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Abstract

In this paper a method based on a Markov chain Monte Carlo (MCMC) algorithm is
proposed to compute the probability of a rare event. The conditional distribution of
the underlying process given that the rare event occurs has the probability of the rare
event as its normalizing constant. Using the MCMC methodology, a Markov chain is
simulated, with the aforementioned conditional distribution as its invariant distribution,
and information about the normalizing constant is extracted from its trajectory. The
algorithm is described in full generality and applied to the problem of computing the
probability that a heavy-tailed random walk exceeds a high threshold. An unbiased
estimator of the reciprocal probability is constructed whose normalized variance vanishes
asymptotically. The algorithm is extended to random sums and its performance is
illustrated numerically and compared to existing importance sampling algorithms.
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1. Introduction

In this paper a Markov chain Monte Carlo (MCMC) methodology is proposed for computing
the probability of a rare event. The basic idea is to use an MCMC algorithm to sample from the
conditional distribution given that the event of interest occurs, and then extract the probability of
the event as the normalizing constant. The methodology will be outlined in full generality and
exemplified in the setting of computing hitting probabilities for a heavy-tailed random walk.

A rare-event simulation problem can often be formulated as follows. Consider a sequence
of random elements X(1), X(2), . . . , e.g. random variables, vectors, or processes, each of
which can be sampled repeatedly by a simulation algorithm. The objective is to estimate
p(n) =P(X(n) ∈ An) for some large n, based on a sample X

(n)
0 , . . . , X

(n)
T −1. It is assumed that

the probability P(X(n) ∈ An) → 0 as n → ∞, so that the event {X(n) ∈ An} can be thought of
as rare. The solution to the problem consists of finding a family of simulation algorithms and
corresponding estimators whose performance is satisfactory for all n. For unbiased estimators
p̂

(n)
T of p(n), a useful performance measure is the relative error

RE(n) = var(p̂(n)
T )

(p(n))2
.
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An algorithm is said to have vanishing relative error if the relative error tends to 0 as n → ∞
and bounded relative error if the relative error is bounded in n.

It is well known that the standard Monte Carlo (MC) algorithm is inefficient for computing
rare-event probabilities. As an illustration, consider the standard MC estimate

p̂
(n)
T = 1

T

T −1∑
t=0

1{X(n)
t ∈ An}

of p(n) = P(X(n) ∈ An) based on the independent replicas X
(n)
0 , . . . , X

(n)
T −1. The relative error

of the MC estimator is

var(p̂(n)
T )

(p(n))2
= p(n)(1 − p(n))

T (p(n))2
= 1

Tp(n)
− 1

T
→ ∞

as n → ∞, indicating that the performance deteriorates when the event is rare.
A popular method to reduce the computational cost is importance sampling; see, e.g. [3]. In

importance sampling the random variables X
(n)
0 , . . . , X

(n)
T −1 are sampled independently from

a different distribution, say G(n), instead of the original distribution F (n). The importance
sampling estimator is defined as the weighted empirical estimator

p̂
(n)
T = 1

T

T −1∑
t=0

L(n)(X
(n)
t )1{X(n)

t ∈ An},

where L(n) = dF (n)/dG(n) is the likelihood ratio, which is assumed to exist on A. The
importance sampling estimator p̂

(n)
T is unbiased and its performance depends on the choice of

the sampling distribution G(n). The optimal sampling distribution is called the zero-variance
distribution and is simply the conditional distribution

F
(n)
A (·) = P(X(n) ∈ · | X(n) ∈ An) = P(X(n) ∈ · ∩ An)

p(n)
.

In this case the likelihood ratio weights L(n) are equal to p(n), which implies that p̂
(n)
T has zero

variance. Clearly, the zero-variance distribution cannot be implemented in practice because p(n)

is unknown, but it serves as a starting point for selecting the sampling distribution. A good idea
is to choose a sampling distribution G(n) that approximates the zero-variance distribution and
such that the random variable X(n) can easily be sampled from G(n); the event {X(n) ∈ An} is
more likely under the sampling distribution G(n) than under the original F (n), and the likelihood
ratio L(n) is unlikely to become too large. Proving efficiency (e.g. bounded relative error) of
an importance sampling algorithm can be technically cumbersome and often requires extensive
analysis.

The methodology proposed in this paper is also based on the conditional distribution F
(n)
An

.

Because F
(n)
An

is known up to the normalizing constant p(n), it is possible to sample from F
(n)
An

using an MCMC algorithm, such as a Gibbs sampler or Metropolis–Hastings algorithm. The
idea is to generate samples X

(n)
0 , . . . , X

(n)
T −1 from a Markov chain with invariant distribution

F
(n)
An

and construct an estimator of the normalizing constant p(n). An unbiased estimator of

q(n) = (p(n))−1 is constructed from a known probability distribution V (n) on An and the
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original distribution F (n) of X(n) by

q̂
(n)
T = 1

T

T −1∑
t=0

dV (n)

dF (n)
(X

(n)
t )1{X(n)

t ∈ An}. (1.1)

The performance of the estimator depends both on the choice of the distribution V (n) and on
the ergodic properties of the MCMC sampler used in the implementation. Roughly speaking,
the rare-event properties, as n → ∞, are controlled by the choice of V (n) and the large sample
properties, as T → ∞, are controlled by the ergodic properties of the MCMC sampler.

The computation of normalizing constants and ratios of normalizing constants in the context
of MCMC is a reasonably well-studied problem in the statistical literature; see, e.g. [11] and
the references therein. However, such methods have, to the best of our knowledge, not been
studied in the context of rare-event simulation.

To exemplify MCMC methodology, we consider the problem of computing the probability
p(n) = P(Sn > an) that a random walk Sn = Y1 +· · ·+Yn (where Y1, . . . , Yn are nonnegative,
independent, and heavy-tailed random variables) exceeds a high threshold an as the number of
summands n increases. This problem has received some attention in the context of conditional
MC algorithms (see [2] and [4]) and importance sampling algorithms (see [5], [6], [10], and
[15]), most notably in the setting where the number of summands is fixed.

In this paper a Gibbs sampler is presented for sampling from the conditional distribution
P((Y1, . . . , Yn) ∈ · | Sn > an). The resulting Markov chain is proved to be uniformly
ergodic. An estimator for (p(n))−1 of the form (1.1) is suggested with V (n) as the conditional
distribution of (Y1, . . . , Yn) given max{Y1, . . . , Yn} > an. The estimator is proved to have
vanishing normalized variance when the distribution of Y1 belongs to the class of subexponential
distributions. The proof is elementary and is completed in a few lines. This is in sharp contrast
to efficiency proofs for importance sampling algorithms for the same problem, which require
more restrictive assumptions on the tail of Y1 and tend to be long and technical; see [5], [6], and
[10]. An extension of the algorithm to a sum with a random number of steps is also presented.

The paper is organized as follows. The basic methodology for computing rare-event
probabilities is described in Section 2. Section 3 contains the design and efficiency results for
the estimator for computing hitting probabilities in the case of a heavy-tailed random walk with,
firstly, a deterministic number of steps, and, secondly, a random number of steps. In Section 4
we present numerical experiments and compare the efficiency of the MCMC estimator against
an existing importance sampling algorithm and standard MC.

2. Rare-event simulation by MCMC

In this section an algorithm for rare-event simulation using MCMC is presented and
conditions that ensure good convergence are discussed.

2.1. Formulation of the algorithm

Let X be a random element taking values in a measurable space. Denote by F the distribution
of X, and let A be a measurable set. The problem is to compute the probability

p = P(X ∈ A) =
∫

A

dF.
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The event {X ∈ A} is thought of as rare in the sense that p is small. Let FA be the conditional
distribution of X given X ∈ A. Then

dFA

dF
(x) = 1

p
1{x ∈ A}.

Consider a Markov chain (Xt )t≥0 having FA as its invariant distribution. Such a Markov
chain can be constructed by implementing an MCMC algorithm, such as a Gibbs sampler or a
Metropolis–Hastings algorithm; see, e.g. [3] and [12].

To construct an estimator of q = p−1, consider a probability distribution V with V � FA.
It follows that V � F and it is assumed that the density dV/dF is known. An estimator of q

is given by

q̂T = 1

T

T −1∑
t=0

u(Xt ), where u(x) = 1

p

dV

dFA

(x) = dV

dF
(x). (2.1)

Note that q̂T is unbiased since V � FA implies that V (A) = 1 and

EFA
[u(X)] =

∫
A

1

p

dV

dFA

(x)FA(dx) = 1

p

∫
A

V (dx) = 1

p
.

The expected value above is computed under the invariant distribution FA of the Markov
chain. It is implicitly assumed that the sample size T is sufficiently large that the burn-in
period, the time until the Markov chain reaches stationarity, is negligible or alternatively that
the burn-in period is discarded.

It is possible to invert the estimator and think of p̂T = (q̂T )−1 as an estimator for p, but
one has to be cautious. Indeed, if the support of V is strictly contained in A then there is a
nonzero probability that all the terms in the sum in (2.1) are 0, leading to the estimate q̂T = 0
and p̂T = ∞. To avoid this, we can simply take p̂T as the minimum of (q̂T )−1 and 1.

There are two essential design choices that determine the performance of the algorithm: the
choice of the distribution V and the design of the MCMC sampler. The distribution V influences
the variance of u(Xt ) in (2.1) and is therefore of main concern for controlling the rare-event
properties of the algorithm. It is desirable to choose V such that the normalized variance of the
estimator, given by p2 var(q̂T ), is not too large. On the other hand, the design of the MCMC
sampler is crucial to control the dependence of the Markov chain and thereby the convergence
rate of the algorithm as a function of the sample size. To speed up the simulation, it is desirable
that the Markov chain mixes fast so that the dependence dies out quickly.

2.2. Controlling the normalized variance

In this subsection we provide an informal discussion of how to control the performance of
the estimator q̂T by controlling its normalized variance.

For the estimator q̂T to be useful, it is of course important that its variance is not too large.
When the probability p is small, it is desirable that var(q̂T ) is of size comparable to q2 = p−2.
To this end, the normalized variance p2 var(q̂T ) is studied.

The normalized variance can be decomposed as

p2 varFA
(q̂T ) = p2 varFA

(
1

T

T −1∑
t=0

u(Xt )

)

= p2
(

1

T
varFA

(u(X0)) + 2

T 2

T −1∑
t=0

T −1∑
s=t+1

covFA
(u(Xs), u(Xt ))

)
. (2.2)
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Let us for the moment focus our attention on the first term. It can be written as

p2

T
varFA

(u(X0)) = p2

T
(EFA

[u(X0)
2] − EFA

[u(X0)]2)

= p2

T

(∫
A

(
1

p

dV

dFA

(x)

)2

FA(dx) − 1

p2

)

= 1

T

(∫
A

dV

dFA

(x)V (dx) − 1

)
.

Therefore, in order to control the normalized variance, the distribution V must be chosen so that
EV [dV/dFA] is close to 1. It is clear that V = FA is the optimal choice. This motivates taking
V as an approximation of FA. The method is similar to that of choosing an efficient sampling
distribution in importance sampling. In that case FA is called the zero-variance distribution.
An important difference is that here V � FA � F is required, whereas in importance sampling
F needs to be absolutely continuous with respect to the sampling distribution.

If, for some set B ⊂ A, the probability P(X ∈ B) can be computed explicitly then a
candidate for V is

V (·) = P(X ∈ · | X ∈ B).

This candidate is likely to perform well if P(X ∈ B) is a good approximation of p. Indeed, in
this case ∫

A

dV

dFA

(x)V (dx) = P(X ∈ A)

P(X ∈ B)
,

which will be close to 1.
Now, let us consider the covariance term in (2.2). Since the samples (Xt )

T −1
t=0 form a Markov

chain, the Xt are dependent. Therefore, the covariance term in (2.2) is nonzero and may not be
ignored. The crude upper bound

covFA
(u(Xs), u(Xt )) ≤ varFA

(u(X0))

leads to the upper bound

2p2

T 2

T −1∑
t=0

T −1∑
s=t+1

covFA
(u(Xs), u(Xt )) ≤ p2

(
1 − 1

T

)
varFA

(u(X0))

for the covariance term. This is a very crude upper bound as it does not decay to 0 as T → ∞.
However, at the moment, the emphasis is on small p and so we will proceed with this upper
bound anyway. As indicated above, the choice of V controls the term p2 varFA

(u(X0)) and,
therefore, controls the normalized variance.

2.3. Ergodic properties

As we have just seen, the choice of the distribution V controls the normalized variance of
the estimator for small p. The design of the MCMC sampler, on the other hand, determines the
strength of the dependence in the Markov chain. Strong dependence implies slow convergence,
which results in a high computational cost. The convergence rate of MCMC samplers can
be analyzed within the theory of ϕ-irreducible Markov chains. Fundamental results, for
ϕ-irreducible Markov chains, are given in [18] and [19]. We will focus on conditions that
imply a geometric convergence rate. The conditions given below are well studied in the context

https://doi.org/10.1239/jap/1402578630 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1402578630


364 T. GUDMUNDSSON AND H. HULT

of MCMC samplers. Conditions for geometric ergodicity in the context of Gibbs samplers are
considered in, e.g. [7], [21], and [22], and, for Metropolis–Hastings algorithms, in [17].

A Markov chain (Xt )t≥0 with transition kernel p(x, ·) = P(Xt+1 ∈ · | Xt = x) is
ϕ-irreducible if there exists a measure ϕ such that

∑
t p(t)(x, ·) � ϕ(·), where p(t)(x, ·) =

P(Xt ∈ · | X0 = x) denotes the t-step transition kernel. A Markov chain with invariant
distribution π is called geometrically ergodic if there exists a positive function M and a constant
r ∈ (0, 1) such that

‖p(t)(x, ·) − π(·)‖TV ≤ M(x)rt , (2.3)

where ‖ · ‖TV denotes the total variation norm. This condition ensures that the distribution of
the Markov chain converges at a geometric rate to the invariant distribution. If the function M

is bounded then the Markov chain is said to be uniformly ergodic. Conditions such as (2.3) may
be difficult to establish directly and are therefore substituted by suitable minorization or drift
conditions. A minorization condition holds on a set C if there exist a probability measure ν, a
positive integer t0, and δ > 0 such that

p(t0)(x, B) ≥ δν(B)

for all x ∈ C and Borel sets B. In this case C is said to be a small set. Minorization conditions
have been used to obtain rigorous bounds on the convergence of MCMC samplers; see, e.g. [20].

If the entire state space is small then the Markov chain is uniformly ergodic. Typically,
uniform ergodicity does not hold for Metropolis samplers; see [17, Theorem 3.1]. Hence, useful
sufficient conditions for geometric ergodicity are often given in the form of drift conditions;
see [7] and [17]. Drift conditions, established through the construction of appropriate Lyapunov
functions, are also useful for establishing central limit theorems for MCMC algorithms; see
[14], [18], and the references therein. When studying simulation algorithms for random walks,
in Section 3, we will encounter Gibbs samplers that are uniformly ergodic.

2.4. Asymptotic efficiency

Asymptotic efficiency can be conveniently formulated in terms of a limit as a large deviation
parameter tends to ∞. As is usual in problems related to rare-event simulation, the problem at
hand is embedded in a sequence of problems, indexed by n = 1, 2, . . . . The general setup is
formalized as follows.

Let (X(n))n≥1 be a sequence of random elements with X(n) having distribution F (n), and let
An be the sets of interest. Suppose that

p(n) = P(X(n) ∈ An) → 0

as n → ∞. For the nth problem, a Markov chain (X
(n)
t )T −1

t=0 with invariant distribution
F

(n)
An

(·) = P(X(n) ∈ · | X(n) ∈ An) is generated by an MCMC algorithm. The estimator of

q(n) = (p(n))−1 (which is based on a probability distribution V (n) that has known density with
respect to F (n) and satisfies V (n) � F

(n)
An

) is given by

q̂
(n)
T = 1

T

T −1∑
t=0

u(n)(X
(n)
t ), where u(n)(x) = dV (n)

dF (n)
(x).

In the rest of the paper we will be concerned with the following notions of efficiency.

Rare-event efficiency. Select the probability distributions V (n) such that

(p(n))2 var
F

(n)
An

(u(n)(X)) → 0 as n → ∞.
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Large sample size efficiency. Design the MCMC sampler, by finding an appropriate Gibbs
sampler or a proposal density for the Metropolis–Hastings algorithm, such that, for each
n ≥ 1, the Markov chain (X

(n)
t )t≥0 is geometrically ergodic.

Remark 2.1. The rare-event efficiency criteria is formulated in terms of the efficiency of
estimating (p(n))−1 by q̂

(n)
T . If we insist on studying the mean and variance of p̂

(n)
T = (q̂

(n)
T )−1

then the effects of the transformation x �→ x−1 must be taken into account. For instance, the
estimator p̂

(n)
T is biased and its variance could be infinite. The bias can be reduced, for instance,

via the delta method illustrated in [3, p. 76]. We also remark that even in the estimation of
(p(n))−1 by q̂

(n)
T there is a bias coming from the fact that the Markov chain is not perfectly

stationary.

Remark 2.2. The proposed methodology can obviously be generalized to estimate the
expectations θ(n) = E[hn(X

(n))] for integrable functions hn, in which case the conditional
distribution F

(n)
A must be replaced by F

(n)
hn

, given by dF
(n)
hn

/dF (n) = (θ(n))−1hn.

3. A random walk with heavy-tailed steps

In this section the estimator introduced in Section 2 is applied to compute the probability
that a random walk with heavy-tailed steps exceeds a high threshold.

Let Y1, . . . , Yn be nonnegative, independent, and identically distributed random variables
with common distribution FY . Consider the random walk Sn = Y1 + · · · + Yn and the problem
of computing the probability

p(n) = P(Sn > an),

where an → ∞ sufficiently fast that p(n) → 0 as n → ∞.
It is convenient to denote by Y (n) the n-dimensional random vector (Y1, . . . , Yn)


 and by
An the set {y ∈ R

n : 1
y > an}, where 1 = (1, . . . , 1)
 ∈ R
n and y = (y1, . . . , yn)


. With
this notation,

p(n) = P(Sn > an) = P(1
Y (n) > an) = P(Y (n) ∈ An),

and the conditional distribution given the event is F
(n)
An

(·) = P(Y (n) ∈ · | Y (n) ∈ An).

The first step towards defining the estimator of q(n) = (p(n))−1 is to construct the Markov
chain (Y

(n)
t )t≥0 whose invariant distribution is F

(n)
An

, using a Gibbs sampler. In short, the Gibbs
sampler updates one element of Y

(n)
t at a time, keeping the other elements constant. Formally,

the algorithm proceeds as follows.

Algorithm 3.1. Start at an initial state Y
(n)
0 = (Y0,1, . . . , Y0,n)


, where Y0,1 + · · · + Y0,n >

an. Given Y
(n)
t = (Yt,1, . . . , Yt,n)


 for some t = 0, 1, . . ., the next state Y
(n)
t+1 is sampled as

follows.

1. Draw j1, . . . , jn from {1, . . . , n} without replacement and proceed by updating the
components of Y

(n)
t in the order thus obtained.

2. For each k = 1, . . . , n, repeat the following.

(a) Let j = jk be the index to be updated, and write

Yt,−j = (Yt,1, . . . , Yt,j−1, Yt,j+1, . . . , Yt,n)

.
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Sample Y ′
t,j from the conditional distribution of Y given that the sum exceeds the

threshold. That is,

P(Y ′
t,j ∈ · | Yt,−j ) = P

(
Y ∈ ·

∣∣∣∣ Y +
∑
k �=j

Yt,k > an

)
.

(b) Put Y ′
t = (Yt,1, . . . , Yt,j−1, Y

′
t,j , Yt,j+1, . . . , Yt,n)


 and, for the next k, apply (a)
to Y ′

t .

3. Draw π at random (uniformly) from the set of permutations of the numbers {1, . . . , n},
and put Y

(n)
t+1 = (Y ′

t,π(1), . . . , Y
′
t,π(n))


.

Iterate steps 1–3 until the entire Markov chain (Y
(n)
t )T −1

t=0 is constructed.

Remark 3.1. (i) In the heavy-tailed setting the trajectories of the random walk leading to the
rare event are likely to consist of one large increment (a big jump) while the other increments
are average. The purpose of the permutation step is to force the Markov chain to mix faster by
moving the big jump to different locations. However, the permutation step in Algorithm 3.1 is
not really needed when considering the probability P(Sn > an). This is due to the fact that the
summation is invariant of the ordering of the steps.

(ii) The algorithm requires sampling from the conditional distribution P(Y ∈ · | Y > c) for
arbitrary c. This is easy whenever inversion is feasible, see [3, p. 39], or acceptance/rejection
sampling can be employed. There are, however, situations where sampling from the conditional
distribution P(Y ∈ · | Y > c) may be difficult; see [13, Section 2.2].

The following proposition confirms that the Markov chain (Y
(n)
t )t≥0, generated by

Algorithm 3.1, has F
(n)
An

as its invariant distribution.

Proposition 3.1. The Markov chain (Y
(n)
t )t≥0, generated by Algorithm 3.1, has the conditional

distribution F
(n)
An

as its invariant distribution.

Proof. The goal is to show that each updating step (steps 2 and 3) of the algorithm preserves
stationarity. Since the conditional distribution F

(n)
An

is permutation invariant, it is clear that
step 3 preserves stationarity. Therefore, it is sufficient to consider step 2 of the algorithm.

Let Pj (y, ·) denote the transition probability of the Markov chain (Y
(n)
t )t≥0 corresponding

to the j th component being updated. It is sufficient to show that, for all j = 1, . . . , n and all
Borel sets in the form of a product B1 × · · · × Bn ⊂ An, the following equality holds:

F
(n)
An

(B1 × · · · × Bn) = E
F

(n)
An

[Pj (Y , B1 × · · · × Bn)].
Observe that, because B1 × · · · × Bn ⊂ An,

F
(n)
An

(B1 × · · · × Bn)

= E

[ n∏
k=1

1{Yk ∈ Bk}
∣∣∣∣ Sn > an

]

= P(Sn > an)
−1

E

[
1{Yj ∈ Bj }1{Sn > an}

∏
k �=j

1{Yk ∈ Bk}
]

= P(Sn > an)
−1

E

[
E[1{Yj ∈ Bj } | Yj > an − Sn,−j , Y

(n)
−j ] ∏

k �=j 1{Yk ∈ Bk}
P(Yj > an − Sn,−j | Y

(n)
−j )

]
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= P(Sn > an)
−1

E

[
Pj (Y

(n), B1 × · · · × Bn)
∏
k �=j

1{Yk ∈ Bk}
]

= E[Pj (Y
(n), B1 × · · · × Bn) | Sn > an]

= E
F

(n)
An

[Pj (Y , B1 × · · · × Bn)],

with the notation Y
(n)
−j = (Y1, . . . , Yj−1, Yj+1, . . . , Yn)


 and Sn,−j = Sn −Yj . This completes
the proof.

As for the ergodic properties, Algorithm 3.1 produces a Markov chain which is uniformly
ergodic.

Proposition 3.2. For each n ≥ 1, the Markov chain (Y
(n)
t )t≥0 is uniformly ergodic. In

particular, it satisfies the following minorization condition: there exists δ > 0 such that

P(Y
(n)
1 ∈ B | Y

(n)
0 = y) ≥ δF

(n)
An

(B)

for all y ∈ An and all Borel sets B ⊂ An.

Proof. Take an arbitrary n ≥ 1. Uniform ergodicity can be deduced from the minorization
condition; see [19]. There exists a probability measure ν, a constant δ > 0, and an integer t0
such that

P(Y
(n)
t0

∈ B | Y
(n)
0 = y) ≥ δν(B)

for every y ∈ An and Borel set B ⊂ An. Take y ∈ An and write g(n)(· | y) for the Radon–
Nikodym derivative of P(Y

(n)
1 ∈ · | Y

(n)
0 = y) with respect to F

(n)
An

. The goal is to show that
the minorization condition holds with t0 = 1, δ = p(n)/n!, and ν = F

(n)
An

.
For any x ∈ An, there exists an ordering j1, . . . , jn of the numbers {1, . . . , n} such that

yj1 ≤ xj1 , . . . , yjk
≤ xjk

, yjk+1 > xjk+1 , . . . yjn > xjn

for some k ∈ {0, . . . , n}. The probability to draw this particular ordering in step 1 of the
algorithm is at least 1/n!. It follows that

g(x | y) ≥ p

n!
1{xj1 ≥ an − ∑

i �=j1
yi}

F̄Y (an − ∑
i �=j1

yi)

1{xj2 ≥ an − ∑
i �=j1,j2

yi − xj1}
F̄Y (an − ∑

i �=j1,j2
yi − xj1)

· · ·

× 1{xjn ≥ an − xj1 − · · · − xjn−1}
F̄Y (an − xj1 − · · · − xjn−1)

≥ p

n! ,
where the last inequality follows since, by construction of the ordering j1, . . . , jn, all the
indicators are equal to 1. The proof is completed by integrating, with respect to F

(n)
An

, both sides
of the inequality over any Borel set B ⊂ An.

Remark 3.2. To keep the proof of Proposition 3.2 simple, we have not used the permutation
step of the algorithm in the proof and not tried to optimize δ. By taking advantage of the
permutation step, we believe that the constant δ could, with some additional effort, be increased
by a factor n!.

Note that, so far, the distributional assumption for the steps Y1, . . . , Yn of the random walk
have been completely general. For the rare-event properties of the estimator, the design of V (n)

is essential and this is where the distributional assumptions become important. In this section
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a heavy-tailed random walk is considered. To be precise, assume that the variables Y1, . . . , Yn

are nonnegative and that the tail of FY is heavy in the sense that there is a sequence (an) of real
numbers such that

lim
n→∞

P(Sn > an)

P(Mn > an)
= 1, (3.1)

where Mn denotes the maximum of Y1, . . . , Yn. The class of distributions for which (3.1) holds
is large and includes the subexponential distributions. General conditions on the sequence (an)

for which (3.1) holds are given in [9] (see also [8]). For instance, if F̄Y is regularly varying at
∞ with index β > 1 then (3.1) holds with an = an for a > 0.

Next consider the choice of V (n). As observed in Section 2, a good approximation to the
conditional distribution F

(n)
An

is a candidate for V (n). For a heavy-tailed random walk, the ‘one
big jump’ heuristics says that the sum is large most likely because one of the steps is large.
Based on assumption (3.1), a good candidate for V (n) is the conditional distribution

V (n)(·) = P(Y (n) ∈ · | Mn > an).

Then V (n) has a known density with respect to F (n)(·) = P(Y (n) ∈ ·) given by

dV (n)

dF (n)
(y) = 1

P(Mn > an)
1

{
y :

n∨
j=1

yj > an

}
= 1

1 − FY (an)n
1

{
y :

n∨
j=1

yj > an

}
.

The estimator of q(n) = P(Sn > an)
−1 is given by

q̂
(n)
T = 1

T

T −1∑
t=0

dV (n)

dF (n)
(Y

(n)
t ) = 1

1 − FY (an)n

1

T

T −1∑
t=0

1

{ n∨
j=1

Yt,j > an

}
, (3.2)

where (Y
(n)
t )t≥0 is generated by Algorithm 3.1. Note that estimator (3.2) can be viewed as the

asymptotic approximation (1 − FY (an)
n)−1 of (p(n))−1 multiplied by the random correction

factor T −1 ∑T −1
t=0 1{∨n

j=1 Yt,j > an}. The efficiency of this estimator relies on the fact that
the random correction factor is likely to be close to 1 and has small variance.

Theorem 3.1. Suppose that (3.1) holds. Then the estimator q̂
(n)
T in (3.2) has vanishing

normalized variance for estimating (p(n))−1. That is,

lim
n→∞(p(n))2 var

F
(n)
An

(q̂
(n)
T ) = 0.

Proof. With u(n)(y) = (1 − FY (an)
n)−11{∨n

j=1 yj > an}, it follows from (3.1) that

(p(n))2 var
F

(n)
An

(u(n)(Y (n)))

= P(Sn > an)
2

P(Mn > an)2 var
F

(n)
An

(
1

{
Y :

n∨
j=1

Yj > an

})

= P(Sn > an)
2

P(Mn > an)2 P(Mn > an | Sn > an)P(Mn ≤ an | Sn > an)

= P(Sn > an)

P(Mn > an)

(
1 − P(Mn > an)

P(Sn > an)

)

→ 0.

This completes the proof.
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Remark 3.3. Theorem 3.1 covers a wide range of heavy-tailed distributions and even allows
the number of steps to increase with n. Its proof is elementary. This is in sharp contrast to the
existing proofs of efficiency (bounded relative error, say) for importance sampling algorithms
that cover less general models and tend to be long and technical; see, e.g. [5], [6], and [10]. It
must be mentioned though that Theorem 3.1 proves efficiency for computing (p(n))−1, whereas
the authors of [5], [6], and [10] proved efficiency for a direct computation of p(n).

3.1. An extension to random sums

In application to queueing and ruin theory, there is particular interest in sums consisting
of a random number of heavy-tailed steps. For instance, the stationary distribution of the
waiting time and the workload of an M/G/1 queue can be represented as a random sum; see
[1, Theorem 5.7, p. 237]. The classical Cramér–Lundberg model for the total claim amount
faced by an insurance company is another standard example of a random sum. In this section
Algorithm 3.1 is modified to efficiently estimate hitting probabilities for heavy-tailed random
sums.

Let Y1, Y2, . . . be nonnegative independent random variables with common distribution FY .
Let (N(n))n≥1 be integer-valued random variables independent of Y1, Y2, . . . . Consider the
random sum SN(n) = Y1 + · · · + YN(n) and the problem of computing the probability

p(n) = P(SN(n) > an),

where an → ∞ at an appropriate rate.
Denote by Ȳ (n) the vector (N(n), Y1, . . . , YN(n) )
. The conditional distribution of Ȳ (n),

given SN(n) > an, is given by

P(N(n) = k, (Y1, . . . , Yk) ∈ · | SN(n) > an) = P((Y1, . . . , Yk) ∈ ·, Sk > an)P(N(n) = k)

p(n)
.

A Gibbs sampler for sampling from the above conditional distribution can be constructed
essentially as inAlgorithm 3.1. The only additional difficulty is to update the random number of
steps in an appropriate way. In the following algorithm a particular distribution for updating the
number of steps is proposed that gives the correct invariant distribution. To ease the notation,
the superscript n is suppressed in the description of the algorithm and in the analysis of its
ergodic properties.

Algorithm 3.2. To initiate, sample N0 from P(N ∈ ·) and Y0,1, . . . , Y0,N0 such that Y0,1 +
· · · + Y0,N0 > an. Each iteration of the algorithm consists of the following steps. Suppose
that Ȳt = (kt , yt,1, . . . , yt,kt )


 with yt,1 + · · · + yt,kt > an. Write k∗
t := min{j : yt,1 + · · · +

yt,j > an}.
1. Sample the number of steps Nt+1 from the distribution

p(kt+1 | k∗
t ) = P(N = kt+1)1{kt+1 ≥ k∗

t }
P(N ≥ k∗

t )
.

If Nt+1 > Nt , sample Yt+1,kt+1, . . . , Yt+1,Nt+1 independently from FY and put Y
(1)
t =

(Yt,1, . . . , Yt,kt , Yt+1,kt+1, . . . , Yt+1,Nt+1)

.

2. Proceed by updating all the individual steps as in Algorithm 3.1.
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(a) Draw j1, . . . , jNt+1 from {1, . . . , Nt+1} without replacement and proceed by
updating the components of Y

(1)
t in the order thus obtained.

(b) For each k = 1, . . . , Nt+1, repeat the following.

(i) Let j = jk be the index to be updated, and write

Y
(1)
t,−j = (Y

(1)
t,1 , . . . , Y

(1)
t,j−1, Y

(1)
t,j+1, . . . , Y

(1)
t,Nt+1

)
.

Sample Y
(2)
t,j from the conditional distribution of Y given that the sum exceeds

the threshold. That is,

P(Y
(2)
t,j ∈ · | Y

(1)
t,−j ) = P

(
Y ∈ ·

∣∣∣∣ Y +
∑
k �=j

Y
(1)
t,k > an

)
.

(ii) Put Y
(2)
t = (Y

(1)
t,1 , . . . , Y

(1)
t,j−1, Y

(2)
t,j , Y

(1)
t,j+1, . . . , Y

(1)
t,Nt+1

)
 and, for the next
k, apply (i) to Y

(2)
t .

(c) Draw π at random (uniformly) from the set of permutations of the numbers
{1, . . . , Nt+1}, and put Ȳt+1 = (Nt+1, Y

(2)
t,π(1), . . . , Y

(2)
t,π(Nt+1)

)
.

Iterate until the entire Markov chain (Ȳt )
T −1
t=0 is constructed.

Proposition 3.3. The Markov chain (Ȳt )t≥0, generated by Algorithm 3.2, has the conditional
distribution P((N, Y1, . . . , YN) ∈ · | Y1 + · · · + YN > an) as its invariant distribution.

Proof. The only essential difference from Algorithm 3.1 is the first step of the algorithm,
where the number of steps and possibly the additional steps are updated. Therefore, by
Proposition 3.1, it is sufficient to prove that the first step of the algorithm preserves stationarity.
The transition probability of the first step, starting from a state (kt , yt,1, . . . , yt,kt ) with k∗

t =
min{j : yt,1 + · · · + yt,j > an}, can be written as

P (1)(kt , yt,1, . . . , yt,kt ; kt+1, A1 × · · · × Akt+1)

= P(Nt+1 = kt+1, (Yt,1, . . . , Yt,kt+1) ∈ A1 × · · · × Akt+1 | Nt = kt ,

Yt,1 = yt,1, . . . , Yt,kt = yt,kt )

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p(kt+1 | k∗
t )

kt+1∏
k=1

1{yt,k ∈ Ak}, kt+1 ≤ kt ,

p(kt+1 | k∗
t )

kt∏
k=1

1{yt,k ∈ Ak}
kt+1∏

k=kt+1

FY (Ak), kt+1 > kt .

Consider the stationary probability of a set of the form {kt+1} × A1 × · · · × Akt+1 . With π

denoting the conditional distribution P((N, Y1, . . . , YN) ∈ · | Y1 + · · · + YN > an), we have

Eπ [P (1)(Nt , Yt,1, . . . , Yt,Nt ; kt+1, A1 × · · · × Akt+1)]
= 1

P(SN > an)
E[P (1)(N, Y1, . . . , YN ; kt+1, A1 × · · · × Akt+1)1{SN > an}]. (3.3)
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By conditioning on N , and using the independence of N and Y1, Y2, . . . , the right-hand side
of (3.3) equals

1

P(SN > an)

∞∑
kt=1

P(N = kt )E[P (1)(kt , Y1, . . . , Ykt ; kt+1, A1 × · · · × Akt+1)1{Skt > an}].

(3.4)

With Bk∗ = {(y1, y2, . . . ) ∈ ⋃∞
q=k∗ R

q : min{j : y1 + · · · + yj > a} = k∗}, A⊗
kt

= A1 ×· · ·×
Akt , and A⊗

kt+1
= A1 × · · · × Akt+1 , (3.4) can be written as

1

P(SN > an)

×
(kt+1∑

kt=1

P(N = kt )E

[ kt∑
k∗=1

1{(Y1, . . . , Ykt ) ∈ Bk∗}P (1)(kt , Y1, . . . , Ykt ; kt+1, A
⊗
kt+1

)

]

+
∞∑

kt=kt+1+1

P(N = kt )E

[ kt+1∑
k∗=1

1{(Y1, . . . , Ykt+1) ∈ Bk∗}P (1)(kt , Y1, . . . , Ykt ; kt+1, A
⊗
kt+1

)

])
.

Inserting the expression for P (1), this expression becomes

1

P(SN > a)

(kt+1∑
kt=1

P(N = kt )

kt∑
k∗=1

P((Y1, . . . , Ykt ) ∈ Bk∗ ∩ A⊗
kt

)p(kt+1 | k∗)
kt+1∏

j=kt+1

FY (Aj )

+
∞∑

kt=kt+1+1

P(N = kt )

kt+1∑
k∗=1

P((Y1, . . . , Ykt+1) ∈ Bk∗ ∩ A⊗
kt+1

)p(kt+1 | k∗)
)

.

Changing the order of the summation, this expression becomes

1

P(SN > an)

( kt+1∑
k∗=1

kt+1∑
kt=k∗

P(N = kt )P((Y1, . . . , Ykt ) ∈ Bk∗ ∩ A⊗
kt

)p(kt+1 | k∗)
kt+1∏

j=kt+1

FY (Aj )

+
kt+1∑
k∗=1

∞∑
kt=kt+1+1

P(N = kt )P((Y1, . . . , Ykt+1) ∈ Bk∗ ∩ A⊗
kt+1

)p(kt+1 | k∗)
)

.

Since P((Y1, . . . , Ykt ) ∈ Bk∗ ∩ A⊗
kt

)
∏kt+1

j=kt+1 FY (Aj ) = P((Y1, . . . , Ykt+1) ∈ Bk∗ ∩A⊗
kt+1

), the
last expression equals

1

P(SN > an)

( kt+1∑
k∗=1

kt+1∑
kt=k∗

P(N = kt )P((Y1, . . . , Ykt+1) ∈ Bk∗ ∩ A⊗
kt+1

)p(kt+1 | k∗)

+
kt+1∑
k∗=1

∞∑
kt=kt+1+1

P(N = kt )P((Y1, . . . , Ykt+1) ∈ Bk∗ ∩ A⊗
kt+1

)p(kt+1 | k∗)
)

.
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Summing over kt , this expression becomes

1

P(SN > an)

( kt+1∑
k∗=1

P((Y1, . . . , Ykt+1) ∈ Bk∗ ∩ A⊗
kt+1

)p(kt+1 | k∗)P(k∗ ≤ N ≤ kt+1)

+
kt+1∑
k∗=1

P((Y1, . . . , Ykt+1) ∈ Bk∗ ∩ A⊗
kt+1

)p(kt+1 | k∗)P(N ≥ kt+1 + 1)

)
.

From the definition of p(kt+1 | k∗), it follows that this expression is equal to

1

P(SN > an)

kt+1∑
k∗=1

P((Y1, . . . , Ykt+1) ∈ Bk∗ ∩ A⊗
kt+1

)p(kt+1 | k∗)P(N ≥ k∗)

= 1

P(SN > an)

kt+1∑
k∗=1

P((Y1, . . . , Ykt+1) ∈ Bk∗ ∩ A⊗
kt+1

)P(N = kt+1)

= 1

P(SN > an)
P((Y1, . . . , Ykt+1) ∈ A⊗

kt+1
)P(N = kt+1)

= P(N = kt+1, (Y1, . . . , Ykt+1) ∈ A⊗
kt+1

| Y1 + · · · + YN > an),

which is the desired invariant distribution. This completes the proof.

Proposition 3.4. The Markov chain (Ȳt )t≥0, generated by Algorithm 3.2, is uniformly ergodic.
In particular, it satisfies the following minorization condition: there exists δ > 0 such that

P(Ȳ1 ∈ B | Ȳ0 = ȳ) ≥ δP((N, Y1, . . . , YN) ∈ B | Y1 + · · · + YN > an)

for all ȳ ∈ A = ⋃
k≥1{(k, y1, . . . , yk) : y1 + · · · + yk > an} and all Borel sets B ⊂ A.

The proof requires only a minor modification to the nonrandom case, Proposition 3.2, and
is therefore omitted.

Next, consider the distributional assumptions and the design of V (n). Let the distribution of
the number of steps P(N(n) ∈ ·) depend on n. By a similar reasoning to that used in the case
of a nonrandom number of steps, the following assumption is imposed: the variables N(n),
Y1, Y2, . . . , and the numbers an are such that

lim
n→∞

P(Y1 + · · · + YN(n) > an)

P(MN(n) > an)
= 1, (3.5)

where Mk = max{Y1, . . . , Yk}. Note that the denominator can be expressed as

P(MN(n) > an) =
∞∑

k=1

P(Mk > an)P(N(n) = k)

=
∞∑

k=1

[1 − FY (an)
k]P(N(n) = k)

= 1 − gN(n) (FY (an)),

where gN(n) (t) = E[tN(n) ] is the generating function of N(n). Sufficient conditions for (3.5) to
hold are given in [16, Theorem 3.1]. For instance, if F̄Y is regularly varying at ∞ with index
β > 1 and N(n) has a Poisson distribution with mean λn → ∞ as n → ∞, then (3.5) holds
with an = aλn for a > 0.
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Similarly to the nonrandom setting, a good candidate for V (n) is the conditional distribution

V (n)(·) = P(Ȳ (n) ∈ · | MN(n) > an).

Then V (n) has a known density with respect to F (n)(·) = P(Ȳ (n) ∈ ·) given by

dV (n)

dF (n)
(k, y1, . . . , yk) = 1

P(MN(n) > an)
1

{
(y1, . . . , yk) :

k∨
j=1

yj > an

}

= 1

1 − gN(n) (FY (an))
1

{
(y1, . . . , yk) :

k∨
j=1

yj > an

}
.

The estimator of q(n) = P(Sn > an)
−1 is given by

q̂
(n)
T = 1

T

T −1∑
t=0

dV (n)

dF (n)
(Ȳ

(n)
t ) = 1

gN(n) (FY (an))

1

T

T −1∑
t=0

1

{ Nt∨
j=1

Yt,j > an

}
, (3.6)

where (Ȳ
(n)
t )t≥0 is generated by Algorithm 3.2.

Theorem 3.2. Suppose that (3.5) holds. The estimator q̂
(n)
T in (3.6) has vanishing normalized

variance. That is,
lim

n→∞(p(n))2 varπn(q̂
(n)
T ) = 0,

where πn denotes the conditional distribution P(Ȳ (n) ∈ · | SN(n) > an).

The proof is practically identical to that of Theorem 3.1 and is therefore omitted.

Remark 3.4. Because the distribution of N(n) may depend on n, Theorem 3.2 covers a wider
range of settings for random sums than those studied in [5] and [10] where the authors presented
provably efficient importance sampling algorithms.

4. Numerical experiments

The theoretical results presented in this paper guarantee that q̂
(n)
T is an efficient estimator

of (p(n))−1. However, for comparison with existing algorithms, the numerical experiments
presented in this section are based on p̂

(n)
T = (q̂

(n)
T )−1 as an estimator for p(n). The literature

already contains numerical comparison of many of the existing algorithms. In particular, in
the setting of random sums. Numerical results for the algorithms by Dupuis et al. [10], the
hazard rate twisting algorithm by Juneja and Shahabuddin [15], and the conditional Monte Carlo
algorithm by Asmussen and Kroese [4] can be found in [10]. Additional numerical results for
the algorithms by Blanchet and Li [5], Dupuis et al. [10], and Asmussen and Kroese [4] can
be found in [5]. From the existing results, it appears as if the algorithm by Dupuis et al. [10]
has the best performance. Therefore, we only include numerical experiments of the MCMC
estimator and the estimator in [10], which uses importance sampling (IS) for sums.

By construction, each simulation run of the MCMC algorithm generates only a single random
variable (one step of the random walk), while both IS and standard MC generate n random
variables (n steps of the random walk) for the case of a deterministic number of steps. Therefore,
the number of runs for the MCMC is scaled up by a factor of n so that all algorithms (MCMC,
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Table 1: The table displays the batch mean and standard deviation of the estimates of P(Sn > an) as
well as the average runtime per batch. The number of batches run is 20, each consisting of T = 105

simulations for IS and MC, and T n simulations for MCMC. The asymptotic approximation is pmax =
P(max{Y1, . . . , Yn} > an).

β = 2, n = 5 a = 20, pmax = 4.901e − 4 a = 104, pmax = 1.999 92e − 9

MCMC IS MC MCMC IS MC

Average estimate 5.340e − 4 5.343e − 4 5.380e − 4 2.000 25e − 9 2.000 91e − 9 —
Standard deviation 6e − 7 13e − 7 770e − 7 7e − 14 215e − 14 —
Average time 14.4 13.9 1.5 15.9 15.9 —

β = 2, n = 20 a = 20, pmax = 1.2437e − 4 a = 104, pmax = 5.0000e − 10

MCMC IS MC MCMC IS MC

Average estimate 1.2614e − 6 1.2615e − 6 1.2000e − 6 5.0010e − 10 5.0006e − 10 —
Standard deviation 4e − 10 12e − 10 33 166e − 10 2e − 14 71e − 14 —
Average time 49.4 48.4 1.9 48.0 47.1 —

0.0026

0.0025

0.0024

0.0023

0.0022

0.0021

0.0020
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Figure 1: An illustration of the point estimate of P(Sn > an) as a function of the number of simulation
steps, with n = 5, a = 10, and β = 2. The estimate generated by the MCMC approach is shown with a

black line and the estimate generated by importance sampling is shown with a grey line.

MC, and IS) generate essentially the same number of random numbers. This gives a fair
comparison of the computer runtime between the three approaches.

First consider estimating P(Sn > an), where Sn = Y1 + · · · + Yn with Y1 having a Pareto
distribution with density fY (x) = β(x + 1)−β−1 for x ≥ 0. Let an = an. Each estimate is
calculated using 20 batches, each consisting of T = 105 simulations in the case of IS and
standard MC, and T n simulations in the case of MCMC. The batch sample mean and sample
standard deviation is recorded as well as the average runtime per batch. The results are presented
in Table 1. The convergence of the algorithms can also be visualized by considering the point
estimate as a function of number of simulation steps. This is presented in Figure 1. The MCMC
algorithm appears to perform comparably with the IS algorithm for p up to order 10−4 which
is a relevant range in, say, insurance and finance. However, for smaller p the MCMC algorithm
appears to performs better. The improvement over IS appears to increase as the event becomes
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Table 2: The table displays the batch mean and standard deviation of the estimates of P(SN > aρ) as
well as the average runtime per batch. The number of batches run is 20, each consisting of T = 105

simulations for IS and MC, and T E[N ] simulations for MCMC. The asymptotic approximation is pmax =
P(max{Y1, . . . , YN } > aρ).

β = 1, ρ = 0.2 a = 103, pmax = 0.999e − 3 a = 5 × 109, pmax = 2.0000e − 10

MCMC IS MC MCMC IS MC

Average estimate 1.019e − 3 1.012e − 3 1.037e − 3 2.000 003e − 8 1.999 325e − 8 —
Standard deviation 1e − 6 3e − 6 76e − 6 6e − 14 1114e − 14 —
Average time 25.8 11.1 1.2 385.3 139.9 —

β = 1, ρ = 0.05 a = 103, pmax = 0.999e − 3 a = 5 × 105, pmax = 1.9999e − 6

MCMC IS MC MCMC IS MC

Average estimate 1.027e − 3 1.017e − 3 1.045e − 3 2.0002e − 6 2.0005e − 6 3.2000e − 6
Standard deviation 1e − 6 4e − 6 105e − 6 1e − 10 53e − 10 55 678e − 10
Average time 61.5 44.8 1.3 60.7 45.0 1.3

more rare. This is due to the fact that the asymptotic approximation becomes better and better
as the event becomes more rare.

Now, consider estimating P(SN > aρ), where SN = Y1 + · · · + YN with N geometrically
distributed P(N = k) = (1−ρ)k−1ρ for k = 1, 2, . . . and aρ = aE[N ] = a/ρ. The numerical
results presented here are for the estimator p̂T = (q̂T )−1 with q̂T as in (3.6). Again, each
estimate is calculated using 20 batches, each consisting of T = 105 simulations in the case of
IS and standard MC, and T E[N ] simulations in the case of MCMC. The results are presented
in Table 2. Again, the MCMC algorithm appears to have performance comparable to the IS
algorithm for p up to the order 10−4 and better performance as p gets smaller.
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