εX/(2MX) }, where εX is a well-covering number for X.

Now, let �x= (x1, . . . , xar(f)) ∈ Xar(f). Then BρX (xi, qr̂X ·MX)⊆ BρX (xi, εX/2). By Theorem 7.1,
we can therefore compute a basic element u ∈ Bρx(xi, εX/2). Use decidability to pick some d̃ ∈D
with BρX (u, εX)⊆ range (d̃). Then BρX (xi, qr̂X ·MX)⊆ range (d̃). Let d̃

′
(xi)= (z̃1, . . . , z̃ar(d̃)). As

r̂� rd̃, we moreover have that U(1)
r̂ ⊆U(1)

rd̃ and hence that

d̃′[Bρx(xi, qr̂ ·MX)]⊆ { (z1, . . . , zar(d̃)) | (∀1� κ � ar(d̃)) ρX(zκ , z̃κ)� q
�d̃
X ·MX }. (11)

Define k :=max{�d̃, r̂}. We will show that (f × f)[U(ar(f))
k]⊆Vj. Let to this end (�x, �z) ∈U(ar(f))

k
with �x= (x1, . . . , xar(f)) and similarly for �z. Then zi ∈ BρX (xi, qr̂X ·MX)⊆ range (d̃). With (11) and
the assumption it follows that

(f × f)(�x, �z)= ((f × f) ◦ (d̃(i,m) × d̃(i,m)) ◦ (d̃′(i,m) × d̃′(i,m)))(�x, �z)
∈ ((f × f) ◦ (d̃(i,m) × d̃(i,m)))[U(ar(d̃)+ar(f)−1)

�d̃
]⊆Vj.

It remains to verify the second requirement in the definition of Gj. Let to this end �u ∈Qar(f)
D

with �u= (u1, . . . , uar(f)). Then there is some d ∈D and there are w1, . . . ,war(d) ∈QD such that
ui = d(w1, . . . ,war(d)). By our assumption, there is some v ∈QE with

((f ◦ d(i,ar(f)))(u1, . . . , ui−1,w1, . . . ,war(d), ui+1, . . . , uar(f)), v) ∈Vj.

Whence, (f (�u), v) ∈Vj. This shows that f ∈Gj.
Now, let CF(X,Y) and p ∈Q+. Then some j ∈N can be computed with qjY ·MY � p. The

above proof shows how for given j ∈N some i ∈N can effectively be obtained so that, whenever
�x, �x′ ∈ Xar(f) with ρX(�x, �x′)� qiX ·MX then ρY (f (�x), f (�x′))� qjY ·MY � p, which shows that f has
a computable modulus of continuity. Similarly, it follows that f satisfies the second requirement
for computability.

Summing up we obtain the following result.

Theorem 10.10. Let (X,D,QX) and (Y , E,QY) be decidable and well-covering computable digit
spaces with approximable choice. Then

CF(X,Y) = C(X, Y).

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

182 D. Spreen

11. Compact-Valued Functions
After having discussed how to obtain co-inductive characterisations of product and hyperspaces,
as well as of uniformly continuous functions, which are the usual morphisms in the category of
compact Hausdorff spaces, we will now investigate compact-valued maps in this framework.

A central goal is to derive the functoriality of the compact hyperspace construction within the
scope of co-inductive characterisations of spaces and morphisms. That is, we show that for maps
f ∈CF(X,Y), K(f) ∈CF(K(X),K(Y)), where for compact sets K, K(f)(K) := f [K]. Classically, this is
a well known fact. However, the proofs given here are new, and, as has already been pointed
out, algorithms computing the action of the functor on morphisms can be extracted in case that
the underlying IFS are covering, compact and weakly hyperbolic; similarly in the other cases
considered in this section.

In a first step, we will show that the continuous image of a compact set is compact again. As
follows from the definition, the algorithm evaluating a function in CF(X,Y) on a given tuple of
inputs uses the information coming with the components of the input tuple only in as much as it
is needed, and also by dealing with each input component separately, not in parallel. This property
seems to be too weak to be able to lift the function to the hyperspace of non-empty compact sets.
The problem is that in the hyperspace, the compact sets are approximated by iterating digit maps
that operate on the hyperspace. By doing so, the elements of the hyperspace are considered as
abstract objects, not as sets of points or tuples of such. The internal structure is invisible to the IFS
on the hyperspace.

In the subsequent Proposition, we get around the problem by dealing with compact sets that are
cubes, but without such information being available it is not clear how to proceed. In the general
case, we therefore restrict ourselves to unary maps. Multi-ary maps f : Xn → Y are then subsumed
by using the IFS (Xn,D×) instead of (X,D).

Proposition 11.1. Let (X,D), (Y , E) be compact IFS, f ∈CF(X,Y) and K1, . . . ,Kar(f) ∈CK(X). Then
f [K1 × · · · ×Kar(f)] ∈CK(Y).

Proof. For the co-inductive proof, we need to derive a stronger statement. Let to this end
f1,fk ∈CF(X,Y) and define ⎛⎝ k⋃

i=1
fi

⎞⎠ (�x) :=
k⋃

i=1

{
fi(pr(k)i (�x))

}
,

for �x ∈ Śk
i=1 Xar(fi). Set

M(X, Y) := { ⋃k
i=1 fi | k� 1∧ (∀1� j� k) fj ∈CF(X,Y) }.

In general, the maps in M(X, Y) will be multi-valued. For such maps h : X⇒ Y and K ∈K(X),
h[K] := ⋃ { h(x) | x ∈K }.

Let
H := { g[K1 × · · · ×Kar(g)] | g ∈M(X, Y)∧K1, . . . ,Kar(g) ∈CK(X) }.

We will show that H ⊆CK(Y). For Z⊆K(Y) define

�K(Y)(Z) := {M ⊆ Y | (∃d̄ ∈K(D))(∃M1, . . . ,Mar(d̄) ∈Z)M = d̄(M1, . . . ,Mar(d̄)) }.
Then CK(Y) = ν�K(Y). Hence, we must prove that H ⊆ �K(Y)(H). For g ∈M(X, Y) let

H(g) := { g[K1 × · · · ×Kar(g)] |K1, . . . ,Kar(g) ∈CK(X) }.
We first show that for all f ∈CF(X,Y), H(f)⊆ �K(Y)(H).

Since CF(X,Y) =J X,Y (CF(X,Y))= μ�X,Y (CF(X,Y)), we can use induction to this aim. Set
G := { f ∈ F(X, Y) |H(f)⊆ �K(Y)(H) },

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

Mathematical Structures in Computer Science 183

then we need derive that

�X,Y (CF(X,Y))(G)⊆G.

We have to consider the two cases:

(W) If e ∈ E and h ∈CF(X,Y), then H(e ◦ h)⊆ �K(Y)(H).
(R) If f ∈ F(X, Y) and 1� i� ar(f) so that for all d ∈D,H(f ◦ d(i,ar(f)))⊆ �K(Y)(H), thenH(f)⊆

�K(Y)(H).

(W) Assume that e ∈ E and h ∈CF(X,Y), and let K1, . . . ,Kar(h) ∈CK(X). Then we need to prove
that (e ◦ h)[K1 × · · · ×Kar(h)] ∈ �K(Y)(H).

We have that

(e ◦ h)[K1 × · · · ×Kar(h)]= e[h[K1 × · · · ×Kar(h)]]= [e](h[K1 × · · · ×Kar(h)]).

Since, h ∈CF(X,Y) and K1, . . . ,Kar(h) ∈CK(X), it follows that h[K1 × · · · ×Kar(h)] ∈H. Therefore,
(e ◦ h)[K1 × · · · ×Kar(h)] ∈ �K(Y)(H).

(R) Let f ∈ F(X, Y) and 1� i� ar(f) so that for all d ∈D, H(f ◦ d(i,ar(f)))⊆ �K(Y)(H).
Moreover, for 1� κ � ar(f), let Kκ ∈CK(X). Then there exist d1, . . . , dr ∈D and N1, . . . ,Nr ∈
CK(X) so that Ki = [d1, . . . , dr](N1, . . . ,Nr). It follows that

f [K1 × · · · ×Kar(f)]
= f [K1 × · · · ×Ki−1 × [d1, . . . , dr](N1, . . . ,Nr)×Ki+1 × · · · ×Kar(f)]

= f [K1 × . . . ×Ki−1 × (
r⋃

κ=1
dκ [Nκ])×Ki+1 × · · ·Kar(f)]

=
r⋃

κ=1
f [K1 × · · · ×Ki−1 × dκ [Nκ]×Ki+1 × · · ·Kar(f)]

=
r⋃

κ=1
(f ◦ d(i,ar(f))κ)[K1 × · · · ×Ki−1 ×Nκ ×Ki+1 × · · · ×Kar(f)].

Since dκ ∈D, for 1� κ � r, it follows with our assumption that there are e(κ)1 , . . . , e(κ)nκ
∈ E and

M(κ)
1 , . . . ,M(κ)

nκ
∈H such that

(f ◦ d(i,ar(f))κ)[K1 × · · · ×Ki−1 ×Nκ ×Ki+1 × · · · ×Kar(f)]

= [e(κ)1 , . . . , e(κ)nκ
](M(κ)

1 , . . . ,M(κ)
nκ

).

Thus,
r⋃

κ=1
(f ◦ d(i,ar(f))κ)[K1 × · · · ×Ki−1 ×Nκ ×Ki+1 × · · · ×Kar(f)]=

r⋃
κ=1

nκ⋃
σκ=1

e(κ)σκ
[M(κ)

σκ
].

Note that the maps e(κ)σκ with 1� κ � r and 1� σκ � nκ need not be pairwise distinct. Let
e1, . . . , e� ∈ E be pairwise distinct so that {e1, . . . , e�} = ⋃r

κ=1{e(κ)1 , . . . , e(κ)nκ
}. Then

r⋃
κ=1

nκ⋃
σκ=1

e(κ)σκ
[M(κ)

σκ
]= [e1, . . . , e�](L1, . . . , Lr),

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

184 D. Spreen

where for 1� ι� �, Lι := ⋃ {M(κ)
σκ | 1� κ � r ∧ 1� σκ � nκ ∧ e(κ)σκ = eι }. Since M(κ)

σκ =
h(κ)σκ [

Śar(h(κ)σκ)
ικ ,σκ =1 M̃

(κ ,σκ)
ικ ,σκ

], for some h(κ)σκ ∈M(X, Y) and M̃(κ ,σκ)
ικ ,σκ

∈CK(X), we have

Lι = (
⋃

1� κ � r,
1� σκ � nκ :
K(e(κ)σκ)=K(eι)

h(κ)σκ
)[

ą

1� κ � r,
1� σκ � nκ :
K(e(κ)σκ)=K(eι)

ar(h(κ)σκ)ą

ικ ,σκ =1
M̃(κ ,σκ)

ικ ,σκ
]. (12)

It follows that Lι ∈H and thus f [K1 × · · · ×Kar(f)] ∈ �K(Y)(H).
Observe that because of the possibility that the e(κ)σκ are not pairwise distinct and in particular

Line (12) we have to consider multi-valued maps in this proof.
Finally, we let g ∈M(X, Y). It remains to show that H(g)⊆ �K(Y)(H). Let to this end

f1, . . . , fk ∈CF(X,Y) with g = f1 ∪ · · · ∪ fk, and K(κ)
σκ ∈CK(X), for 1� κ � k and 1� σκ � ar(fκ).

As we have just seen, fκ [K(κ)
1 × · · · ×K(κ)

ar(fκ)] ∈ �K(Y)(H). Hence, there are e(κ)1 , . . . , e(κ)rκ ∈ E
andM(κ)

1 , . . . ,M(κ)
rκ ∈H, for 1� κ � k, with

fκ [K(κ)
1 × · · · ×K(κ)

ar(fκ)]= [e(κ)1 , . . . , e(κ)rκ](M(κ)
1 , . . . ,M(κ)

rκ).

Again the e(κ)ικ with 1� κ � k and 1� ικ � rκ need not be pairwise distinct. By proceeding as in
the previous proof step, we can find pairwise distinct e′1, . . . , e′� ∈ E and L1, . . . , L� ∈H so that
{e′1, . . . , e′�} = { e(κ)ικ | 1� κ � k∧ 1� ικ � rκ } and

g[K(1)
1 × · · · ×K(k)

ar(fk)
]=

k⋃
κ=1

fκ [K(κ)
1 × · · · ×K(κ)

ar(fκ)]

=
k⋃

κ=1
[e(κ)1 , . . . , e(κ)rκ](M(κ)

1 , . . . ,M(κ)
rκ)

= [e′1, . . . , e′�](L1, . . . , L�),

showing that g[K(1)
1 × · · · ×K(k)

ar(fk)
] ∈ �K(Y)(H).

For the subsequent technical lemma, we extend the union taking operation to compact-
valued maps. For Hausdorff spaces X, Y , Z such that Z is compact, and maps f : X →K(Z) and
g : Y →K(Z) define f ∪ g : X × Y →K(Z) by

(f ∪ g)(x, y) := f (x)∪ g(y).

Lemma 11.2. Let (X,D), (Y , E) be compact IFS and

F := { ⋃k
i=1 K(fi) | k� 1∧ (∀1� i� k) fi ∈C

(1)
F(X,Y) }.

Then JK(X),K(Y)(F) is closed under union.

Proof. Let

A := { f ∈ F(K(X),K(Y)) | (∀g ∈JK(X),K(Y)(F)) f ∪ g ∈JK(X),K(Y)(F) }.
We will prove by induction that JK(X),K(Y)(F)⊆A, that is, we have to show that

�K(X),K(Y)(F)(A)⊆A,

which in turn means that we have to verify Rules (W) and (R).

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

Mathematical Structures in Computer Science 185

(Wmain) Let ē ∈K(E) with ē= [e1, . . . , er], for e1, . . . , er ∈ E. Moreover, let f1, . . . , fr ∈ F. We
must demonstrate that ē ◦ (f1 × · · · × fr) ∈A. To this end, we have to show that for all g ∈
JK(X),K(Y)(F), ē ◦ (f1 × · · · × fr)∪ g ∈JK(X),K(Y)(F). For h ∈ F(K(X),K(Y)) set

B(h) := { g ∈ F(K(X),K(Y)) | h∪ g ∈JK(X),K(Y)(F) }.
Let h := ē ◦ (f1 × · · · × fr). We prove that JK(X),K(Y)(F)⊆ B(h), that is, we have to demonstrate
that

�K(X),K(Y)(F)(B(h))⊆ B(h), (13)

which is done by side induction.
(Wside) Let ê ∈K(E), say ê= [e′1, . . . , e′s] with e′1, . . . , e′s ∈ E. Furthermore, let g1, . . . , gs ∈ F.

We need to show that

(ē ◦ (f1 × · · · × fr))∪ (ê ◦ (g1 × · · · × gs)) ∈JK(X),K(Y)(F).

Note that ē=K(e1)∪ · · · ∪K(er) and analogously for ê. Then

(ē ◦ (f1 × · · · × fr))∪ (ê ◦ (g1 × · · · × gs))=
K(e1) ◦ f1 ∪ · · · ∪K(er) ◦ fr ∪K(e′1) ◦ g1 ∪ · · · ∪K(e′s) ◦ gs.

Let R := { (j1, j2) | 1� j1 � r ∧ 1� j2 � s∧ ej1 = e′j2 }. Then we have that

K(e1) ◦ f1 ∪ · · · ∪K(er) ◦ fr ∪K(e′1) ◦ g1 ∪ · · · ∪K(e′s) ◦ gs
= [ei1 , . . . , eik , eik+1 , . . . , eik′ , e

′
ik′+1

, . . . , e′i�] ◦ ((fi1 ∪ gi1)× · · · × (fik ∪ gik)×
fik+1 × · · · × fik′ × gik′+1 × · · · × gi�),

where 1� k� k′ � � and i1, . . . , i�, i′1, . . . , i′k ∈N so that

R= {(i1, i′1), . . . , (ik, i′k)},
{1, . . . , r} \ pr(2)1 [R]= {ik+1, . . . , ik′ },
{1, . . . , s} \ pr(2)2 [R]= {ik′+1, . . . , i�}.

It follows that ei1 , . . . , eik , eik+1 , . . . , eik′ , e
′
ik′+1

, . . . , e′i� are pairwise distinct and
fi1 ∪ gi1 , . . . , fik ∪ gik , fik+1 , . . . , fik′ , gik′+1 , . . . , gi� ∈ F. Thus, (ē ◦ (f1 × · · · × fr))∪ (ê ◦ (g1 ×
· · · × gs)) ∈JK(X),K(Y)(F), by Rule (W).

(Rside) Let g ∈ F(K(X),K(Y)) and 1� i� ar(g) so that g ◦ ē(i,ar(g)) ∈ B(h), for all ē ∈K(E).
Then h∪ (g ◦ ē(i,ar(g))) ∈JK(X),K(Y)(F). Set ĥ := h∪ g. Obviously, ar(ĥ)= ar(h)+ ar(g). For j :=
ar(h)+ i, we therefore have that ĥ ◦ ē(j,ar(ĥ)) = h∪ (g ◦ ē(i,ar(g))). It follows that ĥ ◦ ē(j,ar(ĥ)) ∈
JK(X),K(Y)(F), for all ē ∈K(E), fromwhichwe obtain with Rule (R) that ĥ ∈JK(X),K(Y)(F). Hence,
g ∈ B(h). This proves (13).

(Rmain) It remains to verify Rule (R) in the main induction. Let f ∈ F(K(X),K(Y)) and
1� i� ar(f) such that for all d̄ ∈K(D), f ◦ d̄(i,ar(f)) ∈A. Thus, (f ◦ d̄(i,ar(f)))∪ g ∈JK(X),K(Y)(F),
for all g ∈JK(X),K(Y)(F). Set h̃g := f ∪ g. Then ar(h̃g)= ar(f)+ ar(g) and for all d̄ ∈K(D),

h̃g ◦ d̄(i,ar(h̃g)) = (f ◦ d̄(i,ar(f)))∪ g.

Since (f ◦ d̄(i,ar(f)))∪ g ∈JK(X),K(Y)(F), by our assumption, we obtain with Rule (R) that h̃g ∈
JK(X),K(Y)(F). Thus, f ∈A.

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

186 D. Spreen

Theorem 11.3. Let (X,D), (Y , E) be compact IFS. Then for all f ∈C
(1)
F(X,Y),

K(f) ∈CF(K(X),K(Y)).

Proof. Again we need to derive a stronger statement. Let

F := { ⋃k
i=1 K(fi) | k� 1∧ (∀1� i� k) fi ∈C

(1)
F(X,Y) }.

We will show that F ⊆CF(K(X),K(Y)). By using co-induction it is sufficient to prove that F ⊆
JK(X),K(Y)(F).

Set

B := { f ∈ F(X, Y) | ar(f)= 1→K(f) ∈JK(X),K(Y)(F) }.
Then we show first that CF(X,Y) ⊆ B. Because CF(X,Y) =J X,Y (CF(X,Y)), we only need to derive
that J X,Y (CF(X,Y))⊆ B. To achieve this we use induction, that is, we show �X,Y (CF(X,Y))(B)⊆ B.
Hereto we have to verify the following two rules:

(W) If e ∈ E and h ∈CF(X,Y), then e ◦ h ∈ B.
(R) If f ∈ F(X, Y) and 1� i� ar(f) such that for all d ∈D, f ◦ d(i,ar(f)) ∈ B, then f ∈ B.

(W) We have that K(e ◦ h)=K(e) ◦K(h)= [e] ◦K(h). Now, assume that ar(e ◦ h)= 1, then
also ar(h)= 1. Since K(h) ∈ F and [e] ∈K(E), it follows with Rule (W) for JK(X),K(Y)(F) that
[e] ◦K(h) ∈JK(X),K(Y)(F). Thus, e ◦ h ∈ B.

(R) Let f ∈ F(X, Y) and 1� i� ar(f) so that for all d ∈D, f ◦ d(i,ar(f)) ∈ B. Suppose that ar(f ◦
d(i,ar(f)))= 1. Then ar(f)= 1 and hence i= 1. Moreover, K(f ◦ d) ∈JK(X),K(Y)(F). Now, let d̄ ∈
K(D) with d̄ = [d1, . . . , ds]. Note that [d1, . . . , ds]=K(d1)∪ · · · ∪K(ds). It follows that

K(f) ◦ [d1, . . . , ds]=K(f) ◦ (
s⋃

κ=1
K(dκ))=

s⋃
κ=1

K(f) ◦K(dκ)=
s⋃

κ=1
K(f ◦ dκ).

By our assumption, f ◦ dκ ∈ B. Hence, K(f ◦ dκ) ∈JK(X),K(Y)(F), for all 1� κ � s, as a conse-
quence of which we obtain with Lemma 11.2 that

⋃s
κ=1 K(f ◦ dκ) ∈JK(X),K(Y)(F). This shows

that K(f) ◦ d̄ ∈JK(X),K(Y)(F), for all d̄ ∈K(D). By Rule (R) for JK(X),K(Y)(F), we thus have that
K(f) ∈JK(X),K(Y)(F), which means that f ∈ B.

Finally, let f1, . . . , fk ∈C
(1)
F(X,Y). Then f1, . . . , fk ∈ B and hence K(fj) ∈JK(X),K(Y)(F), for

1� j� k. With Lemma 11.2 we therefore have that also
⋃k

j=1 K(fj) ∈JK(X),K(Y)(F), which shows
that F ⊆JK(X),K(Y)(F).

The simplest compact sets are the singleton sets of points of the underlying space.

Lemma 11.4. Let (X,D) be a compact IFS. Then { {x} | x ∈CX } ⊆CK(X).

Proof. Let Z := { {x} | x ∈CX }. The statement will be derived by co-induction. To this end, we
have to show that Z⊆ �K(X)(Z).

Let x ∈ X. Since x ∈CX , there are d ∈D and y ∈CX with x= d(y). Then {y} ∈Z and

[d]({y})= d[{y}]= {d(y)} = {x}.

Define η : CX →CK(X) by letting

η(x) := {x}.

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

Mathematical Structures in Computer Science 187

Proposition 11.5. Let (X,D) be a compact IFS. Then η ∈CF(X,K(X)).

Proof. Again we use co-induction to derive the statement:We show that {η} ⊆J X,K(X)({η}). Note
that for any d ∈D, [d] ∈K(D). Moreover, [d] ◦ η = η ◦ d. By Rule (W) we have that [d] ◦ η ∈
J X,K(X)({η}), i.e., η ◦ d ∈J X,K(X)({η}). Therefore, η ∈J X,K(X)({η}), by Rule (R).

We have already introduced the union taking operation for compact-valued maps.

Theorem 11.6. Let (X,D), (Y , E) be extended IFS and (Z, C) be a compact IFS. Then, for f ∈
CF(X,K(Z)) and g ∈CF(Y ,K(Z)), f ∪ g ∈CF(X×Y ,K(Z)).

Proof. The proof of this result essentially follows the lines of the proof of Lemma 11.2. However,
now we use strong co-induction. Let

A := { f ∪ g | f ∈CF(X,K(Z)) ∧ g ∈CF(Y ,K(Z)) }.
Then we need to show that A⊆J X×Y ,K(Z)(A∪CF(X×Y ,K(Z))). Set

B := { f ∈ F(X,K(Z)) | (∀g ∈CF(Y ,K(Z))) f ∪ g ∈J X×Y ,K(Z)(A∪CF(X×Y ,K(Z))) }.
We show that CF(X,K(Z)) ⊆ B. Since CF(X,K(Z)) =J X,K(Z)(CF(X,K(Z))), it suffices to prove that
J X,K(Z)(CF(X,K(Z)))⊆ B. By induction we show that �X,K(Z)(CF(X,K(Z)))(B)⊆ B, which means
that we have to verify Rules (W) and (R).

(Wmain) Let c̄ ∈K(C) with c̄= [c1, . . . , cr], for c1, . . . , cr ∈ C. Moreover, let f1, . . . , fr ∈
CF(X,K(Z)). We must demonstrate that c̄ ◦ (f1 × · · · × fr) ∈ B. To this end, we have to show that for
all g ∈CF(Y ,K(Z)), (c̄ ◦ (f1 × · · · fr))∪ g ∈J X×Y ,K(Z)(A∪CF(X×Y ,K(Z))). For h ∈ F(X,K(Z)) set

H(h) := { g ∈ F(Y ,K(Z)) | h∪ g ∈J X×Y ,K(Z)(A∪CF(X×Y ,K(Z))) }.
Let h := c̄ ◦ (f1 × · · · × fr). We prove that CF(Y ,K(Z)) ⊆H(h), for which it suffices to demonstrate
that

�Y ,K(Z)(CF(Y ,K(Z)))(H(h))⊆H(h), (14)
which is done by side induction.

(Wside) Let ĉ ∈K(C), say ĉ= [c′1, . . . , c′s] with c′1, . . . , c′s ∈ C. Furthermore, let g1, . . . , gs ∈
CF(Y ,K(Z)). We need to show that

(c̄ ◦ (f1 × · · · × fr))∪ (ĉ ◦ (g1 × · · · × gs)) ∈J X×Y ,K(Z)(A∪CF(X×Y ,K(Z))).
Note again that c̄=K(c1)∪ · · · ∪K(cr), and analogously for ĉ. Then

(c̄ ◦ (f1 × · · · × fr))∪ (ĉ ◦ (g1 × · · · × gs))=
K(c1) ◦ f1 ∪ · · · ∪K(cr) ◦ fr ∪K(c′1) ◦ g1 ∪ · · · ∪K(c′s) ◦ gs.

As in the proof of Lemma 11.2 it follows that there are pairwise distinct c′′i1 , . . . , c
′′
ik , c

′′
ik+1

, . . . ,
c′′ik′ , . . . , c

′′
ik′+1

, c′′� ∈ {c1, . . . , cr , c′1, . . . , c′s} so that (up to some reshuffling of arguments)

K(c1) ◦ f1 ∪ · · · ∪K(cr) ◦ fr ∪K(c′1) ◦ g1 ∪ · · · ∪K(c′s) ◦ gs
= [c′′i1 , . . . , c

′′
i�] ◦ ((fi1 ∪ gi1)× · · · × (fik ∪ g′

ik)× fik+1 × · · · × fik′ × gik′+1 × · · · × gi�).

Then [c′′i1 , . . . , c
′′
i�] ∈K(C), fi1 ∪ gi1 , . . . , fik ∪ gik ∈A, and fik+1 , . . . , fik′ , gik′+1 , . . . , gi� ∈

CF(X×Y ,K(Z)), where we identify maps f : Xn → Z with f ◦ (pr(n+1)
1 × · · · × pr(n+1)

n) : Xn × Y →
Z, and similarly for maps g : Ym → Z. Thus, (c̄ ◦ (f1 × · · · × fr))∪ (ĉ ◦ (g1 × · · · × gs)) ∈
J X×Y ,K(Z)(A∪CF(X×Y ,K(Z))) by Rule (W).

Note that the remaining proof steps are essentially the same as in the proof of Lemma 11.2. We
include them only for completeness reasons.

(Rside) Let g ∈ F(Y ,K(Z)) and 1� i� ar(g) so that g ◦ e(i,ar(g)) ∈ B(h), for all e ∈ E. Then
h∪ (g ◦ e(i,ar(g))) ∈J X×Y ,K(Z)(F ∪CF(X×Y ,K(Z))). Let ĥ := h∪ g. Then ar(ĥ)= ar(h)+ ar(g). For

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

188 D. Spreen

j := ar(h)+ i we therefore have that ĥ ◦ e(j,ar(ĥ)) = h∪ (g ◦ e(i,ar(g))). It follows that ĥ ◦ e(j,ar(ĥ)) ∈
J X×Y ,K(Z)(F ∪CF(X×Y ,K(Z))), for all e ∈ E, from which we obtain by Rule (R) that ĥ ∈
J X×Y ,K(Z)(F ∪CF(X×Y ,K(Z))). Hence, g ∈ B(h). This proves (14).

(Rmain) It remains to verify Rule (R) in the main induction. Let f ∈A and 1� i� ar(f) such
that for all d ∈D, f ◦ d(i,ar(f)) ∈A. Thus, (f ◦ d(i,ar(f)))∪ g ∈J X×Y ,K(Z)(F ∪CF(X×Y ,K(Z))), for all
g ∈CF(Y ,K(Z)). Set h̄g := f ∪ g. Then ar(h̄g)= ar(f)+ ar(g) and for all d ∈D,

h̄g ◦ d(i,ar(h̄g)) = (f ◦ d(i,ar(f)))∪ g.

Since (f ◦ d(i,ar(f)))∪ g ∈J X×Y ,K(Z)(F ∪CF(X×Y ,K(Z))) by our assumption, we obtain with
Rule (R) that h̄g ∈J X×Y ,K(Z)(F ∪CF(X×Y ,K(Z))). Thus, f ∈A.

Since the identity on any extended IFS is in CF(X,X), by Lemma 10.3(1), it follows in particular
that the binary operation of taking unions is in CF(K(X)×K(X),K(X)).

Corollary 11.7. Let (X,D) be a compact IFS. Then the following two statements hold:

(1) CK(X) is closed under taking finite unions, that is, for all K,M ⊆ X,

K,M ∈CK(X) ⇒K ∪M ∈CK(X).

(2) ∪ ∈CF(K(X)×K(X),K(X)).

The first statement follows from the second one by Proposition 10.5.

12. Michael’s Theorem
In his seminal 1951 paper on spaces of subsets (Michael, 1951), Michael showed that the union
of all sets in a compact set of compact sets is compact again. We will reprove this result in a
non-topological way by using only the co-inductive characterisations of the spaces involved.

The difficulty we have to overcome herewith is that, as we have seen in Section 9, in general the
canonical maps in K2(D) are no longer of type K2(X)r →K2(X), even if all maps in D are unary.
Thus, (K2(X),K2(D)) will not be an extended IFS any more.

Let [[d(1)1 , . . . , d(1)r1], . . . , [d
(n)
1 , . . . , d(n)rn]] ∈K2(D) andK1, . . . ,Kn ∈K2(X). Then we have⋃

[[d(1)1 , . . . , d(1)r1], . . . , [d
(n)
1 , . . . , d(n)rn]](K1, . . . ,Kn)

=
⋃ n⋃

κ=1
[d(κ)1 , . . . , d(κ)rκ][Kκ]

=
⋃ n⋃

κ=1
{ ⋃rκ

σκ=1 d
(κ)
σκ [K

(κ)
σκ] | (K(κ)

1 , . . . ,K(κ)
rκ) ∈Kκ }

=
n⋃

κ=1

⋃
{ ⋃rκ

σκ=1 d
(κ)
σκ [K

(κ)
σκ] | (K(κ)

1 , . . . ,K(κ)
rκ) ∈Kκ }

=
n⋃

κ=1

rκ⋃
σκ=1

⋃
{ d(κ)σκ [K

(κ)
σκ] |K(κ)

σκ ∈ pr(rκ)σκ
[Kκ] }

=
n⋃

κ=1

rκ⋃
σκ=1

⋃
K(d(κ)σκ

)[pr(rκ)σκ
[Kκ]].

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

Mathematical Structures in Computer Science 189

Now, let e1, . . . , em ∈D be pairwise distinct so that

{K(e1), . . . ,K(em)} = {K(d(κ)σκ) | 1� σκ � rκ ∧ 1� κ � n }.

Moreover, set

Mι :=
⋃

{ pr(rκ)σκ
[Kκ] |K(d(κ)σκ)=K(eι)∧ 1� σκ � rκ ∧ 1� κ � n },

for 1� ι�m. Then

n⋃
κ=1

rκ⋃
σκ=1

K(d(κ)σκ
)[pr(rκ)σκ

[Kκ]]=
m⋃

ι=1
K(eι)[Mι]= [K(e1), . . . ,K(em)](M1, . . . ,Mm).

Let us summarise what we have just seen.

Lemma 12.1. Let (X,D) be an IFS. Then, given [[d(1)1 , . . . , d(1)r1], . . . , [d
(n)
1 , . . . , d(n)rn]] ∈K2(D),

we can compute e1, . . . , em ∈D so that when given in addition K1, . . . ,Kn ∈K2(X), we can
furthermore defineM1, . . . ,Mm ∈K2(X) such that⋃

[[d(1)1 , . . . , d(1)r1], . . . , [d
(n)
1 , . . . , d(n)rn]](K1, . . . ,Kn)=

⋃
[K(e1), . . . ,K(em)](M1, . . . ,Mm).

This gives us a hint on how to deal with unions over compact collections of compact sets.
ForK,M ∈K2(X), we writeK ∪=M, , if⋃

K=
⋃

M.

Moreover, we set KD := {K(d) | d ∈D }. Note that (K2(X),K(KD)) is a compact IFS, and let

�
〈2〉
X (Z) := {K ∈K2(X) | (∃d1, . . . , ds ∈D)

(∃M1, . . . ,Mm ∈Z)K ∪= [K(d1), . . . ,K(ds)](M1, . . . ,Ms) },

for Z ⊆K2(X). We define C′
K2(X) := ν�

〈2〉
X .

Lemma 12.2. Let (X,D) be a compact covering IFS. Then K2(X)=C′
K2(X).

Proof. We have that C′
K2(X) ⊆K2(X) by definition. For the converse inclusion note that it follows

as in the proof of Proposition 9.2(1) that

K2(X)=
⋃

{ range (d̄) | d̄ ∈K2(D) }.

Therefore, if K ∈K2(X), then there is some [[d(1)1 , . . . , d(1)r1], . . . , [d
(n)
1 , . . . , d(n)rn]] ∈K2(D) and

there are K1, . . . ,Kn ∈K2(X) so that K= [[d(1)1 , . . . , d(1)r1], . . . , [d
(n)
1 , . . . , d(n)rn]](K1, . . . ,Kn).

Because of Lemma 12.1 we can now compute e1, . . . , em ∈D and defineM1, . . . ,Mm ∈K2(X) so
thatK ∪= [K(e1), . . . ,K(em)](M1, . . . ,Mm). Thus,K ∈ �

〈2〉
X (K2(X)). With co-induction it follows

that K2(X)⊆C′
K2(X).

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

190 D. Spreen

Let d1, . . . , ss ∈D and note that⋃
[K(d1), . . . ,K(ds)](M1, . . . ,Ms)=

⋃ s⋃
κ=1

K(dκ)[Mκ]

=
s⋃

κ=1

⋃
M∈Mκ

K(dκ)(M)

=
s⋃

κ=1

⋃
M∈Mκ

dκ [M]

=
s⋃

κ=1
dκ [

⋃
Mκ]

= [d1, . . . , ds](
⋃

M1, . . . ,
⋃

Ms).

(15)

It follows that [K(d1), . . . ,K(ds)] respects
∪= and can hence be lifted to the quotientK2(X)/∪=. We

denote the lifted map by [K(d1), . . . ,K(ds)]∗ and set

K∗(KD) := { [K(d1), . . . ,K(ds)]∗ | s> 0∧ d1, . . . , ds ∈D }.
Lemma 12.3. Let (X,D) be a compact covering IFS. Then also (K2(X)/∪=,K∗(KD)) is a compact
covering IFS. Moreover, CK2(X)/∪= =C′

K2(X)/
∪=.

Proof. K2(X)/∪= is a topological space with the quotient topology. Since
⋃{K} =K, for every

K ∈K(X),
⋃ : K2(X)→K(X) is an onto map, which is well known, to be continuous (Klein and

Thompson, 1984, Corollary 7.2.4). Since X is compact, also K(X), K2(X) and K2(X)/∪= are com-
pact. Moreover, K(X) and K2(X) are Hausdorff spaces. Thus,

⋃
is a closed mapping and, as a

consequence, the Vietoris topology onK(X) is equivalent to the quotient topology with respect to⋃
(Willard, 1970, Theorem 9.2). It follows that the quotient topology on K2(X)/∪= is Hausdorff.
By Lemma 12.1, (K2(X)/∪=,K∗(KD)) is covering. The remaining statement follows with co-

induction.
LetK ∈CK2(X)/∪=. Then there are d1, . . . , ds ∈D andM1, . . . ,Ms ∈K2(X), so that

[K]∪= = [K(d1), . . . ,K(ds)]∗([M1]∪=, . . . , [Ms]∪=)= [[K(d1), . . . ,K(ds)](M1, . . . ,Ms)]∪=.

Hence, K ∪= [K(d1), . . . ,K(ds)](M1, . . . ,Ms), which shows that CK2(X)/∪= ⊆C′
K2(X)/

∪=. The con-
verse inclusion follows similarly.

Assume that (K2(X)/∪=,K∗(KD)) is weakly hyperbolic. Then it follows that from eachK∗(KD)-
tree representing an equivalence class in K2(X)/∪= one obtains a K(KD)-tree representing the
same class by stripping off the ‘∗’ decoration. This also shows that K(KD)-trees witnessing that
K ∈C′

K2(X) do not only represent K but all sets in the ∪=-equivalence class of K. Such multi-
representations are also common in Weihrauch’s Type-Two Theory of Effectivity.

Proposition 12.4. Let (X,D) be a compact covering IFS. Then { ⋃
K |K ∈C′

K2(X) } ⊆CK(X).

Proof. Let K ∈C′
K2(X). Then there are (constructively) d1, . . . , ds ∈D and M1, . . . ,Ms ∈C′

K2(X)
so that

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

Mathematical Structures in Computer Science 191

⋃
K=

⋃
[K(d1), . . . ,K(ds)](M1, . . . ,Ms)= [d1, . . . , ds](

⋃
M1, . . . ,

⋃
Ms),

where the last equality holds by (15). It follows that

{ ⋃
K |K ∈C′

K2(X) } ⊆ �K(X)({ ⋃
K |K ∈C′

K2(X) }).
With co-induction we therefore obtain that { ⋃

K |K ∈C′
K2(X) } ⊆CK(X).

This is a constructive version of Michael’s Theorem: If all IFS involved are weakly hyperbolic,
given a KD-tree representingK we can compute a K(D)-tree representing

⋃
K.

The next results even allows the extraction of an algorithm for the computation of union as an
operation from K2(X) to K(X).

Theorem 12.5. Let (X,D) be a compact covering IFS. Then
⋃ ∈CF(K2(X),K(X)).

Proof. We again use co-induction and show that {⋃} ⊆JK2(X),K(X)({⋃}). Let to this end
d1, . . . , ds ∈D. As we have seen in the preceding proof,

[d1, . . . , ds] ◦ (
⋃

× · · · ×
⋃

)=
⋃

◦[K(d1), . . . ,K(ds)].

By Rule (W) forJK2(X),K(X) we have for all d1, . . . , ds ∈D that [d1, . . . , ds] ◦ (⋃ × · · · × ⋃
) ∈

JK2(X),K(X)({⋃}). Thus, ⋃ ◦[K(d1), . . . ,K(ds)] ∈JK2(X),K(X)({⋃}), for all d1, . . . , ds ∈D, from
which it follows with Rule (R) that

⋃ ∈JK2(X),K(X)({⋃}).

13. Conclusion
In this paper, a uniform framework for computing with infinite objects like real numbers, compact
sets, tuples of such and uniformly continuous maps is presented. It combines and extends the
approaches developed in a series of papers by Berger and co-authors (Berger, 2010, 2011; Berger
and Hou, 2008; Berger and Seisenberger, 2010; Berger and Spreen, 2016). In particular, it allows to
deal with compact-valued maps and their selection functions. Maps of this kind abundantly occur
in applied mathematics. They are studied in set-valued analysis (Aubin and Cellina, 1984; Aubin
and Frankowska, 1990) and have applications in areas such as optimal control and mathematical
economics, to mention a few. In addition, they are used to model non-determinism.

The framework is based on covering extended iterated function systems, where the underlying
spaces are compact metric spaces and the contraction maps in the function systems are allowed to
be multi-ary, or, more generally, weakly hyperbolic compact covering extended iterated function
systems operating on Hausdorff spaces with, not necessarily unary, maps in the function system.
Because of the covering condition co-inductive characterisations of the functions systems can be
given. Results with computational content are then derived by constructively reasoning on the
basis of these characterisations. Realisability facilitates the extraction of algorithms from the cor-
responding proofs. In so doing, points of the spaces are represented by finitely branching infinite
trees. The computational power of the approach is that of Type-Two Theory of Effectivity.

Acknowledgements. The author is grateful to the anonymous referees for their careful reading of the manuscript and
valuable comments helping to improve the paper.

Notes
1 That is for �x= (x1, . . . , xn) and �y= (y1, . . . , yn), ρ(�x, �y)=max { ρ(xν , yν) | 1� ν � n }. Note that we use the same notation
for the metric and its associated maximum metric.
2 This definition slightly differs from the one given in Berger and Spreen (2016).
3 We use the notation f : X ⇀ Y to denote partial maps f from X to Y with dom (f) as its domain of definition.

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000116

192 D. Spreen

References
Adámek, J., Milius, S. and Moss, L. (2019). Initial Algebras, Terminal Coalgebras, and the Theory of Fixed Points of Functors,

Manuscript.
Aubin, J.-P. and Cellina, A. (1984). Differential Inclusions, Set-Valued Maps and Viability Theory, Springer, Berlin.
Aubin, J.-P. and Frankowska, H. (1990). Set-Valued Analysis, Birkhäuser, Basel.
Barnsley, M. F., Wilson, D. C. and Leśnik, K. (2014). Some recent progress concerning topology of fractals. In: Hard, K. P., et

al. (eds.), Recent Progress in General Topology III, Atlantis Press. doi: 10.2991/978-94-6239-024-9.
Berger, U. (2010). Realisability for induction and coinduction with applications to constructive analysis. Journal of Universal

Computer Science 16 (18) 2535–2555.
Berger, U. (2011). From coinductive proofs to exact real arithmetic: theory and applications, Logical Methods in Computer

Science 7 (1) 1–24. doi: 10.2168/LMCS7(1:8)2011.
Berger, U. (2017). Unpublished notes.
Berger, U. and Hou, T. (2008). Coinduction for exact real number computation. Theory of Computing Systems 43 394–409.

doi: 10.1007.s0022400790176.
Berger, U. and Seisenberger, M. (2010). Proofs, programs, processes. In: Ferreira, F., Löwe, B., Mayordomo, E. and

Gomes, L. M. (eds.), Programs, Proofs, Processes, 6th Conference on Computability in Europe, CiE 2010, Ponta Delgada,
Azores, Portugal, Springer-Verlag, Berlin, 39–48.

Berger, U. and Seisenberger, M. (2012). Proofs, programs, processes. Theory of Computing Systems 51 313–329. doi:
10.1007/s00224-011-9325-8.

Berger, U. and Spreen, D. (2016) A coinductive approach to computing with compact sets. Journal Logic & Analysis 8 (3)
1–35. doi: 10.4115/jla.2016.8.3.

Berger, U. and Tsuiki, H. (2021) Intuitionistic fixed point logic. Annals Pure Applied Logic 172 (3). doi:
10.1016/j.apal.2020.102903.

Brattka, V. and Presser, G. (2003). Computability on subsets of metric spaces. Theoretical Computer Science 305 43–76. doi:
10.1016/S0304-3975(02)00693-X.

Ciaffaglione, A. and Di Gianantonio, P. (2006). A certified, corecursive implementation of exact real numbers. Theoretical
Computer Science 351 39–51. doi: 10.1016/j.tcs.2005.09.061.

Edalat, A. (1996). Power domains and iterated function systems. Information and Computation 124 182–197.
Edalat, A. and Heckmann, R. (2002). Computing with real numbers: I. The LFT approach to real number computation;

II. A domain framework for computational geometry. In: Barthe, G., Dybjer, P., Pinto, L. and Saraiva, J. (eds.), Applied
Semantics – Lecture Notes from the International Summer School, Caminha, Portugal, Springer-Verlag, Berlin, 193–267.
doi: 10.1007/35404569965.

Edalat, A. and Sünderhauf, P. (1998). A domain-theoretic approach to real number computation. Theoretical Computer
Science 210 73–98. doi: 10.1016/S03043975(98)000978.

Engelking, R. (1989). General Topology, revised and completed edn., Heldermann Verlag, Berlin.
Hutchinson, J. E. (1981). Fractals and self-similarity. Indiana University Mathematics Journal 30 (5) 713–747.
Kameyama, A. (2000). Distances on topological self-similar sets and the kneading determinants. Journal of Mathematics of

Kyoto University 40 (4) 603–674.
Klein, E. and Thompson, A. C. (1984). Theory of Correspondences: Including Applications to Mathematical Economics, Wiley,

New York.
Marcial-Romero, J. R. and Hötzel Escardó, M. (2007). Semantics of a sequential language for exact real number computation.

Theoretical Computer Science 379 (12) 120–141. doi: 10.1016/j.tcs.2007.01.021.
Michael, E. (1951). Topologies on spaces of subsets. Transactions American Mathematical Society 71 152–182.
Munkres, J. R. (2000). Topology, 2nd edn., Prentice Hall, Upper Saddle River, NJ.
Rutten, J. J. M. M. (2000). Universal coalgebra: a theory of systems. Theoretical Computer Science 249 3–80.
Schwichtenberg, H. and Wainer, S. S. (2012). Proofs and Computations, Cambridge University Press, Cambridge.
Scriven, A. (2008). A functional algorithm for exact real integration with invariant measures. Electronic Notes in Theoretical

Computer Science 218 337–353.
Tsuiki, H. (2002). Real number computation through Gray code embedding. Theoretical Computer Science 284 (2) 467–485.
Weihrauch, K. (2000). Computable Analysis, Springer-Verlag, Berlin. doi: 10.1007/9783642569999.
Willard, S. (1970). General Topology, Addison-Wesley, Reading, MA.

Cite this article: Spreen D (2021). Computing with continuous objects: a uniform co-inductive approach. Mathematical
Structures in Computer Science 31, 144–192. https://doi.org/10.1017/S0960129521000116

https://doi.org/10.1017/S0960129521000116 Published online by Cambridge University Press

https://doi.org/10.2991/978-94-6239-024-9
https://doi.org/10.2168/LMCS7(1:8)2011
https://doi.org/10.1007.s0022400790176
https://doi.org/10.1007/s00224-011-9325-8
https://doi.org/10.4115/jla.2016.8.3
https://doi.org/10.1016/j.apal.2020.102903
https://doi.org/10.1016/S0304-3975(02)00693-X
https://doi.org/10.1016/j.tcs.2005.09.061
https://doi.org/10.1007/35404569965
https://doi.org/10.1016/S03043975(98)000978
https://doi.org/10.1016/j.tcs.2007.01.021
https://doi.org/10.1007/9783642569999
https://doi.org/10.1017/S0960129521000116
https://doi.org/10.1017/S0960129521000116

	Computing with continuous objects: a uniform co-inductive approach
	Introduction
	Inductive and Co-inductive Definitions
	D-Trees
	Extended Iterated Function Systems
	Computable Digit Spaces
	Extracting Digital Trees from Co-inductive Proofs
	Equivalence with the Cauchy Representation
	Products
	The Hyperspace of Non-empty Compact Subsets
	Uniformly Continuous Functions
	Compact-Valued Functions
	Michael's Theorem
	Conclusion

