
BULL. AUSTRAL. MATH. SOC. 35B15

VOL. 38 (1988) [231-238]

ALMOST PERIODIC SOLUTIONS OF
NONLINEAR PARABOLIC EQUATIONS

YISONG YANG

In this note the recent result of Corduneanu on almost periodicity of £2(G)-bounded
solutions of nonlinear parabolic equations is extended to the case when the nonlinear
growth rate is beyond the first eigenvalue of the associated elliptic boundary value problem.

1. INTRODUCTION

Let X be a Banach space. Recall that a continuous function g: R —* X is called
X-almost periodic if for every e > 0 there is a relatively dense subset Tc C R such that

sup \\g(t + r) - g(t)\\x < £, Vr G Te.

Obviously the X-almost periodicity of g: R —• X implies the bouudedness of the set
{g(t):teR} in X.

In this note we are interested in obtaining Z2(G)-almost periodicity of L2(G)-
bounded solutions of the following semilinear parabolic equation

ut = Au + f{t,x,u),{t,x)eRxG,

u = 0 on dG,

where G C Rn is a bounded domain with sufficiently smooth boundary dG and / : R x
G x R - t R satisfies the basic assumption (see [1, 2]) in the following.

(C'o) f(t, x, u) is continuous and L2(G)-a!most periodic in t, uniformly with re-
spect to u £ R .

One can arrange the eigenvalues of the associated elliptic problem

(2) Au + Xu = 0 in G, u = 0 on dG

in an ascending order 0 < Aj < A2 ̂  A3 ^ .. .
The result of Corduneanu [1, 2] can be stated as follows.
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232 Y. Yang [2]

THEOREM. Let / u : R x G x R - > R be continuous and u = u(t, x) be a C2(G)

solution of the problem (1). If u(t, x) is L2(G)-bounded, that is, there is a constant

M > 0 sucii that

sup / u2(t, x)dx ^ M,
t JG

then u(t, x) is L2(G)-almost periodic (if f(t, x, u) is periodic in t instead, then so is

u(t, x)) provided /„ ^ fj, < A] in R x G x R .

His proof is based on the Poincare inequaltiy. In this note the L2(G)-almost peri-

odicity will be established assuming

( d ) closure (/U(R x G x R ) ) n { A j : j = l , 2 , . . . } = 0.

Our argument below is based on an eigenfunction expansion. The extension of this

method to some more general problems is immediate (see Section 3).

Note that conditions of type (Cj) occur in various other problems such as the

unique solvability of nonlinear integral equations [3], the existence of solutions of bound-

ary value problems [4, 5], and also the existence of periodic solutions of parabolic

equations [4, 6].

2. MAIN RESULT

Suppose / , / , , : R x G x R —* R are both continuous and satisfy (Co) and (Cj)

(where we assume G' is connected to simplify the statement of the result).

THEOREM 1. Let u = u(t, x) be a C2(G) solution of the problem (1). If u(t, x)

is L2(G)-bounded, then u(t, x) is L2(G)-almost periodic (if f(t, x, u) is periodic in t

instead, then so is u(t, x) ) .

PROOF: First consider the problem

ut - (AM + mu) = v(t, x), ( l . i J e R x G,
(3)

u = 0 on dG.

Suppose u. and v are both jL2(G*)-bouiided and

(4) Aj < m < Ay_|_j for some integer j ^ 1.

We claim that

(5) sup / u2(t,x)dx < max ([m - A,]~2, [m - Ai+i]~2) sup / v2(t,x)dx.
t JG t JG
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Let uk(x) be the eigenfunction of the problem (2) associated with the fcth eigen-

value A* . Suppose {uk} is an orthonormal basis of L2(G). We have, in the space

L2(G),

(6) u(t,x) = J2 ak(t)uk(x), v(t, x) = Y, **(*)«*(*)•

Hence we have, by the Parseval equality and the Z2(G)-boundedness of u and v, the
inequalities

(7) £>*(*) = [ u2(t,x)dx ^ M,
JG

(8) 2 > * W = f v2(t,x)dx^M,
JG

where M > 0 is a constant independent of t £ R. It follows from inserting (6) into (3)
that

(9) dfc(i) + (Afc - m)ak{t) = bk{t), t G R, k = 1,2,....

Consequently for any given T 6 R,

(10) afc(0=

If k ^ j , from (10) we have

(11) M<)K |a

+ (m - Afc)"
a ( l - c<A»-ra«T-*>) sup |6 t ( , ) |

for T > t. From the boundedness of ak(t) and bk(t) (see (7), (8)) and \k < m and
taking T —> oo in (11) we obtain

(12) sup \ak(t)\ < (TO - Afc)"1 sup \bk(t)\, k = 1,2,..., j .
t t

Similarly from (10) one can establish the inequality

(13) sup \ak{t)\ < (A* - Hi)"1 sup \bk{t)\, k = j + 1, j + 2, . . .
t

(5) is now an immediate implication of (12) and (13).
Let u = u(t, x) be a solution of (1) and satisfy the assumption of the theorem.
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234 Y. Yang [4]

For given T e R define iv = w(t,x) = ti(t + T,X) — u(t,x). Then w satisfies the
equation

wt - Aw = fu(t + r,x,U(t,x))w + f(t + r,x,u{t,x)) - f(t,x,u(t,x)) in R x G,
(14)

w = 0 on dG,

where U(t,x) is between u(t,x) and u(t + r, x). The condition (C'i) is equivalent to
the following statements.

(Cj)a There is a constant /J, such that /„ ̂  /i < Aj in R x G x R, or otherwise

(Ci)6 There are constants p,q and integer j ^ 1 such that

A, < p ̂  /„ ̂  q < AJ+1 for (t, x, u) € R x G x R.

((^i)a ' s * n e condition imposed in Corduneanu [1, 2]). We must now prove the theorem

under condition (C])6.

Rewrite (14) as

wt — (Aw + mw) = (fu{t + T, re, U) — m)w + f(t + r, x,u(t,x))

(15) -f{t,x,u{t,x))mHxG,

w = Oon dG,

where p < m < q. Applying the estimate (5) to the equation (15) we arrive immediately
at the inequality

(16) sup( / w2(t,x)dx J <c^(m)sup( / w2(t,x)dx)
t \JG / t \JG )

4- dS (m) sup (J [f(t + r,x,u(t, x)) - f(t,x,u(t, x))]2dx) ' ,

where c(m) = max ([m — Ay]~2, [m — A;+1]~2) max ([TO — p]2, \m — g]2) and d(m) =

max ([TO — Aj]~2, \m — AJ+1]~2) . Obviously we can choose TO to make C(TO) < 1. It

then follows from (16) that

sup (j [u{t +T,X) - u{t,x))2dxj 2

- c*(m))]su

The proof of the theorem is complete.

sup
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3 . A MORE GENERAL THEOREM

The method in Section 2 can be applied to some more general problems concerning

almost periodicity.

Let G be a bounded connected domain in R n . Let Dj = d/dxj, D =

(Du...,Dn), Da = £»°1 ...D°»,a = (au . . . , a n ) , a n d |a | = a , + . . . + a n . Let

P(x,D)=
|a|<2m

be an elliptic operator on G of order 1m with the principal part

P(x,D)= ]T Aa(x)D<*.
\a\=2m

ni boundary operators {Qj: j — 1, • • •, m} of respective orders rrij < 2m are defined

by

Qi(x,D)=

with the principal parts

qj{x,D)= J2 Bja{x)Da,j = l,...,m.
\a\=mj

The following standard regularity conditions are assumed:

(i) dG e C2m, Aa 6 Cl a l (G) , Bja 6 C2n'-mi{dG), and ro; ± m, if i ^ j ;

(ii) at any point x £ dG let n be an outward normal to dG at x and t a nonzero

tangent vector of dG at x . Then the polynomials qjix, t -\-zn J in z are linearly

independent modulo the polynomial [z — Zi[t))...lz — zml t I I where Zjl t J are

the roots of pyx, t + zn) (as a polynomial in z) with positive imaginary parts. As a

polynomial in z, deg(g7) = rrij for any fixed x 6 dG ;

(iii) the coefficients of P and Qj are all real.

Let H2m{G; {Qj}) be the closure in H2m{G) = W2m<2{G) of the set of functions

u in C2m(G) that satisfy the boundary conditions

QJU = 0 on dG, j = 1, . . . , m.

Then Pu = P(x,D)u can be defined as an operator P: L2(G) -> L2(G) with

Dom(P) = H2m(G; {Qj}). Consider the evolution equation in the space H2m(G; {Qj})

(17) ut = Pu-f(t,x,u),(t,x)£RxG,

where / satifies the basic assumption (Co).
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THEOREM 2. Suppose u = u(t,x) is a solution to the equation (17) in the sense
that u £ CfI(R,i/2m(G' ;{(?,•})) . If P is self-adjoint and Ker(P - c) = {0} for some
c G R, then u is L2(G)-almost periodic provided u is L2(G)-bounded and

(18) ciosure(/u(R x G x R)) n o{P) = 0,

where <r(P) is the spectrum of P and / , : R x G x R - t R is continuous.

PROOF: It is well-known that the assumptions on P ensure that <r[P) consists of
all eigenvalues of P which is an isolated countable subset of R, say, . . . ̂  Xj < Aj+i ^
. . . , and the corresponding set of eigenfunctions {UJ} of P can be chosen to be an
orthonormal basis of L2(G).

We can conclude from (18) and the connectedness of closure (/U(R x G x R)) that
one of the following three situations must happen:

(a) there is an integer k such that A*. < A^+1 and

Afc < p = inf /„(*, x,u) < supfu(t,x,u) = q < Xk+1;
D D

(b) di = supD fu(t,x,u) < inf<r(P);
(c) d2 = info fu(t, x, u) > sup <r(P);

where D = R x G x R, and d\ and d2 lie in R.

The proof for (a) is the same as that for Theorem 1. The proofs for (b) and (c)
are similar. Let us treat (c) first.

One can rearrange the eigenvalues of P in a descending order

(19) . . . < A2 < A] < d2.

We still denote by {UJ} the corresponding set of eigenfunctions which forms an or-

thonormal basis of L2[G). Put w =w(t,x) — u(t + T,X) — u(t,x). We have

(20) wt = Pw - fu{t + T,x,U(t,x))w - [f{t + r,x,u{t,x)) - f{t,x,u(t,x))}.

It follows easily from the eigenfunction expansion w(t,x) = ^2 Cj(t)uj(x) that

(21) (Pw,iv)2 ^ Xi(w,w)2 (where (. , .)2 is the inner product of L2(GJ).

In virtue of (19), (20), (21), and the Schwarz inequality we obtain

+ K«OJ (jjf(t+T,X,u(t,X)) - f(t,X,u(t,x))}2dx^ .
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From (22) the conclusion of the theorem follows immediately (see [1]).

In case (b) one can rearrange the eigenvalues of P in an ascending order

(23) (*! < Ai < A2 < . . . .

An eigenfunction expansion gives us (Pw,w)2 ^ Ai(u>,u>)2. Therefore (22) is
replaced by

(23) io(<) > (Ai - di)a{t) - a*(<)6*(t), t E R,

where a(t) = (w,w)2 and

6(<) = / [f(t + r, x,u(t, x,u(t, x))) - f(t, x,u(t,x)))2dx.
JG

Choose T >t. This yields, from (23), that

(24) o(t) < a(T)e-2c(T-1) + f
Jt

where c = Aj — dy. Put Ma = supt a(t) and Mf, = supt6(<). Then (24) gives us the
estimate

(25) o(0 < Mae-2i-T-V + M}M

Letting T —> oo in (25) we reach Mo < Mb/c
2 . The L2(G)-almost periodicity of u(t,x)

again follows. |

Note. In Theorem 2, if / is periodic in t then so is u.

Example. Consider the equation

(26) ti, = A3ti + / ( M , u ) i n R x G , w = du/dn - A2u = 0 on dG

in the space H*(G ;{Id, d/dn, A2}). It can be checked that (26) satisfies the as-
sumption of Theorem 2, and the eigenvalues of the associated elliptic boundary value
problem

A3« = AM in G, u = du/dn = A2u = 0 on dG,

lie in the open interval R_ = (—oo,0). Suppose / satisfies the condition (Co) and
(26) has a solution u G CJ(R, H6(G ;{Id,d/dn, A2})) . Then the Jt

2(G)-boiindedness
of it implies its X2(G)-almost periodicity provided /„ ^ 0 for instance.
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Note. Under the assumptions of Theorem 1 or 2 the equation (1) or (17) has at
most one L2(G)-bounded solution.

For example, assume that u, v are two Z/2(G)-bounded solutions of Equation (17)
in the sense that u, v £ C1 (R, H2m(G {Qj})) and / satisfies condition (a) in the proof
of Theorem 2. Then w = u — v satisfies the equation

wt = Pw-fu(t,x,U{t,x))w

where U(t,x) is between u(t,x) and v(t,x).

Let m £ (p, q). As in the proof of Theorem 1, an eignefunction expansion technique
proves the validity of an analogous version of the inequality (5) for the equation

wt - (P - m)w = W(t, x)

where w and W are L2(G)-bounded. From that one derives the estimate

sup / w2(t,x)dx ^ c(m) sup / w2(t,x)dx
t JG t JG

where c(m) = max ([ra — Afc]~2, [ra — \k+i]~2) max ([m — p]2, [m — g]2) . When m is
suitably chosen so that c(m) < 1, one must have xu = 0.
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