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mixtures
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A new lattice Boltzmann model (LBM) for chemically reactive mixtures is presented. The
approach capitalizes on the recently introduced thermodynamically consistent LBM for
multicomponent mixtures of ideal gases. Similar to the non-reactive case, the present LBM
features Stefan–Maxwell diffusion of chemical species and a fully on-lattice mean-field
realization of the momentum and energy of the flow. Besides introducing the reaction
mechanism into the kinetic equations for the species, the proposed LBM also features a
new realization of the compressible flow by using a concept of extended equilibrium on a
standard lattice in three dimensions. The full thermodynamic consistency of the original
non-reactive multicomponent LBM enables us to extend the temperature dynamics to
the reactive mixtures by merely including the enthalpy of formation in addition to the
sensible energy considered previously. Furthermore, we describe in detail the boundary
conditions to be used for reactive flows of practical interest. The model is validated against
a direct numerical simulation of various burning regimes of a hydrogen/air mixture in a
microchannel, in two and three dimensions. Excellent comparison in these demanding
benchmarks indicates that the proposed LBM can be a valuable and universal model for
complex reactive flows.

Key words: combustion, kinetic theory

1. Introduction

The lattice Boltzmann method (LBM) models fluid flow using a fully discrete kinetic
system of designer particles with discrete velocities ci, fitting into a regular space-filling
lattice. In the LBM, the kinetic evolution equation for the populations fi(x, t) follows a
simple algorithm of ‘stream along links ci and collide at the nodes x in discrete time t’.
Since its inception (Higuera & Jiménez 1989; Higuera & Succi 1989), LBM has evolved
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into a versatile tool for the simulation of complex flows, including but not limited to
turbulent flows (Dorschner, Chikatamarla & Karlin 2016, 2017), biological flows (Falcucci
et al. 2021), compressible flows (Xu & Sagaut 2013; Frapolli, Chikatamarla & Karlin 2016;
Dorschner, Bösch & Karlin 2018; Lin & Luo 2018; Yang, West & Harris 2018), multiphase
flows (Mazloomi, Chikatamarla & Karlin 2015, 2017; Wöhrwag et al. 2018), rarefied gas
(Shan, Yuan & Chen 2006) and nanoflow (Montessori et al. 2016; Montemore et al. 2017).
While the majority of the LBM development concerns single-component fluids, the case
of mixtures, and especially of reactive mixtures, remains an active area of research (Yan
et al. 2013; Feng, Tayyab & Boivin 2018; Hosseini, Darabiha & Thévenin 2018; Lin &
Luo 2018; Hosseini et al. 2019, 2020; Tayyab et al. 2020; Tayyab, Zhao & Boivin 2021).
Recently, in Sawant, Dorschner & Karlin (2021a), we revisited the LBM construction
for a compressible multicomponent mixture, focusing on a thermodynamically consistent
coupling between diffusion and momentum and energy transfer. The species kinetic
equations recovered the Stefan–Maxwell diffusion with barodiffusion in the hydrodynamic
limit. In addition, we also validated and derived from our kinetic model approximate
diffusion models such as the Curtiss–Hirschfelder model and the generalized Fick model
(Kee, Coltrin & Glarborg 2003; Poinsot & Veynante 2005; Giovangigli 2012). A mean
field was introduced for the lattice Boltzmann formulation of the mixture momentum
and energy using a two-population lattice Boltzmann equation for the mixture. The
mean-field approach consists of two lattice Boltzmann equations, one for the mixture
density and momentum, and another for the energy with the help of a modification of
the non-equilibrium fluxes. The two-population mixture LBM and the lattice Boltzmann
scheme for the species kinetic equations were realized on the standard three-dimensional
lattice. The resulting LBM provides a reduced description of the M-component mixture
with M + 2 tightly coupled lattice Boltzmann equations.

In this paper, we extend the two-population mixture LBM to reactive flows and show
viability and accuracy for practical applications. To that end, we propose novel boundary
conditions for walls as well as inlets and outlets. Furthermore, unlike previous realizations
(Sawant et al. 2021a; Sawant, Dorschner & Karlin 2021b), we use the extended LBM
(Saadat, Dorschner & Karlin 2021a; Saadat et al. 2021b) for the mean-field model. For
validation, we start with simulations of a perfectly stirred reactor and a one-dimensional
laminar flame. Subsequently, combustion of a lean hydrogen/air mixture in microtubes is
simulated in two and three dimensions. A variety of different flame dynamics, such as the
periodic ignition-extinction, stable symmetric V-shaped flames and asymmetric flames,
are captured by the reactive LBM, and our simulations are in quantitative agreement with
the direct numerical simulations (DNS) of Pizza et al. (2008b, 2010).

The paper is structured as follows. We begin with a recap of the nomenclature and the
kinetic system for the species in § 2. This section presents the discrete lattice Boltzmann
equations for the reactive species and their implementation on the standard lattice. The
section closes with a short discussion on time integration of the reaction mass source
term. Next, we turn our attention to describing the mean-field approach for modelling
the momentum and energy of the reactive mixture in § 3. Here, we discuss the adoption
of the extended LBM for reactive flows, and present the realization on a standard lattice
with the two-population approach. The section closes with a brief outline of the resultant
macroscopic Navier–Stokes equations in the continuum limit, followed by validation
with the perfectly stirred reactor and one-dimensional laminar flame. Having described
completely the dynamics in bulk of the multicomponent fluid, we proceed to formulate the
boundary conditions for the combined model in § 4. In § 4.2, we discuss the equivalent
of a no-slip adiabatic boundary condition using the popular bounce-back method. This is
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followed by a technique to implement an isothermal wall based on the Tamm–Mott-Smith
boundary condition in the lattice Boltzmann framework. Next, a realization for applying
the inlet flux boundary condition is discussed in § 4.3. In § 4.4, a convective boundary
condition, which can be used in conjunction with the characteristics-based boundary
condition, is provided to approximate the species mass fractions at the outlet. With the
resultant model, we compute the combustion of a premixed hydrogen/air mixture flowing
through hot microtubes in § 5. Validation is performed in different regimes by changing the
inlet velocity. The two-dimensional simulation exhibits rich flame dynamics by undergoing
repetitive extinction and ignition, forming stable V-shaped flame and stable asymmetric
flames. Finally, a three-dimensional open flame is computed in a microtube.

2. Lattice Boltzmann model for the species

2.1. Kinetic equations for the species
The nomenclature follows Sawant et al. (2021a). The composition of a reactive mixture of
M components is described by the species densities ρa, a = 1, . . . , M, while the mixture
density is

ρ =
M∑

a=1

ρa. (2.1)

The rate of change of species densities due to reaction, ρ̇r
a, satisfies mass conservation,

M∑
a=1

ρ̇r
a = 0. (2.2)

Introducing the mass fraction, Ya = ρa/ρ, the molar mass of the mixture m is given by
m−1 = ∑M

a=1 Ya/ma, where ma is the molar mass of the component a. The ideal gas
equation of state provides a relation between the pressure P, the temperature T and the
composition

P = ρRT, (2.3)

where R = RU/m is the specific gas constant of the mixture, and RU is the universal gas
constant. The pressure of an individual component is related to the pressure of the mixture
through Dalton’s law of partial pressures, Pa = XaP, where the mole fraction is Xa =
mYa/ma. Combined with the equation of state (2.3), the partial pressure takes the form
Pa = ρaRaT , where Ra = RU/ma is the specific gas constant of the component.

In the kinetic representation, each component is described by a set of populations fai
corresponding to the discrete velocities ci, i = 0, . . . , Q − 1. The species densities ρa and
the partial momenta ρaua are defined accordingly as

ρa =
Q−1∑
i=0

fai, (2.4)

ρaua =
Q−1∑
i=0

faici, (2.5)
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while partial momenta sum to the mixture momentum,

ρu =
M∑

a=1

ρaua. (2.6)

Following Sawant et al. (2021a,b), the kinetic equations for the species can be written as

∂tfai + ci · ∇fai =
M∑

b /= a

PXaXb

Dab

[(
f eq
ai − fai

ρa

)
−
(

f eq
bi − f ∗

bi
ρb

)]
+ ḟ r

ai, (2.7)

where Dab are Stefan–Maxwell binary diffusion coefficients, while the reaction source
term satisfies the following conditions, consistent with (2.4):

Q−1∑
i=0

ḟ r
ai = ρ̇r

a, (2.8)

Q−1∑
i=0

ḟ r
aici = ρ̇r

au. (2.9)

We now proceed with specifying the equilibrium f eq
ai , the quasi-equilibrium f ∗

ai and the
reaction source term ḟ r

ai.

2.2. Standard lattice and product form
Kinetic model (2.7) is realized on the standard discrete velocity set D3Q27, where D = 3
stands for three dimensions and Q = 27 is the number of discrete velocities,

ci = (cix, ciy, ciz), ciα ∈ {−1, 0, 1}. (2.10)

In order to specify the equilibrium f eq
ai , the quasi-equilibrium f ∗

ai and the reaction source
term ḟ r

ai in (2.7), we first define a triplet of functions in two variables, ξα and Pαα ,

Ψ0(ξα,Pαα) = 1 − Pαα, (2.11)

Ψ1(ξα,Pαα) = ξα + Pαα

2
, (2.12)

Ψ−1(ξα,Pαα) = −ξα + Pαα

2
, (2.13)

and consider a product form associated with the discrete velocities ci in (2.10),

Ψi = Ψcix(ξx,Pxx) Ψciy(ξy,Pyy) Ψciz(ξz,Pzz). (2.14)

All pertinent populations to be encountered in this paper will be determined by
specifying the parameters ξα and Pαα in the product form (2.14). To that end, the
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equilibrium and the quasi-equilibrium populations are found by setting

ξα = uα, (2.15)

Pαα = RaT + u2
α, (2.16)

in the former cases, and

ξα = uaα, (2.17)

Pαα = RaT + u2
aα, (2.18)

in the latter cases:

f eq
ai = ρa Ψcix(ux, u2

x + RaT) Ψciy(uy, u2
y + RaT) Ψciz(uz, u2

z + RaT), (2.19)

f ∗
ai = ρa Ψcix(uax, u2

ax + RaT) Ψciy(uay, u2
ay + RaT) Ψciz(uaz, u2

az + RaT). (2.20)

Reaction terms are specified with the product form (2.14) using the equilibrium parameters
(2.16):

ḟ r
ai = ρ̇r

a Ψcix(ux, u2
x + RaT) Ψciy(uy, u2

y + RaT) Ψciz(uz, u2
z + RaT). (2.21)

Analysis of the hydrodynamic limit of the kinetic model (2.7) follows the lines already
presented in Sawant et al. (2021a). The balance equations for the densities of the species
in the presence of the source term are found as follows:

∂tρa = −∇ · (ρau) − ∇ · (ρaδua) + ρ̇r
a, (2.22)

where the diffusion velocities δua = ua − u satisfy the Stefan–Maxwell constitutive
relation

P ∇Xa + (Xa − Ya)∇P =
M∑

b /= a

PXaXb

Dab
(δub − δua). (2.23)

Summarizing, kinetic model (2.7) recovers both the Stefan–Maxwell law of diffusion and
the composition change due to chemical reaction, as presented in (2.22).

2.3. Lattice Boltzmann equation for the species
Derivation of the lattice Boltzmann equation from the kinetic model (2.7) proceeds along
the lines of the non-reactive case already presented in detail by Sawant et al. (2021a).
Upon integration of (2.7) along the characteristics and application of the trapezoidal rule
to all relaxation terms on the right-hand side apart from the reaction term, we arrive at a
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fully discrete lattice Boltzmann equation for the species:

fai(x + ciδt, t + δt) = fai(x, t) + 2βa[ f eq
ai (x, t) − fai(x, t)] + δt(βa − 1) Fai(x, t) + Rr

ai.
(2.24)

Here, δt is the lattice time step, the equilibrium populations are provided by (2.19), and the
relaxation parameters βa ∈ [0, 1] are

βa = δt
2τa + δt

. (2.25)

Their relation to the Stefan–Maxwell binary diffusion coefficients is found as follows.
Introducing characteristic times

τab = mRUT
Dabmamb

, (2.26)

the relaxation times τa in (2.25) are defined as

1
τa

=
M∑

b /= a

Yb

τab
. (2.27)

Furthermore, in (2.24), the quasi-equilibrium relaxation term Fai is spelled out as

Fai = Ya

M∑
b /= a

1
τab

(f eq
bi − f ∗

bi). (2.28)

Here, the quasi-equilibrium populations f ∗
bi are defined by the product form (2.20), subject

to the parametrization

ξα = uα + Vbα, (2.29)

Pαα = RbT + (uα + Vbα)2, (2.30)

where the second-order accurate diffusion velocity V b is the result of the lattice Boltzmann
discretization of the kinetic equation, and is found by solving the M × M linear algebraic
system for each spatial component:

(
1 + δt

2τa

)
V a − δt

2

M∑
b /= a

1
τab

YbV b = ua − u. (2.31)

The system (2.31) has been derived in Sawant et al. (2021a) and is not altered by the
presence of the reaction. In our realization, we solve (2.31) with the Householder QR
decomposition method from the Eigen library (Guennebaud & Jacob 2010).

All the elements of the lattice Boltzmann equation (2.24) described so far are identical
to those already present in the non-reactive case of Sawant et al. (2021a). Finally, the
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reaction term in (2.24) is represented by an integral over the characteristics,

Rr
ai = δt

∫ 1

0
ḟ r
ai(x + cis δt, t + s δt) ds. (2.32)

Taking into account the structure of the reaction term (2.21), we use a simple explicit
approximation for the implicit term (2.32):

Rr
ai ≈ ρ−1f eq

ai (x, t) δt
∫ 1

0
ρ̇r

a(x, t + s δt) ds. (2.33)

Reaction rates ρ̇r
a are obtained from the open source chemical kinetics package Cantera

(Goodwin et al. 2018) as a function of mixture internal energy U and composition
ρ̇r

a = ρ̇r
a(U, ρ1, . . . , ρM). In order to mitigate the stiffness of the reaction rates for detailed

reaction mechanisms, we introduce a time step δtr = δt/l, where l = 1, 2, . . ., and evaluate
(2.33) by forward Euler in l sub-steps,

Rr
ai ≈ ρ−1 f eq

ai (x, t)

[
δtr

l−1∑
s=0

ρ̇r
a(U(x, t), ρ1(x, t + s δtr), . . . , ρM(x, t + s δtr))

]
. (2.34)

Note that during sub-iterations, the energy remains fixed although the temperature
changes, in general. In other words, at each grid point, sub-iterations implement a
zero-dimensional perfectly stirred reactor. Execution time for sub-steps increases by about
6 % for l = 2 and by 15 % for l = 4. In this paper, we use l = 2, which is small enough that
the integration error does not influence the flow solution but still reduces the computational
complexity by roughly half due to the larger time step of the fluid solver, δt = 2 δtr.

Summarizing, the lattice Boltzmann system (2.24) delivers the extension of the species
dynamics subject to the Stefan–Maxwell diffusion to the reactive mixtures. We now
proceed with setting up the lattice Boltzmann equations for the mixture momentum and
energy.

3. Lattice Boltzmann model of mixture momentum and energy

3.1. Double-population lattice Boltzmann equation
The mass-based specific internal energy Ua and enthalpy Ha of the species are

Ua = U0
a +

∫ T

T0

Ca,v(T ′) dT ′, (3.1)

Ha = H0
a +

∫ T

T0

Ca,p(T ′) dT ′, (3.2)

where U0
a and H0

a are the energy and the enthalpy of formation at the reference temperature
T0, respectively, while Ca,v and Ca,p are specific heats at constant volume and at constant
pressure, satisfying the Mayer relation Ca,p − Ca,v = Ra. Consequently, the internal
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energy ρU and enthalpy ρH of the mixture are defined as

ρU =
M∑

a=1

ρaUa, (3.3)

ρH =
M∑

a=1

ρaHa. (3.4)

While the sensible heat was considered in the non-reactive case (Sawant et al. 2021a), by
taking into account the heat of formation, we immediately extend the model to reactive
mixtures. As in Sawant et al. (2021a), we follow a two-population approach. One set
of populations (f -populations) is used to represent the density and the momentum of
the mixture. Below, we refer to the f -populations as the momentum lattice. The locally
conserved fields are the density and the momentum of the mixture,

Q−1∑
i=0

fi = ρ, (3.5)

Q−1∑
i=0

fici = ρu. (3.6)

Another set of populations (g-populations), or the energy lattice, is used to represent the
local conservation of the total energy of the mixture,

Q−1∑
i=0

gi = ρE, (3.7)

ρE = ρU + ρu2

2
. (3.8)

Since the mixture internal energy (3.3) depends on the composition, the species kinetic
equations become coupled with the kinetic equations for the mixture to be introduced
shortly. Conversely, the temperature is evaluated by solving the integral equation (cf. (3.1)
and (3.3))

M∑
a=1

Ya

[
U0

a +
∫ T

T0

Ca,v(T ′) dT ′
]

= E − u2

2
. (3.9)

The temperature evaluated by solving (3.9) is used as the input in the equation of state
(2.3) elsewhere in the species lattice Boltzmann system. This furnishes a two-way coupling
input between the species and the mixture kinetic systems.

Similar to Sawant et al. (2021a), the lattice Boltzmann equations for the momentum
and for the energy lattice are patterned from the single-component developments and
are realized on the D3Q27 discrete velocity set. While the prototype single-component
LBM used in Sawant et al. (2021a) was that of Saadat, Bösch & Karlin (2019), here we
take advantage of a more recent proposal by Saadat et al. (2021a). It is noted that while
these single-component models are essentially equivalent, the recent formulation is more
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compact in its formulation and simpler in terms of implementation. Following the more
recent proposal, the mixture lattice Boltzmann equations are written as

fi(x + ci δt, t + δt) − fi(x, t) = ω( f ex
i − fi), (3.10)

gi(x + ci δt, t + δt) − gi(x, t) = ω1(g
eq
i − gi) + (ω − ω1)(g∗

i − gi), (3.11)

where relaxation parameters ω and ω1 are related to the mixture viscosity and thermal
conductivity, and we proceed with specifying the pertinent populations in (3.10) and (3.11).

3.2. Extended equilibrium for the momentum lattice
The extended equilibrium populations f ex

i in (3.10) are specified by the product form (2.14),
with the parameters identified as ξα = uα and Pαα = Pex

αα:

f ex
i = ρ Ψcix(ux,Pex

xx ) Ψciy(uy,Pex
yy ) Ψciz(uz,Pex

zz ), (3.12)

where the extended parameter Pex
αα is

Pex
αα = Peq

αα + δt
(

2 − ω

2ρω

)
∂α(ρuα(1 − 3RT) − ρu3

α), (3.13)

while Peq
αα , given by

Peq
αα = RT + u2

α, (3.14)

corresponds to the conventional product-form equilibrium

f eq
i = ρ Ψcix(ux,Peq

xx ) Ψciy(uy,Peq
yy ) Ψciz(uz,Peq

zz ). (3.15)

The effect of extension, featured by the second term in (3.13), is to correct for the
incomplete Galilean invariance of the standard D3Q27 velocity set (2.10). With the
original formulation of the mixture momentum lattice in Sawant et al. (2021a), a similar
correction was achieved by augmenting (3.10) with an additional forcing term that required
evaluation of second-order derivatives in space. In the present formulation, the correction
of Galilean invariance is achieved by the extended equilibrium that requires evaluation of
only a first-order derivative (cf. (3.13)), a more local operation.

3.3. Equilibrium and quasi-equilibrium of the energy lattice
Turning our attention to the energy lattice, the corresponding equilibrium and
quasi-equilibrium populations in (3.11) are evaluated along the lines of Saadat et al.
(2021a). Let us introduce linear operators Oα , acting on any smooth function A(u, T)

according to a rule

OαA = RT
∂A
∂uα

+ uαA. (3.16)

The equilibrium populations geq
i are specified with an operator version of the product form

(2.14). To that end, we consider parameters ξα and Pαα as operator symbols:

ξα = Oα, (3.17)

Pαα = O2
α. (3.18)

With the operators (3.17) and (3.18) substituted into the product form (2.14), the
equilibrium populations geq

i are written compactly using the energy E as the generating
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function:

geq
i = ρ Ψcix(Ox, O2

x) Ψciy(Oy, O2
y) Ψciz(Oz, O2

z ) E. (3.19)
It is straightforward to verify by a direct computation that the equilibrium (3.19) satisfies
the necessary conditions to recover the mixture energy equation as in Sawant et al. (2021a),
namely, the equilibrium energy flux qeq and the flux thereof Req:

qeq =
Q−1∑
i=0

geq
i ci =

(
H + u2

2

)
ρu, (3.20)

Req =
Q−1∑
i=0

geq
i ci ⊗ ci =

(
H + u2

2

)
Peq + Pu ⊗ u, (3.21)

where H is the specific mixture enthalpy (3.4). Finally, the quasi-equilibrium populations
g∗

i differ from the equilibrium geq
i by the energy flux only (Karlin, Sichau & Chikatamarla

2013; Saadat et al. 2021a; Sawant et al. 2021a):

g∗
i =

{
geq

i + 1
2 ci · (q∗ − qeq), if c2

i = 1,

geq
i , otherwise,

(3.22)

where q∗ is a specified quasi-equilibrium energy flux,

q∗ =
Q−1∑
i=0

g∗
i ci = q − u · (P − Peq) + qdiff + qcorr + qex. (3.23)

All contributions on the right-hand side of (3.23), except for the vector qex, were already
introduced in Sawant et al. (2021a) and do not alter under the present modifications. The
two first terms in (3.23) maintain a variable Prandtl number and include the energy flux q
and the pressure tensor P:

q =
Q−1∑
i=0

gici, (3.24)

P =
Q−1∑
i=0

fici ⊗ ci. (3.25)

The interdiffusion energy flux qdiff , given by

qdiff =
(

ω1

ω − ω1

)
ρ

M∑
a=1

HaYaV a, (3.26)

where the diffusion velocities V a are defined by (2.31), contributes the enthalpy transport
due to diffusion (cf. Sawant et al. 2021a). Moreover, the correction flux qcorr is required in
the two-population approach to the mixtures in order to recover the Fourier law of thermal
conduction (Sawant et al. 2021a):

qcorr = 1
2

(
ω1 − 2
ω1 − ω

)
δt P

M∑
a=1

Ha ∇Ya. (3.27)

The term qex in the quasi-equilibrium flux (3.23) is required for consistency with the
extended equilibrium (3.12), and is similar to its single-component counterpart (Saadat
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Lattice Boltzmann model for reactive mixtures

et al. 2021a). Components of the vector qex follow the structure of (3.13):

qex
α = −1

2 δt uα ∂α(ρuα(1 − 3RT) − ρu3
α). (3.28)

Spatial derivatives in the correction flux (3.27) and in the isotropy correction (3.13) and
(3.28) were implemented using isotropic lattice operators (Thampi et al. 2013).

3.4. Mixture mass, momentum and energy equations
With the equilibrium and quasi-equilibrium populations specified, the hydrodynamic limit
of the two-population lattice Boltzmann system (3.10) and (3.11) is found by expanding the
propagation to second order in the time step δt and evaluating the moments of the resulting
expansion. Analysis is standard, and details can be found in Sawant et al. (2021a) and
Saadat et al. (2021a); here, we present the final result. The continuity, the momentum and
the energy equations for a reactive multicomponent mixture (Williams 1985; Bird, Stewart
& Lightfoot 2007) are, respectively,

∂tρ + ∇ · (ρu) = 0, (3.29)

∂t(ρu) + ∇ · (ρu ⊗ u) + ∇ · π = 0, (3.30)

∂t(ρE) + ∇ · (ρEu) + ∇ · q + ∇ · (π · u) = 0. (3.31)

Here, the pressure tensor π in the momentum equation reads

π = PI − μ

(
∇u + ∇u† − 2

D
(∇ · u) I

)
− ς(∇ · u) I, (3.32)

where the dynamic viscosity μ and the bulk viscosity ς are related to the relaxation
parameter ω:

μ =
(

1
ω

− 1
2

)
P δt, (3.33)

ς =
(

1
ω

− 1
2

)(
2
D

− R
Cv

)
P δt. (3.34)

Here, Cv = ∑M
a=1 YaCa,v is the mixture specific heat at constant volume.

The heat flux q in the energy equation (3.31) reads

q = −λ∇T + ρ

M∑
a=1

HaYaV a. (3.35)

The first term in (3.35) is the Fourier law of thermal conduction, with thermal conductivity
λ related to the relaxation parameter ω1:

λ =
(

1
ω1

− 1
2

)
PCp δt, (3.36)

where Cp = Cv + R is the mixture specific heat at constant pressure. The second term
in (3.35) is the interdiffusion energy flux. With the thermal diffusivity α = λ/ρCp
and the kinematic viscosity ν = μ/ρ, the Prandtl number becomes Pr = ν/α. For this
reactive formulation, the local dynamic viscosity μ(x, t) and the thermal conductivity
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λ(x, t) of the mixture are evaluated as functions of the local chemical state by using the
chemical kinetics solver Cantera (Goodwin et al. 2018). Cantera employs a combination
of methods such as interaction potential energy functions (Kee et al. 2003), hard sphere
approximations, and the methods described in Wilke (1950) and Mathur, Tondon &
Saxena (1967) to calculate the mixture transport coefficients. Finally, we note that the
bulk viscosity ς (see (3.34)) is proportional to the shear viscosity (see (3.33)) by virtue
of the single relaxation time model for the momentum lattice, (3.10). An independently
adjustable bulk viscosity ς ′ may be required for modelling compressible flows involving
polyatomic gases; see e.g. Pan & Johnsen (2017) and references therein. Adjustable
bulk viscosity is achieved in the present framework by extending (3.13) and (3.23)
as follows:

Pex
αα → Pex

αα + (ς − ς ′)ρ−1(∇ · u), (3.37)

q∗ → q∗ + (ς − ς ′)
(

ω

ω − ω1

)
u(∇ · u). (3.38)

In the examples below, at a relatively low Mach number, the correction terms (3.37) and
(3.38) can be neglected.

In summary, by virtue of thermodynamic consistency of the lattice Boltzmann model for
mixture momentum and energy (Sawant et al. 2021a), the extension to the reactive case
requires merely an upgrade of the sensible heat by the heat of formation. The proposed
realization also takes into account the revised formulation of the two-population LBM for
compressible flow (Saadat et al. 2021a). We proceed to finalizing the model development
by specifying the coupling between the lattice Boltzmann models for the species and the
mixture momentum and energy, as well as the coupling to the external chemical kinetics
solver.

3.5. Coupling between the species and the mixture subsystems
With the two subsystems, the species and the mixture, first constructed independently
from each other and after that being coupled weakly in the way described in Sawant
et al. (2021a), we are left with two independent definitions of the mixture density and
the mixture momentum: On the one hand, the mixture density ρ (see (3.5)) and the
mixture momentum ρu (see (3.6)) are defined as the moments of the f -populations
on the momentum lattice. On the other hand, the same quantities are defined with the
species populations as the sum of partial densities and partial momenta. The number of
conservation laws for the species subsystem is M + D, while for the mixture subsystem it
is D + 2. The total number of conservation laws in the weakly coupled combined system
is M + 2D + 2. Thus the weakly coupled system is in excess of D + 1 conservation laws.
This redundancy is eliminated by removing one set of species populations (here, the Mth)
and writing

fMi = fi −
M−1∑
a=1

fai. (3.39)

As a consequence, the Mth component is no longer an independent field but is slaved to the
remaining species and mixture populations. The number of independent conservation laws
in the resulting strongly coupled system is M + D + 1, which corresponds to the locally
conserved fields ρ1, . . . , ρM−1 (see (2.4)), ρ (see (3.5)), ρu (see (3.6)) and ρE (see (3.7)).
While the assignment of the slaved component M is not unique, it is advisable to select the
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Lattice Boltzmann model for reactive mixtures

component that carries the majority of mass in the mixture. The coupling (3.39) reduces
the number of lattices from M + 2 to M + 1.

3.6. Coupling between lattice Boltzmann and chemical kinetics
The lattice Boltzmann code is coupled to the open source code chemical kinetics solver
Cantera (Goodwin et al. 2018). The Cantera solver is supplied with the publicly accessible
GRI-Mech 3.0 mechanism (Smith et al. 1999) as an input. The communication between
the lattice Boltzmann solver and Cantera is summarized as follows.

(i) During the collision step, the lattice Boltzmann solver provides internal energy,
specific volume and mass fractions to set the chemical state in Cantera.

(ii) Cantera solves numerically the integral equation (3.9) to find the temperature at that
state.

(iii) The production rates of species ρ̇r
a, transport coefficients including dynamic

viscosity, thermal conductivity and the Stefan–Maxwell diffusivities, are obtained
from Cantera as a function of the current state.

(iv) In the lattice Boltzmann solver, the temperature is used to evaluate the equilibrium
and quasi-equilibrium moments and populations. The transport coefficients are used
to calculate the corresponding relaxation times.

Other thermodynamic parameters necessary for the simulation, such as the specific heats
and molecular masses, are also obtained through Cantera. The reference standard-state
temperature is T0 = 298.15 K, and the reference standard-state pressure is P0 = 1 atm.
The data required by the lattice Boltzmann solver during runtime are obtained by
querying Cantera through its C++ API. In all cases considered in this paper, we use
the detailed mechanism of hydrogen/air combustion (Li et al. 2004) involving nine
species: N2, O2, H2, H, O, OH, H2O, HO2 and H2O2. Finally, as in Sawant et al.
(2021a), acoustic scaling is used for conversion of length and time between the physical
and the lattice units. The speed of sound at a specified reference composition and
specified temperature (typically, at the unburnt mixture state) is used to make the velocity
non-dimensional. The characteristic length in the respective set-up is used to rescale the
length.

We will now proceed with a validation of the coupled reactive flow lattice
Boltzmann model in two test cases. The perfectly stirred reaction (PSR) simulation
is selected to validate the multistep approach to the evaluation of the reaction
term (2.34), while the laminar flame speed simulation is to probe the coupling
of the new formulation of the mixture momentum and energy LBM of §§ 3.2
and 3.3.

3.7. Perfectly stirred reactor
A constant volume PSR is simulated using LBM with a three-dimensional (3-D) domain
consisting of 4 × 4 × 4 nodes. The set-up and the initial conditions are the same as in
Sawant et al. (2021b) in order to verify that the introduction of sub-iterations for the
integration of reaction rates (2.34) preserves the time accuracy of the solver. Periodic
boundary conditions are used in all directions. The computational domain is initialized
with a stagnant and homogeneous hydrogen/air mixture at equivalence ratio φ = 1,
pressure Pin = 1 atm and temperature Tin = 1400 K. Figure 1 shows the evolution of
the temperature and of the hydroxide mass fraction in the reactor over time. The results
from the lattice Boltzmann model are compared to the solution produced by the ideal
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Figure 1. Simulation of hydrogen/air constant volume perfectly stirred reactor. (a) History of temperature and
hydroxide mass fraction. (b) History of kinetic, internal and total energy. All quantities are scaled by the initial
total energy E0.

gas constant volume reactor from Cantera. The time integration in Cantera is performed
through its built-in ‘advance’ function. Accurate match with the results obtained from
Cantera verifies that the coupling and the multistep time integration of the reaction term
are correct. Since all the boundaries are periodic in this set-up, the total energy of the
system must remain constant. Also, due to the completely homogeneous initial condition,
no kinetic energy should develop over time. Figure 1 verifies that in the absence of flow,
the total energy not only equals the internal energy but also remains constant in time, as
expected.
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Figure 2. Profiles of temperature and mass fractions for 1-D planar flame at φ = 0.5.

3.8. Laminar flame speed
For a further validation, we calculate the burning velocity of a hydrogen/air mixture.
The set-up consists of a one-dimensional (1-D) tube initialized with unburnt mixture at
Tu = 300 K throughout, from the left end up to 80 % of the domain towards the right.
The remaining 20 % of the domain is initialized with the adiabatic flame temperature
Taf = 1642.49 K and with the equilibrium burnt composition at the respective equivalence
ratio. The pressure is initialized uniformly at Pin = 1 atm. The inlet and outlet boundary
conditions used in this case will be explained in § 4. At the left end, the inlet velocity is
set to uin = 10 cm s−1 so that the flame propagates from right to left against the unburnt
mixture.

We use the laminar flame thickness δf = 0.043 cm at φ = 0.5 for defining the reference
length, where δf = (Taf − Tu)/max(|dT/dx|). The domain size is N ≈ 23δf with a
resolution of 34 points per flame thickness. As is evident in figure 2, the profiles of
the temperature and the mass fractions for φ = 0.5 compare well with the solution
obtained from the ‘FreeFlame’ solver of Cantera. The burning velocity is found to be
SL = 59 cm s−1, which is in good agreement with the reference result of Pizza et al.
(2008a), i.e. 58 cm s−1. To summarize, the basic validation of the proposed LBM for
reactive mixtures is considered successful. We now proceed with specifying various
boundary conditions for the multicomponent LBM, needed for most practical applications.

4. Boundary conditions

4.1. Nomenclature
Boundary conditions for multicomponent LBMs are scarce in the literature. In order to
facilitate the explanation, we use the cartoon in figure 3, which represents a rectangular
grid with empty circles representing grid points (nodes) that are part of the computational
domain. The boundaries are marked by coloured dotted lines, where the colour reflects the
wall, the inlet or the outlet. The boundaries do not belong to the computational domain
and therefore do not participate in the collision and the advection operations. During
the advection step, a node at location x performs the following operation for each of the
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populations fi:
fi(x, t) = fi(x − ci δt, t − δt). (4.1)

Equation (4.1) is a mathematical expression for the free streaming of a population fi by
jumping a distance ci δt to a new node. Since we do not need to discuss the collision step
in this section, the times t and t − δt simply indicate the post- and the pre-advection states,
respectively. In figure 3, each population fi is represented by its corresponding discrete
velocity vector ci (link) by an arrow pointing in the direction of its propagation. Solid
arrows represent the post-advection populations that arrived from a node belonging to
the computational domain. Dotted arrows represent the post-advection populations that
have arrived from one of the boundaries and carry with them the information about
the fluid properties at the boundary. These populations will be referred to as incoming
populations since they enter the domain from the boundaries. In the LBM, the boundary
conditions are applied by specifying the incoming populations. The nodes that are adjacent
to the boundaries and therefore require such description for incoming populations will be
referred to as the interface nodes. We denote by D the set of the incoming velocities
at the interface node. Finally, the rest of the velocities at the interface node ci /∈ D are
the outgoing velocities. Below, the equilibrium form will be used to evaluate a variety
of incoming populations. In order to keep the discussion concise, we will display the
dependence of pertinent equilibria on the respective control parameters as follows:

f eq
ai = f eq

ai (ρYa, u, T), (4.2)

f eq
i = f eq

i (ρ, Y, u, T), (4.3)

geq
i = geq

i (ρ, Y, u, T). (4.4)

Here, Y = {Y1, . . . , YM} stands for the totality of mass fractions. Dependence on the
mixture composition Y in the energy lattice equilibrium (4.4) is manifest in the operational
definition (3.19) through the mixture-averaged gas constant R in the operators (3.16) as
well as in the mixture energy (3.8). The composition dependence Y enters the momentum
lattice equilibrium (4.3) through the gas constant R; cf. (3.14) and (3.15). Together, we
represent the dependence of the momentum lattice equilibrium (4.3) and the energy lattice
equilibrium (4.4) on the control parameters in a compact notation as

{f eq
i , geq

i } = {f eq
i , geq

i }(ρ, Y, u, T). (4.5)

We now proceed to derive the wall, inlet and outlet boundary conditions for the
multicomponent LBM.

4.2. Wall boundary conditions

4.2.1. Bounce-back boundary condition
Bounce-back is a widely used wall boundary condition in the LBM (Ladd 1994). For the
incoming populations at interface node x, the bounce-back rule reads

f bb
i (x, t) = fk(x, t − δt), ck = −ci, if i ∈ D. (4.6)

Here, D is the set of incoming velocities shown by grey dotted arrows in figure 3.
When applied on the momentum lattice, the bounce-back rule (4.6) results in the no-slip
boundary condition at a halfway distance between the wall and the interface nodes (Ziegler
1993; Chen & Doolen 1998; Boyd et al. 2004). The bounce-back condition also ensures

941 A62-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

34
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.345


Lattice Boltzmann model for reactive mixtures

Outlet

Wall

Inlet

Figure 3. Schematic of the LBM computational domain. Empty circles represent computational nodes, and
coloured dotted edges indicate boundaries. At interface nodes, dotted arrows are the incoming velocities ci,
i ∈ D, while solid arrows are the outgoing velocities ci, i /∈ D.

global mass conservation since the incoming populations are chosen exclusively from
the pre-advection outgoing populations. No new incoming populations are created, and
no pre-advection outgoing populations are lost. On the energy lattice, the bounce-back
boundary condition conserves the total energy and leads to zero heat flux, thereby
representing an adiabatic wall (He, Chen & Doolen 1998). While simple and efficient,
the bounce-back boundary condition (4.6) is limited as it does not allow us to impose
a target value for the velocity at a prescribed wall location or to implement a target
wall temperature. Since these are the cases typical of many applications, including the
ones considered below, a so-called Tamm–Mott-Smith (TMS) boundary condition of
Chikatamarla & Karlin (2013) will be adapted to the multicomponent mixture.

4.2.2. Tamm–Mott-Smith wall boundary condition
Let utgt, utgt

a and Ttgt be the target values of the flow velocity, species velocity and
temperature, respectively, to be imposed at the interface node x. Moreover, the outgoing
populations fi, gi and fai, where i /∈ D, are obtained in the propagation step (4.1) and
assumed known. The TMS construction of the incoming populations f TMS

i , gTMS
i and f TMS

ai ,
where i ∈ D, executes the following steps.

(i) Perform bounce-back on the momentum lattice to find the densities ρbb:

ρbb =
∑
i∈D

f bb
i +

∑
i/∈D

fi. (4.7)

Perform bounce-back on the species lattices to find the mass fractions Ybb:

ρbbYbb
a =

∑
i∈D

f bb
ai +

∑
i/∈D

fai, a = 1, . . . , M. (4.8)

Note that the bounce-back operation is used solely for computing the density ρbb in
(4.7) and the mass fractions Ybb in (4.8), in order to satisfy mass conservation at the
boundary. However, the incoming populations are not set to the bounce-back values
f bb
i ; rather, they are defined with the subsequent steps of the TMS algorithm.
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(ii) The bounce-back density ρbb in (4.7) and mass fractions Ybb in (4.8), together with
the target velocities utgt, utgt

a and temperature Ttgt, specify uniquely the equilibrium
states f tgt

i , gtgt
i and f tgt

ai at the interface node:

{f tgt
i , gtgt

i } = {f eq
i , geq

i }(ρbb, Ybb, utgt, Ttgt), (4.9)

f tgt
ai = f eq

ai (ρbbYbb
a , utgt

a , Ttgt). (4.10)

(iii) With the incoming populations set to the target equilibrium, we find the local density
ρloc, flow velocity uloc, mass fractions Yloc, species velocities uloc

a and temperature
Tloc at the interface node (see § A.1 of Appendix A). With the local parameters, the
following equilibrium populations are specified uniquely on the momentum, energy
and species lattices:

{f loc
i , gloc

i } = {f eq
i , geq

i }(ρloc, Yloc, uloc, Tloc), (4.11)

f loc
ai = f eq

ai (ρlocYloc
a , uloc

a , Tloc). (4.12)

(iv) Finally, we update all populations of the momentum, energy and species lattices at
the wall interface node as

{f TMS
i , gTMS

i } =
{

{2f tgt
i − f loc

i , 2gtgt
i − gloc

i }, if i ∈ D,

{f tgt
i + fi − f loc

i , gtgt
i + gi − gloc

i }, otherwise,
(4.13)

f TMS
ai =

{
2f tgt

ai − f loc
ai , if i ∈ D,

f tgt
ai + fai − f loc

ai , otherwise.
(4.14)

Comments are in order. The TMS boundary condition in step (iv) sets the flow variables at
the interface nodes to ρbb, Ybb, utgt

a , utgt and Ttgt. While the same is achieved by the target
equilibrium at step (ii), the corresponding equilibrium boundary condition is insufficient
as it is prone to generating spurious shocks; cf. Chikatamarla & Karlin (2013). For this
reason, a non-equilibrium part of the incoming populations is taken into consideration
and modelled with the local state in step (iii). Note that while the latter also uses the
equilibrium form, it is evaluated at different (local) values of flow variables and thus
describes a non-equilibrium state relative to the target equilibrium. The presence of two
different equilibrium states in the resulting populations motivated Chikatamarla & Karlin
(2013) to name the algorithm in analogy to the bimodal TMS shock wave approximation
for the Boltzmann equation (Mott-Smith 1951).

With the exception of walls aligned with the Cartesian LBM grid, target parameters
utgt, utgt

a and Ttgt at the interface nodes are obtained by interpolation between the
values of the corresponding fields at the wall, uwall, uwall

a and Twall, and the data at the
surrounding fluid nodes. Interpolation is performed following the procedure described in
Chikatamarla & Karlin (2013) and Dorschner et al. (2015); examples will be demonstrated
in § 5.2 for stationary no-slip walls, uwall = 0, subject to a temperature profile. Finally, the
impermeable wall boundary condition is imposed on the species populations by setting the
species velocity at the wall as uwall

a = uwall. Zero flux of species at the wall is implied by
the absence of diffusion velocity in the species equilibrium velocity uwall.

Finally, we comment that the change of composition due to chemical reaction is due
entirely to the reaction term (2.32) in the collision step (2.24). The collision is executed
on all the fluid nodes, including the wall interface nodes. Therefore, the change of
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composition at the wall due to chemical reactions is handled automatically in the collision.
In this work, we restrict ourselves to chemically inert walls by using the same reaction
mechanism at the wall interface nodes as that at the fluid nodes. However, this approach
can also be used for the situations involving catalytic reactions; see e.g. Falcucci et al.
(2016, 2017). In order to implement a catalytic wall reaction, the reaction mechanism at
the interface nodes needs to be replaced by a catalytic reaction mechanism, while the TMS
procedure described in this section remains unchanged.

4.3. Inlet
The flux boundary condition is used widely to model the inlet in multicomponent flows
(Kee et al. 2003; Pizza et al. 2008a, 2010; Goodwin et al. 2018). The rationale of this
boundary condition is that it prescribes only the incoming mass fluxes of species ρin

a uin.
Because only the incoming mass flux is prescribed and not the mass itself, the composition
at the inlet interface node is not fixed to the incoming composition Yin. This degree of
freedom is necessary as light species such as hydrogen have the capability to diffuse fast
enough and thus are able to propagate upstream into the inlet. Therefore, the composition
at the inlet interface node is not a fixed set of parameters but is rather a result of a balance
between the mass flux inside the domain and the inlet mass flux. Below, we establish the
flux boundary condition for the multicomponent lattice Boltzmann setting.

In figure 3, the inlet boundary is represented by a dotted vertical blue line. The inlet
boundary condition is applied on the interface nodes where incoming discrete velocities
ci, i ∈ D, are represented by dotted blue arrows. With the inlet data for mass flux ρinuin,
composition Yin and temperature Tin, populations at the interface node are derived in the
following steps.

(i) The inlet density ρin and composition Yin, together with the inlet velocity uin and
temperature Tin, specify uniquely the inlet equilibrium populations f in

i , gin
i and f in

ai at
the inlet interface node:

{f in
i , gin

i } = {f eq
i , geq

i }(ρin, Yin, uin, Tin), (4.15)

f in
ai = f eq

ai (ρinYin
a , uin, Tin). (4.16)

(ii) With the incoming populations set to the inlet equilibrium and the outgoing
populations known, we find the local density ρloc, flow velocity uloc, composition
Yloc and temperature Tloc at the interface node (see § A.2 of Appendix A). With the
local parameters, the following equilibrium populations are uniquely specified on
the momentum, energy and species lattices:

{f loc
i , gloc

i } = {f eq
i , geq

i }(ρloc, Yloc, uloc, Tloc), (4.17)

f loc
ai = f eq

ai (ρlocYloc
a , uloc, Tloc). (4.18)

(iii) Replacing the local flow velocity uloc and temperature Tloc with the target values uin

and Tin, the following target equilibrium populations are identified:

{f tgt
i , gtgt

i } = {f eq
i , geq

i }(ρloc, Yloc, uin, Tin), (4.19)

f tgt
ai = f eq

ai (ρlocYloc
a , uin, Tin). (4.20)
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(iv) Finally, all populations at the inlet interface nodes are updated as follows:

{f inlet
i , ginlet

i } =
{

{f tgt
i + f in

i − f loc
i , gtgt

i + gin
i − gloc

i }, if i ∈ D,

{f tgt
i + fi − f loc

i , gtgt
i + gi − gloc

i }, otherwise,
(4.21)

f inlet
ai =

{
f tgt
ai + f in

ai − f loc
ai , if i ∈ D,

f tgt
ai + fai − f loc

ai , otherwise .
(4.22)

It is straightforward to verify that the populations (4.21) and (4.22) at step (iv) imply the
target values uin and Tin for the velocity and temperature at the interface node, respectively.
At the same time, the composition and density at the interface node are identified as Yloc

and ρloc, respectively. The latter are derived in step (ii) by taking into account the outgoing
populations, and are different, in general, from the inlet values Yin and ρin. Thus the
outgoing populations contribute to the balance between the incoming and outgoing mass
fluxes as required by the flux boundary condition. It is instructive to compare with the
TMS wall boundary condition of § 4.2.2 where the local composition at the interface node
was determined by the bounce-back step, (4.7) and (4.8). In the present case, at step (ii),
the local composition is computed using the equilibrium at the inflow properties for the
incoming populations. Note that while the inlet composition Yloc is already determined
at step (ii), the purpose of the remaining steps is to enforce the inlet velocity uin and
temperature Tin. Hence whenever the inlet temperature and velocity need not be strictly
imposed, it is sufficient to terminate the algorithm at step (ii) and to apply the local
equilibria (4.17) and (4.18). With this simplification, the velocity and temperature acquire
local values uloc and Tloc, respectively, rather than the target values uin and Tin. The latter
simplification was validated in Sawant et al. (2021a) with the simulation of diffusion in
opposed jets. The mass fractions at the inlets of both jets matched the reference solution by
Cantera, which employs a macroscopic realization of the flux boundary condition. While
the simplified inlet realization (4.17) and (4.18) can be regarded as a good approximation to
the macroscopic flux boundary condition, in this work we rather use the inlet populations
(4.21) and (4.22) to ensure that the inlet velocity and temperature are imposed exactly.

4.4. Outlet
Unlike the inlet and the wall, the values of the macroscopic state variables are usually
unknown at the outlet. To that end, we apply the local one-dimensional inviscid (LODI)
approximation by Poinsot & Lele (1992). The LODI approximation is based on the
characteristics of compressible Euler equations, i.e. (3.29), (3.30) and (3.31) without
dissipation terms. The LODI boundary condition allows both the pressure fluctuations
travelling as sound waves as well as the convection disturbances travelling as entropy
waves to exit the computational domain with minimum reflection (Poinsot & Lele 1992).
The LODI approximation is derived for a single-component fluid and therefore predicts
the outlet density ρout, velocity uout and temperature Tout, which can be used directly in
the present mean-field formulation of the mixture. In addition, we need also to specify
the composition Yout at the outlet. Consistent with the LODI approximation, we use the
advection part of the species equation (2.22), which is discretized at the outlet interface
node with forward Euler scheme to give

Yout
a (x, t) = Yout

a (x, t − δt) − δt uout(x, t − δt) · ∇Yout
a (x, t − δt), (4.23)

where mass fraction Yout
a (x, t − δt) is known from the previous time step, while uout is

the LODI outlet velocity. The gradient ∇Yout
a is evaluated by backward finite difference.
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Lattice Boltzmann model for reactive mixtures

Armed with the outlet data, we proceed to specify the populations at the outlet
interface node, following essentially the steps already familiar from the wall and inlet
construction.

(i) Outlet data Yout
a , ρout, uout and Tout specify uniquely the equilibrium populations

f out
i , gout

i and f out
ai at the outlet interface node:

{f out
i , gout

i } = {f eq
i , geq

i }(ρout, Yout, uout, Tout), (4.24)

f out
ai = f eq

ai (ρoutYout
a , uout, Tout). (4.25)

(ii) With the incoming populations set to the outlet equilibrium, we find the local
density ρloc, flow velocity uloc, mass fractions Yloc and temperature Tloc at the
outlet interface node (see § A.3 of Appendix A). Based on these local parameters,
the local equilibrium populations are specified uniquely on the momentum, energy
and species lattices:

{f loc
i , gloc

i } = {f eq
i , geq

i }(ρloc, Yloc, uloc, Tloc), (4.26)

f loc
ai = f eq

ai (ρlocYloc
a , uloc, Tloc). (4.27)

(iii) Finally, all populations of the momentum, energy and species lattices at the outlet
interface node are updated as

{f outlet
i , goutlet

i } =
{

{2f out
i − f loc

i , 2gout
i − gloc

i }, if i ∈ D,

{f out
i + fi − f loc

i , gout
i + gi − gloc

i }, otherwise,
(4.28)

f outlet
ai =

{
2f out

ai − f loc
ai , if i ∈ D,

f out
ai + fai − f loc

ai , otherwise.
(4.29)

With populations (4.28) and (4.29) at step (iii), the macroscopic fields at the outlet are
set to the target values ρout, uout, Tout and Yout, as prescribed by the LODI approximation
and (4.23). Although the same is achieved by the equilibrium populations at step (i), the
non-equilibrium part of the incoming populations is taken into consideration and modelled
with the local state in step (ii). Thus the present construction of the outlet is similar to the
TMS wall boundary condition of § 4.2.2.

5. Wall-bounded reactive flow

In order to test the proposed boundary conditions, we perform the computation of
combustion in microtubes. The results are validated with the DNS of Pizza et al. (2008b)
for two-dimensional (2-D) microchannels and Pizza et al. (2010) for a 3-D microtube. The
set-up involves combustion of a premixed hydrogen/air mixture in a tube over a range of
inlet velocities uin of the unburnt mixture. The fuel-lean unburnt mixture of equivalence
ratio φ = 0.5 at temperature Tu = 300 K and pressure 1 atm enters a microchannel with
l/d = 10. Here, l is the length of the tube, and d is its diameter. The mixture gets ignited
due to hot isothermal walls that are maintained at temperature Tw = 960 K. The wall
temperature is increased from 300 K at the inlet to 960K using a hyperbolic tangent
profile at a distance of about l/20 from the inlet. For this premixed initial condition, the
burning velocity is obtained as SL = 59 cm s−1, and the flame thickness is obtained as
δf = 0.043 cm from solving a 1-D flame propagation set-up with the LBM in § 3.8.
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5.1. Premixed hydrogen/air flames in a microchannel
For the 2-D simulations, we choose channel diameter d = 1 mm, which corresponds
to width 2.3256 δf in terms of flame thickness. The spatial resolution corresponds to
approximately 15 nodes per flame thickness. As studied in Pizza et al. (2008b) for the
same channel width, the flame exhibits different dynamics depending on the inlet velocity.
At low inlet velocity of about uin = 10 cm s−1, periodic ignition and extinction of the
flame are observed. The inlet velocity is then increased progressively until the oscillatory
behaviour ceases and a stable flame can be sustained near the inlet of the channel. A further
increase of the inlet velocity to uin = 75 cm s−1 results in a symmetric ‘V-shaped flame’ in
the channel, the flame being concave towards the unburnt mixture. Finally, at inflow higher
than uin = 165 cm s−1, stable asymmetric flames are formed that shift downstream with
increasing inlet velocity. The Reynolds number corresponding to the inlet velocity varies
between Re = 5.36 and Re = 88.52, the reference length being the channel width, and the
reference viscosity corresponding to the viscosity at inlet composition and temperature.

5.1.1. Periodic ignition and extinction
The fluid in the bulk of the domain is initialized with the inlet unburnt composition, and
the inlet velocity is set to uin = 10 cms−1. The initial temperature of the fluid in the bulk
follows the wall temperature profile. As the fresh mixture passes between the heated walls,
the reactants break into radicals that build up in the channel over time. This build up of
radicals is associated with a long period of inactivity after which the mixture achieves
a radical runaway and eventually a thermal runaway, leading to ignition. The mixture
ignites at some distance downstream, as seen in figure 4, which shows the hydroxide
mass fraction that we will use as a marker to represent the ‘flame’ itself. The flame first
forms a concentrated nearly circular structure that then propagates in both upstream and
downstream directions, as is visible in figure 4. This flame splitting occurs as the flame
consumes the relatively fresh mixture in both possible directions. The panels in figure 5
show the mass fraction of hydrogen that is the deficient reactant. The flame then propagates
and splits, consuming the deficient reactant in its path. The part of the flame travelling
upstream is extinguished at the cold inlet, whereas the part travelling downstream exits the
channel through the outlet. Subsequently, the channel is again filled with the fresh mixture
from the inlet, and the process repeats periodically. In this regime, the maxima of all the
species mass fractions as well as that of the temperature are located on the centreline of
the channel. This behaviour is consistent with the DNS of Pizza et al. (2008b) and the
subsequent simulations of Alipoor & Mazaheri (2016). This phenomenon, which is also
referred to as a flame with repetitive extinction and ignition (FREI), has also been observed
in methane/air combustion experiments of Maruta et al. (2005) and numerical simulations
of Norton & Vlachos (2003). The periodicity of the ignition–extinction behaviour has been
presented through the variation of the integrated heat release rate with time in figure 6.
In that figure, the heat release rate has been normalized with respect to the heat release
rate of the unburnt state. The ignition events are seen to produce a rise in the integrated
heat release rate by 8 orders of magnitude. The peaks are localized in time with average
frequency approximately 111 Hz. This is in good agreement with the frequency 106.9 Hz
reported in Pizza et al. (2008b). Table 1 shows the convergence of the ignition–extinction
frequency with resolution. Between the two largest resolutions, the frequency changed by
only 2.7 % with an increase in the spatial resolution by 50 %. Therefore, the computations
are considered to be converged with respect to the resolution. The maximum velocity of the
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YOH

9.7 × 10–20 9.2 × 10–30.002 0.004 0.006

(a)

(b)

(c)

(d)

Figure 4. Contours of the mass fraction of hydroxide OH showing ignition, flame formation, splitting and
propagation of the flame. Unburnt mixture enters the domain through the inlet on the left. Times are (a) t =
0.045741 s, (b) t = 0.045767 s, (c) t = 0.045819 s, and (d) t = 0.045897 s.

Domain size (nodes) Resolution (nodes per δf ) Frequency (Hz)

150 × 15 6 73
240 × 24 10 108
360 × 36 15 111

Table 1. Frequencies of the ignition–extinction phenomenon obtained from LBM simulations run with
different spatial resolutions.

upstream propagation of the flame is found to be 16.8cm s−1, and that of the downstream
propagation is found to be 20 cm s−1 from the LBM simulations. For comparison, the
maximum upstream propagation speed is reported to be 15 cm s−1 in Pizza et al. (2008b).
Overall, the LBM results agree well quantitatively with the DNS results.

5.1.2. V-shaped stable flames
Using the solution from the ignition–extinction regime as an initial condition, the inlet
velocity is increased progressively to uin = 75cm s−1. In this regime, there is a sufficient
flow of fresh mixture to sustain combustion and therefore a stable flame is formed in
the channel. As is evident in figure 7, the flame assumes a ‘V-shaped’ structure that is
concave towards the unburnt mixture. At this inlet velocity, the structure of all the species
is symmetric about the centreline. The maxima of the mass fractions of all the species
are located on the centreline, except for the hydrogen radical. The hydrogen radical has
a high molecular diffusivity, causing it to shift away from the channel centreline. This
is evident from the line contours in figure 8. The heat release rate contours in figure 9
show a localized heat release at the upstream interface of the flame. Also, the heat release
rate contour follows a concave curvature that is similar to mass fraction contours of the
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(a)

(b)

(c)

(d)

YH2

6.7 × 10–5 1.5 × 10–20.005 0.010

Figure 5. Contours of the mass fraction of hydrogen H2 showing its consumption during the
ignition–extinction process at time instants marked in the inset in figure 6. Unburnt mixture enters the domain
through the inlet on the left. Times are (a) t = 0.045741 s, (b) t = 0.045767 s, (c) t = 0.045819 s, and (d)
t = 0.045897 s.

(×108)

(×107)

127.82 Hz 113.79 Hz 110.19 Hz

Time (s)

111.15 Hz 110.83 Hz 110.51 Hz

0.046
0

2

4

6

8

0.047

0.01 0.02 0.03 0.04 0.05

2.0

1.5

1.0

0.5

0

�
ρ� ah a

Figure 6. Integrated heat release rate versus time in the periodic ignition–extinction regime. The frequency
from the LBM simulation is approximately 111 Hz; the reference frequency from the DNS of Pizza et al.
(2008b) is 106.9 Hz. Time instants corresponding to figure 4 are marked by red crosses in the inset.

hydroxide and the hydrogen radical. A maximum temperature 1715 K is attained in the
flame. Shifting of the maxima of hydrogen at this inflow velocity as well as the concave
shape of the flame is consistent with the findings of Pizza et al. (2008b). With an increasing
inlet velocity, the flame stabilizes further downstream from the inlet due to a relative
increase in the difference between the velocity of the fresh mixture and the flame speed.
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YOH
3.3 × 10–18
0.002

5.2 × 10–3

Figure 7. V-shaped flames: contours of hydroxide OH mass fraction. The flame is concave towards the
unburnt mixture coming in from the left.

YH

0

0.0002

4.1 × 10–4

Figure 8. V-shaped flames: contours of hydrogen radical H mass fraction. Line contours highlight the shift of
maxima away from the centreline.

HRR

5.6 × 108

2.7 × 10–8

2 × 108

4 × 108

Figure 9. V-shaped flames: contours of the heat release rate (HRR) normalized by the heat release rate of the
unburnt mixture.

Furthermore, at higher inlet velocities, more species shift away from the tube centreline. In
a 3-D microtube, the shifting of the maxima causes the flame to form a ring-like structure
(Pizza et al. 2010) around the tube centreline. We explore this phenomenon in detail in the
corresponding 3-D simulations.

5.1.3. Asymmetric stable flames
Starting from the V-shaped flame as an initial condition, we increase the inlet flow velocity
gradually to uin = 300 cm s−1. After shifting downstream and maintaining its symmetric
shape for some time, the flame transitions into an asymmetric stable flame. At the upstream
interface between the flame and the unburnt mixture, a flame forming an acute angle with
the lower wall is termed a lower asymmetric flame (Pizza et al. 2008b). Similarly, a flame
forming an acute angle with the upper wall is termed an upper asymmetric flame. As
shown in figure 10, a lower symmetric flame was first encountered in our computation.
Interestingly, the asymmetric flame is metastable in this regime. The flame can be made
to transition from a lower asymmetric shape to an upper asymmetric shape by heating the
lower wall momentarily and then restoring the wall temperature back to the previous wall
temperature 960 K. A snapshot of the flame during this transition is shown in figure 11.
An upper asymmetric flame formed as a result of the temperature perturbation is shown
in figure 12. The resultant flame is also metastable and remains in its upper asymmetric
shape unless perturbed. The heat release rate profile is very similar to the profile of the
mass fraction of hydrogen, except for the location of the maxima. The maxima of the heat
release rate occur at the walls in this regime. The distance of the flame from the inlet
remains unchanged. In the LBM simulations, the location of the beginning of the flame
is 0.24l from the inlet, which is in good agreement with 0.21l obtained by the DNS of
Pizza et al. (2008b). The asymmetric nature of the flame and its metastable behaviour are
consistent with the findings of Pizza et al. (2008b) for this regime.
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HRR
8.2 × 108

7.4 × 10–16

5 × 108

YH

YOH

7.1 × 10–4

6.1 × 10–3

0

0

0.0005

(a)

(b)

(c)

Figure 10. Lower asymmetric flame in the microchannel: contours of hydroxide OH mass fraction (a),
hydrogen radical H mass fraction (b) and heat release rate (c).

(a)

(b)

(c)

YOH

6.1 × 10–3

0

YH

7.1 × 0–4

0

0.0005

HRR
8.2 × 108

7.4 × 10–16

5 × 108

Figure 11. Flame transitioning from a lower asymmetric shape to an upper asymmetric flame: contours of
hydroxide mass fraction (a), hydrogen mass fraction (b) and heat release rate (c).

(a)

(b)

(c)

YOH

6.1 × 10–3

0

YH

7.1 × 10–4

0

0.0005

HRR
8.2 × 108

0

5 × 108

Figure 12. Upper asymmetric flame in the microchannel: contours of hydroxide mass fraction (a), hydrogen
mass fraction (b) and heat release rate (c).
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5.2. Premixed hydrogen/air flame in microtube
For 3-D simulations, we choose the circular tube set-up with width d = 1.5 mm from
the simulations in Pizza et al. (2010). Richer dynamics is exhibited by this wide tube as
compared to the narrower 1 mm tube. The composition of the incoming mixture is the
same as for the 2-D simulations. The aspect ratio is also unchanged at l/d = 10. The
diameter corresponds to flame thickness d = 3.4884 δf . With the viscosity of the mixture
at the inlet unburnt composition and at the inlet temperature as reference, the inlet velocity
as the reference velocity and the diameter of the tube as the length scale, the Reynolds
number is Re = 80.47. We use a computational domain of l × d × d = 540 × 54 × 54
nodes, which translates into a spatial resolution of 15.5 computational nodes per flame
thickness. As discussed in § 5.1 with the aid of table 1, this resolution was sufficient to
produce correct and converged results in the 2-D ignition–extinction simulations. In the
3-D simulations, we explore the ‘open axisymmetric flame’ characterized by the maximum
of the hydroxide radical being shifted away from the tube centreline. The isosurfaces of
hydroxide therefore form a ring-shaped structure around the tube centreline. In the DNS
of Pizza et al. (2010), such open flames are observed for an inflow velocity over two
disconnected ranges, 60 cm s−1 ≤ uin ≤ 100 cms−1 and 170 cm s−1 ≤ uin ≤ 350 cm s−1.
In this work, we verify the existence of open flames by performing a simulation at an
inflow of uin = 100 cm s−1. The inlet velocity is increased gradually to uin = 200 cm s−1

and then to uin = 300 cm s−1. We measure the positions of the flame at these three inlet
conditions and compare with the flame positions reported for axisymmetric simulations in
Pizza et al. (2010).

The bulk of the fluid in the tube is initialized with the inflow velocity uin = 100 cm s−1,
and the temperature is initialized to the wall temperature profile. The composition is
initialized with a 1-D laminar flame solution computed for the same equivalence ratio
as this 3-D set-up. The initial pressure in the domain is homogeneous at 1atm. As a
consequence of the initial conditions and the inflow velocity, the ignition–extinction
regime is not encountered. The incoming fresh mixture enters the tube at a speed that is
nearly twice the flame speed. Therefore, the resulting flame does not propagate upstream
into the inlet and stabilizes at a distance downstream of the inlet. The flame has the
location of the maximum of the hydroxide radical and the temperature shifted away from
the longitudinal axis of the tube. Therefore, as is visible in figure 13, isosurfaces of the
mass fraction of hydroxide form ring-shaped structures. This type of ring-like flame is
called an ‘open flame’ in Pizza et al. (2010). At uin = 100 cm s−1, the open flame is
axisymmetric and maintains a fixed distance of approximately 0.1l from the inlet. The
maximum temperature in the flame is 1649 K. Figure 14 shows isosurfaces of the mass
fraction of the hydrogen radical, which also forms a ring structure similar to the hydroxide
radical. Streamlines of the fluid velocity in figure 14 show a marked acceleration in the
fluid velocity downstream of the flame location. The post-combustion fluid in the tube
is seen to have attained a maximum velocity that is 9.3 times that of the inlet velocity.
The maxima of the fluid velocity reside on the tube centerline. In figure 15, we compare
the flame position at different inlet velocities as obtained from our 3-D simulations with
the flame positions provided from the 2-D axisymmetric simulations by Pizza et al.
(2010). The flame position is defined by the streamwise location of maximum temperature,
measured downstream from the inlet. Good agreement is obtained with the axisymmetric
DNS simulations. A new oscillatory mode causing the flame to pulsate in the streamwise
direction was observed in the axisymmetric simulations but not in the 3-D simulations by
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3.8 × 10–3

1.6 × 1033.0 × 102 140012001000

Temperature (K)

800600

4.0 × 10–3

YOH

Figure 13. Open flame in the microchannel: isosurfaces of YOH and slice of temperature contour at a Z plane
passing through the centre.

3.2 × 10–49.33.7 × 10–1 86

Ux/Uin
42

3.6 × 10–4

YH

Figure 14. Open flame in the microchannel: isosurfaces of YH and streamlines of the fluid velocity.
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Figure 15. Position of the flame measured downstream from the inlet versus the fluid velocity imposed at the
inlet. The position is normalized by the diameter d of the tube. The black circles belong to 2-D axisymmetric
simulations of Pizza et al. (2010), and the red squares belong to 3-D LBM simulations.

Pizza et al. (2010). We performed 3-D simulations in this work and did not observe the
pulsating mode, which confirms their observation.

For these 3-D simulations, the required mesh size and computational costs are similar
to the fourth-order spectral element code of Pizza et al. (2008a,b, 2010). In particular,
for the same level of accuracy (see table 1), our simulations required approximately 8 %
more grid points and cost 15 % less node hours (measured on a CRAY XC40 system with
2x Intel Xeon E5-2695 v4 at 2.10 GHz per node) compared to what is reported in Pizza
et al. (2010). Our profiling also indicates that for simulations with detailed chemistry,
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the performance is limited by the chemical kinetics solver rather than the hydrodynamics
solver. In our simulations, approximately 71 % of the total computing time is spent in the
chemical kinetics solver, which explains the similar computational costs overall.

6. Conclusion

In this paper, we aimed to develop an accurate and robust lattice Boltzmann model
for reactive flows of practical interest. In Sawant et al. (2021a), we proposed a
lattice Boltzmann framework consisting of M + 2 lattice Boltzmann equations for
multicomponent mixtures of ideal gases. We introduced a new LBM system for the
Stefan–Maxwell diffusion along with a reduced, mean-field description of the mixture
momentum and energy using a two-population approach. Thermodynamic consistency
of this model allowed us to account naturally for the temperature and energy changes
due to chemical reactions by including the energy of formation, which avoids any ad hoc
modelling for the heat of reaction. The proposed model uses the extended LBM of Saadat
et al. (2021a) for the mean fields and a multistep approach for integrating the mass source
terms. Furthermore, we introduced novel kinetic boundary conditions for walls, inlets and
outlets that are compatible with the underlying reactive flow model.

Our model was validated in detail, starting from a zero-dimensional perfectly stirred
reactor and the one-dimensional laminar flame. The accuracy of the boundary conditions
was assessed by simulations of premixed hydrogen/air flames in a microtube in both two
and three dimensions. In all cases, the results were found to be in excellent agreement with
reference and DNS solutions that can be found in the literature.

To conclude, the proposed model is not only a viable alternative to traditional
reactive computational fluid dynamics but also the first model that is capable of solving
reactive flows entirely in the lattice Boltzmann framework. Thus our model inherits
well-known merits of the LBM, such as excellent parallel efficiency and accuracy
(exact advection), which has been shown to be advantageous compared to conventional
(high-order) approaches (see e.g. Marié, Ricot & Sagaut 2009; Mulloth et al. 2015;
Dorschner et al. 2016). While our model can be used seamlessly for low and moderately
high Mach number flows (Saadat et al. 2021a,b), different kinetic flow models, such as
the particle-on-demand method (Dorschner et al. 2018; Reyhanian, Dorschner & Karlin
2020; Kallikounis, Dorschner & Karlin 2021), can be used to further extend the model
to supersonic and hypersonic regimes. Finally, accurate diffusion models such as the
Stefan–Maxwell diffusion are most naturally implemented in a kinetic framework owing to
their origin in kinetic theory, and become particularly important for light species that can,
for instance, be found in fuel cells (Hsing & Futerko 2000; Stockie, Promislow & Wetton
2003; Suwanwarangkul et al. 2003; Lindstrom & Wetton 2017), which opens interesting
opportunities for optimizing clean energy applications.
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Appendix A. Boundary conditions: local moments

A.1. Tamm–Mott-Smith wall boundary condition
After the incoming populations are set to the target equilibrium, we find the local density
ρloc, flow velocity uloc, mass fractions Yloc, species velocities uloc

a and temperature Tloc at
the interface node as ∑

i∈D
f tgt
i +

∑
i/∈D

fi = ρloc, (A1)

∑
i∈D

cif
tgt
i +

∑
i/∈D

cifi = ρloculoc, (A2)

∑
i∈D

f tgt
ai +

∑
i/∈D

fai = ρlocYloc
a , a = 1, . . . , M, (A3)

∑
i∈D

cif
tgt
ai +

∑
i/∈D

cifai = ρloc
a uloc

a , a = 1, . . . , M, (A4)

∑
i∈D

gtgt
i +

∑
i/∈D

gi = ρloc
M∑

a=1

Yloc
a

[
U0

a +
∫ Tloc

T0

Ca,v(T ′) dT ′
]

+ 1
2
ρloc(uloc)2. (A5)

A.2. Inlet
After the incoming populations are set to the inlet equilibrium and the outgoing
populations are known, we find the local density ρloc, flow velocity uloc, composition
Yloc and temperature Tloc at the interface node as∑

i∈D
f in
i +

∑
i/∈D

fi = ρloc, (A6)

∑
i∈D

cif in
i +

∑
i/∈D

cifi = ρloculoc, (A7)

∑
i∈D

f in
ai +

∑
i/∈D

fai = ρlocYloc
a , a = 1, . . . , M, (A8)

∑
i∈D

gin
i +

∑
i/∈D

gi = ρloc
M∑

a=1

Yloc
a

[
U0

a +
∫ Tloc

T0

Ca,v(T ′) dT ′
]

+ 1
2
ρloc(uloc)2. (A9)

A.3. Outlet
After the incoming populations are set to the outlet equilibrium, we find the local density
ρloc, flow velocity uloc, mass fractions Yloc, and temperature Tloc at the outlet interface
node as ∑

i∈D
f out
i +

∑
i/∈D

fi = ρloc, (A10)

∑
i∈D

cif out
i +

∑
i/∈D

cifi = ρloculoc, (A11)
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Lattice Boltzmann model for reactive mixtures∑
i∈D

f out
ai +

∑
i/∈D

fai = ρlocYloc
a , a = 1, . . . , M, (A12)

∑
i∈D

gout
i +

∑
i/∈D

gi = ρloc
M∑

a=1

Yloc
a

[
U0

a +
∫ Tloc

T0

Ca,v(T ′) dT ′
]

+ 1
2
ρloc(uloc)2. (A13)

In the preceding text, (A5), (A9) and (A13) are integral equations to be resolved for the
temperature Tloc; cf. § 3.1 and (3.9).
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