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Non-stable K1-functors of Multiloop
Groups

Anastasia Stavrova

Abstract. Let k be a ûeld of characteristic 0. LetG be a reductive group over the ring of Laurent poly-
nomials R = k[x±11 , . . . , x±1n ]. Assume thatG contains amaximal R-torus, and that every semisimple
normal subgroup of G contains a two-dimensional split torus G2

m . We show that the natural map
of non-stable K1-functors, also calledWhitehead groups, KG

1 (R)→ KG
1 ( k((x1)) ⋅ ⋅ ⋅ ((xn))) is in-

jective, and an isomorphism if G is semisimple. As an application, we provide a way to compute the
diòerence between the full automorphism group of a Lie torus (in the sense of Yoshii–Neher) and
the subgroup generated by exponential automorphisms.

1 Introduction

Let R be a commutative ring with 1 and let G be a reductive group scheme over
R in the sense of [SGA3]. We say that the group scheme G is isotropic, if it con-
tains a proper parabolic subgroup P, or, equivalently, the automorphism group of G
contains a split 1-dimensional torus Gm. Under this assumption one can consider
the following “large” subgroup of G(R) generated by unipotent elements, EP(R) =
⟨UP(R),UP−(R)⟩, where UP and UP− are the unipotent radicals of P and any oppo-
site parabolic subgroup P−. IfR is a ûeld of characteristic 0 andG is the automorphism
group of a Z-graded ûnite-dimensional Lie algebra L over R, then EP(R) can be vi-
sualized as the subgroup generated by exp(ad(x)), where x runs over all elements of
non-zero grading in L.

_e set of (le�) cosets

G(R)/EP(R) = KG ,P
1 (R)

is called the non-stable K1-functor associated with G and P [HV,W, S78]. When
G(R)/EP(R) is a group, it is also sometimes denoted by WP(R,G) and called the
Whitehead group of G [A, ChGP3,G2]. Both names go back to Bass’ founding pa-
per [B], where the caseG = GLn was considered. We prefer the name “non-stable K1-
functor” over “Whitehead group”, since it suggests the existence of other non-stable
K-functors. Indeed, as a functor on the category of smooth algebras over a ûeld, the
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non-stable K1-functor coincides with the ûrst of non-stable Karoubi–Villamayor K-
functors in the sense of J. F. Jardine [J]; see [W,St13].

It is known that KG ,P
1 (R) is a group, and it is independent of the choice of P pro-

vided R is a semilocal ring or every semisimple normal subgroup ofG contains (Gm)2

locally in Zariski topology on SpecR [SGA3, Su,PSt1] (see also § 2). In this case P is
omitted from the notation; i.e., we write KG

1 instead of KG ,P
1 .

_e group KG
1 (k) = G(k)/G(k)+, when R = k is a ûeld, has been systematically

studied since the 1960s in relation to the Kneser–Tits problem [T1]; see the excel-
lent survey [G2]. In particular, if G is simple and simply connected, this group is
known to be torsion, trivial in many cases (e.g., if G is k-rational), and abelian except
possibly for some groups of type E8 [ChM,G2]. _e situation for arbitrary commu-
tative rings is much less clear. _e next simplest case seems to be the one of polyno-
mial rings over a ûeld k. It is known that if G is “constant”, i.e., deûned over k, then
KG

1 (k[x]) = KG
1 (k) [M], and if, moreover, every semisimple normal subgroup of G

contains (Gm)2, then
KG

1 (k[x1 , . . . , xn]) = KG
1 (k)

for any n ≥ 1 [Su,A,St13]. If G is simply connected, then

KG
1 ( k[x±1

1 , . . . , x
±1
n ]) = KG

1 (k)

for any n ≥ 1 [Su,St13].
_e non-constant case,whereG is deûned over the polynomial ring itself, is not as

well understood. However, signiûcant progress was recently made by V. Chernousov
P. Gille, and A. Pianzola in the case of a Laurent polynomial ring [ChGP2, ChGP3].
_eir work is motivated by applications to the theory of inûnite-dimensional Lie al-
gebras, namely, to classiûcation and conjugacy problems for extended aõne Lie al-
gebras (EALAs), which are higher nullity generalizations of aõne Kac–Moody alge-
bras [AABGP]. Any EALA can be reconstructed from its centerless core, which is a
Lie torus in the sense of [Y,N], while the Realization theorem [ABFP,_eorem 3.3.1]
implies that all Lie tori, except for just one class called quantum tori, are Lie algebras of
some isotropic adjoint simple group schemes over k[x±1

1 , . . . , x
±1
n ] (see § 5 for details).

In [ChGP3], V. Chernousov, P. Gille, and A. Pianzola showed that KG
1 (k[x±1]) = 1

for a simply connected groupG deûned over k[x±1], provided thatG contains (Gm)2,
and either G is quasi-split, or k is algebraically closed. In [ChGP2] they obtained a
general theorem relating groups of points

G( k[x±1
1 , . . . , x

±1
n ]) and G( k((x±1

1 )) ⋅ ⋅ ⋅ ((x±1
n ))) .

We state it here in a slightly simpliûed form.

_eorem 1.1 ([ChGP2, _eorem 14.3]) Let k be a ûeld of characteristic 0, and set
R = k[x±1

1 , . . . , x
±1
n ] and K = k((x1)) ⋅ ⋅ ⋅ ((xn)). Let G be a reductive group over R

having amaximal R-torus T . _en there exists a subgroup J of G(K) such that
● J has no non-trivial quotient groups of ûnite exponent and
● G(K) = G(R) ⋅ J ⋅ G(K)+, where G(K)+ stands for the normal subgroup of G(K)

generated by the K-points of all K-subgroups of GK isomorphic to Ga ,K .
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Note that a reductive group G over R = k[x±1
1 , . . . , x

±1
n ] always has a maximal

R-torus if n = 1 [ChGP1, Propositions 5.9 and 5.10] or if k is algebraically closed and
G is the adjoint group associated to a Lie torus [GP2, p. 532]. In general, there are
counterexamples [GP3, Remark 6.6].

In the setting of_eorem 1.1, assume that G is semisimple and isotropic. _en the
theorem implies that for any minimal parabolic R-subgroup P of G the natural map

(1.1) KG ,P
1 ( k[x±1

1 , . . . , x
±1
n ]) Ð→ KG ,P

1 ( k((x1)) ⋅ ⋅ ⋅ ((xn)))

is surjective; see [ChGP2, Remark 14.4] and Corollary 2.13. _is result is essential for
the proof of themain theorems in [ChGP2], but, unfortunately, it does not allow the
computation of KG

1 ( k[x±1
1 , . . . , x

±1
n ]) . V. Chernousov, P. Gille, and A. Pianzola then

ask the following natural question [ChGP2, p. 316]: is themap (1.1) also injective, i.e.,
an isomorphism? We answer this question positively in the following generality.

_eorem 1.2 Let k be a ûeld of characteristic 0. Let G be a reductive group scheme
over R = k[x±1

1 , . . . , x
±1
n ] having amaximal R-torus T , and such that every semisimple

normal subgroup of G contains (Gm ,R)2. _en the natural map

KG
1 ( k[x±1

1 , . . . , x
±1
n ]) Ð→ KG

1 ( k((x1)) ⋅ ⋅ ⋅ ((xn)))

is injective. If G is semisimple, this map is an isomorphism.

Note that this theorem implies the above-mentioned results of [ChGP3], since for
a quasi-split simply connected groupG, one has KG

1 (K) = 1 for any ûeld K (see [G2]).
_eorem 1.2 is proved in Subsection 4.3 by combining the results of [PSt1, St13]

on the structure of isotropic groups over general commutative rings with a special
“diagonal argument” trick inspired by some unpublishedwork of I. Panin elaborating
on [OPa, Prop. 7.1]; see Lemma 4.1. _e assumption that G contains (Gm ,R)2 and not
justGm ,R goes back to [Su,PSt1], the reason being that SL2(k[x , y]) is not equal to its
subgroup E2(k[x , y]) generated by upper and lower unitriangular matrices, and our
methods fail. _e actual statement of _eorem 1.2 for KG

1 = SL2 /E2 is trivially true
if n = 1, since k[x±1] is Euclidean, and false if n ≥ 3 by [BaMo]; the case n = 2 is not
known at present; see e.g., [Ab].
As an immediate corollary of _eorem 1.2, we obtain the following result on Lie

tori. Recall that a Lie torus is a ∆ × Λ-graded Lie algebra, where ∆ is an irreducible
ûnite root system joined with 0 and Λ ≅ Zn , satisfying certain axioms similar to the
standard generators and relations axiomatics of complex simple Lie algebras; see Def-
inition 5.2.

_eorem 1.3 Let k be an algebraically closed ûeld of characteristic 0, ∆ be a ûnite root
system of rank ≥ 2, and Λ = Zn , n ≥ 1. Let L be a centerless Lie Λ-torus of type ∆ over
k that is ûnitely generated over its centroid R ≅ k[x±1

1 , . . . , x
±1
n ]. Let G = AutR(L)○ be

the connected component of the algebraic automorphismgroup ofL as an R-Lie algebra,
and set

Eex p(L) = ⟨exp(adx), x ∈ Lλ
α , (α, λ) ∈ ∆ × Λ, α ≠ 0⟩ .
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_en there is an isomorphism of groups

G(R)/Eex p(L) ≅ KG
1 ( k((x1)) ⋅ ⋅ ⋅ ((xn))) .

Using the same methods as in _eorem 1.2, we also prove a similar statement on
R-equivalence class groups of Yu. Manin. _is application was suggested by P. Gille.
_e proof is given in Subsection 4.2.

_eorem 1.4 Let k be a ûeld of characteristic 0. Let G be a reductive group scheme
over R = k[x±1

1 , . . . , x
±1
n ] having amaximal R-torus T . _en the natural map ofR-equi-

valence class groups

G( k(x1 , . . . , xn))/RÐ→ G( k((x1)) ⋅ ⋅ ⋅ ((xn)))/R

is an isomorphism.

2 Preliminaries

2.1 Elementary Subgroups, Non-stable K1-functors, and R-equivalence

Let A be a commutative ring. Let G be an isotropic reductive group scheme over A,
and let P be a parabolic subgroup of G in the sense of [SGA3]. Since the base SpecA
is aõne, the group P has a Levi subgroup LP [SGA3, Exp. XXVI Cor. 2.3]. _ere is
a unique parabolic subgroup P− in G that is opposite to P with respect to LP , that
is P− ∩ P = LP (cf. [SGA3, Exp. XXVI _. 4.3.2]). We denote by UP and UP− the
unipotent radicals of P and P−, respectively.

Deûnition 2.1 _e elementary subgroup EP(A) corresponding to P is the subgroup
of G(A) generated as an abstract group by UP(A) and UP−(A).

Note that if L′P is another Levi subgroup of P, then L′P and LP are conjugate by an
element u ∈ UP(A) [SGA3, Exp.XXVICor. 1.8], hence EP(A) does not depend on the
choice of a Levi subgroup or of an opposite subgroup P−, respectively. We suppress
the particular choice of LP or P− in this context.

Deûnition 2.2 A parabolic subgroup P in G is called strictly proper if it intersects
properly every normal semisimple subgroup of G.

_e following theorem combines several results of [PSt1] and [SGA3, Exp. XXVI,
§5].

_eorem 2.3 ([St13, _eorem 2.1]) Let G be a reductive group scheme over a com-
mutative ring A, and let R be a commutative A-algebra.
(i) Assume that A is a semilocal ring. _en the subgroup EP(R) of G(R) is the

same for any minimal parabolic A-subgroup P of G. If, moreover, G contains
a strictly proper parabolic A-subgroup, the subgroup EP(R) is the same for any
strictly proper parabolic A-subgroup P.
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(ii) If A is not necessarily semilocal, but for every maximal ideal m in A, every nor-
mal semisimple subgroup ofGAm contains (Gm ,Am)2, then the subgroup EP(R) of
G(R) = GR(R) is the same for any strictly proper parabolic R-subgroup P of GR .

In both these cases, EP(A) is normal in G(A).

Deûnition 2.4 Under the assumptions of_eorem 2.3(i) or (ii), we call EP(R) the
elementary subgroup of G(R) and denote it by E(R).

Deûnition 2.5 _e functor KG ,P
1 (R) = G(R)/EP(R) on the category of commu-

tative A-algebras R is called the non-stable K1-functor, or theWhitehead group asso-
ciated with G and P. Under the assumptions of _eorem 2.3(i) or (ii), we write KG

1
instead of KG ,P

1 .

Note that the normality of the elementary subgroup implies that KG
1 is a group-

valued functor.
Non-stable K1 functors are closely related to R-equivalence class groups intro-

duced by Yu. Manin in [Ma].

Deûnition 2.6 Let X be an algebraic variety over a ûeld k. Denote by k[t](t),(t−1)
the semilocal ring of the aõne lineA1

k over k at the points 0 and 1. Two points x0 , x1 ∈
X(k) are called directly R-equivalent if there is x(t) ∈ X(k[x](x),(x−1)) such that
x(0) = x0 and x(1) = x1. _e R-equivalence relation on X(k) is the equivalence
relation generated by direct R-equivalence. _e R-equivalence class group G(k)/R
of an algebraic k-group G is the quotient of G(k) by the R-equivalence class of the
neutral element 1 ∈ G(k).

It is easy to see that the R-equivalence class of the neutral element 1 ∈ G(k) is a
normal subgroup of G(k), so G(k)/R is indeed a group. Apart from that, if G has a
proper parabolic subgroup P over k, then all elements of EP(k) areR-equivalent to 1,
so KG ,P

1 (k) surjects onto G(k)/R. If G semisimple and simply connected and P is
strictly proper, then KG ,P

1 (k) = KG
1 (k) ≅ G(k)/R by [G2,_éorème 7.2].

In this paper,we aremainly interested in values ofKG
1 on Laurent polynomial rings

over a ûeld. We will use the following result.

_eorem ([St13, Corollary 6.2]) Let G be a simply connected semisimple algebraic
group over a ûeld k, such that every semisimple normal subgroup ofG contains (Gm ,k)2.
For any m, n ≥ 0, there are natural isomorphisms

KG
1 (k) ≅ KG

1 (k[Y1 , . . . ,Ym , X1 , X−1
1 , . . . , Xn , X−1

n ]) .

Wewill also use the following lemma, whichwas established in [Su, Corollary 5.7]
for G = GLn , and in [A, Prop. 3.3] for most Chevalley groups; for isotropic groups it
was proved in [St13, Lemma 6.1], although the statementwas slightly weaker than the
present one. _e idea goes back to [Q].

Lemma 2.7 Let Abe a commutative ring, and letG be a reductive group scheme over
A such that every semisimple normal subgroup of G is isotropic. Assume, moreover,
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that for any maximal ideal m ⊆ A, every semisimple normal subgroup of GAm contains
(Gm ,Am)2. _en for any monic polynomial f ∈ A[t], the natural homomorphism

KG
1 (A[t])Ð→ KG

1 (A[t] f )
is injective.

Proof _e proof goes exactly as in [Su, Corollary 5.7] using [St13, _eorem 1.1] in
place of [Su,_eorem 5.1], and [St13, Lemma 2.3] in place of [Su, Lemma 3.7].

2.2 Torus Actions on Reductive Groups

Let R be a commutative ring with 1, and let S = (Gm ,R)N = Spec(R[x±1
1 , . . . , x

±1
N ])

be a split N-dimensional torus over R. Recall that the character group X∗(S) =
HomR(S ,Gm ,R) of S is canonically isomorphic to ZN . If S acts R-linearly on an
R-module V , this module has a natural ZN -grading

V = ⊕
λ∈X∗(S)

Vλ ,

where
Vλ = {v ∈ V ∣ s ⋅ v = λ(s)v for any s ∈ S(R)} .

Conversely, any ZN -graded R-module V can be provided with an S-action by the
same rule.

Let G be a reductive group scheme over R in the sense of [SGA3]. Assume that
S acts on G by R-group automorphisms. _e associated Lie algebra functor Lie(G)
then acquires a ZN -grading compatible with the Lie algebra structure,

Lie(G) = ⊕
λ∈X∗(S)

Lie(G)λ .

We will use the following version of [SGA3, Exp. XXVI Prop. 6.1].

Lemma 2.8 Let L = CentG(S) be the subscheme of G ûxed by S. Let Ψ ⊆ X∗(S) be
an R-subsheaf of sets closed under addition of characters.

(i) If 0 ∈ Ψ, then there exists a unique smooth connected closed subgroup UΨ of G
containing L and satisfying

(2.1) Lie(UΨ) =⊕
λ∈Ψ

Lie(G)λ .

Moreover, if Ψ = {0}, then UΨ = L; if Ψ = −Ψ, then UΨ is reductive; if Ψ ∪ (−Ψ) =
X∗(S), then UΨ and U−Ψ are two opposite parabolic subgroups of G with the common
Levi subgroup UΨ∩(−Ψ).

(ii) If 0 /∈ Ψ, then there exists a unique smooth connected unipotent closed subgroup
UΨ of G normalized by L and satisfying (2.1).

Proof _e statement immediately followsby faithfully�atdescent from the standard
facts about the subgroups of split reductive groups proved in [SGA3, Exp. XXII]; see
the proof of [SGA3, Exp. XXVI Prop. 6.1].
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Deûnition 2.9 _e sheaf of sets

Φ = Φ(S ,G) = {λ ∈ X∗(S) ∖ {0} ∣ Lie(G)λ ≠ 0}
is called the system of relative roots of G with respect to S.

Remark 2.10 Choosing a total ordering on the Q-space Q⊗ZX∗(S) ≅ Qn , one
deûnes the subsets of positive and negative relative roots Φ+ and Φ−, so that Φ is a
disjoint union of Φ+, Φ−, and {0}. By Lemma 2.8 the closed subgroups

UΦ+∪{0} = P, UΦ−∪{0} = P−

are twooppositeparabolic subgroupsofGwith the commonLevi subgroupCentG(S).
_us, if a reductive group G over R admits a non-trivial action of a split torus, then it
has a proper parabolic subgroup. _e converse is true Zariski-locally; see Lemma 3.6.

2.3 Loop Reductive Groups and Maximal Tori

Let k be a ûeld of characteristic 0. We ûx once and for all an algebraic closure k of k
and a compatible set of primitive m-th roots of unity ξm ∈ k, m ≥ 1.

P. Gille and A. Pianzola [GP3, Ch. 2, 2.3] compute the étale (or algebraic) funda-
mental group of the k-scheme

X = Spec k[x±1
1 , . . . , x

±1
n ]

at the natural geometric point e∶ Spec k → X induced by the evaluation x1 = x2 = ⋅ ⋅ ⋅ =
xn = 1. Namely, let kλ , λ ∈ Λ be the set of ûnite Galois extensions of k contained in k.
Let I be the subset of Λ ×Z>0 consisting of all pairs (λ,m) such that ξm ∈ kλ . _e set
I is directed by the relation (λ,m) ≤ (µ, k) if and only if kλ ⊆ kµ and m∣k. Consider

Xλ ,m = Spec kλ[x
± 1

m
1 , . . . , x±

1
m

n ]
as a scheme over X via the natural inclusion of rings. _en Xλ ,m → X is aGalois cover
with the Galois group

Γλ ,m = (Z /mZ)n ⋊Gal(kλ/k),

where Gal(kλ/k) acts on kλ[x
± 1

m
1 , . . . , x±

1
m

n ] via its canonical action on kλ and each
(k1 , . . . , kn) ∈ (Z /mZ)n sends x 1/m

i to ξk i
m x 1/m

i , 1 ≤ i ≤ n. _e semi-direct product
structure on Γλ ,m is induced by the natural action ofGal(kλ/k) on µm(kλ) ≅ Z /mZ.
We have

(2.2) π1(X , e) = lim←Ð
(λ ,m)∈I

Γλ ,m = Ẑ(1)n ⋊Gal(k),

where Ẑ(1) denotes the proûnite group lim←Ðm
µm(k) equippedwith the natural action

of the absolute Galois group Gal(k) = Gal(k/k).
For any reductive group schemeG over X,we denote byG0 the split, orChevalley–

Demazure reductive group in the sense of [SGA3] of the same type as G. _e group
G is a twisted form of G0, corresponding to a cocycle class ξ in the étale cohomology
set H1

ét(X , Aut(G0)).
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Deûnition 2.11 [GP3, Deûnition 3.4] _e group scheme G is called loop reductive
if the cocycle ξ is in the image of the natural map

H1(π1(X , e), Aut(G0)(k)) Ð→ H1
ét(X , Aut(G0)) .

Here H1(π1(X , e), Aut(G0)(k)) stands for the non-abelian cohomology set in the
sense of Serre [Se]. _e group π1(X , e) acts continuously on Aut(G0)(k) via the
natural homomorphism π1(X , e)→ Gal(k/k).

We will use the following result.

_eorem ([GP3, Corollary 6.3]) A reductive group scheme over X is loop reductive
if and only if G has amaximal torus over X.

_e deûnition of amaximal torus is as follows.

Deûnition 2.12 ([SGA3, Exp. XII Déf. 3.1]) Let G be a group scheme of ûnite type
over a scheme S and let T be a S-torus which is an S-subgroup scheme of G. _en T
is amaximal torus of G over S, if Tk(s) is amaximal torus of Gk(s) for all s ∈ S.

2.4 Surjectivity Theorem of Chernousov–Gille–Pianzola

In this section we discuss _eorem 1.1 and its implications.

Proof of_eorem 1.1. In the original statement of [ChGP2,_eorem14.3], one con-
siders a linear algebraic k-group H whose connected component of identity H○ is re-
ductive, and a cocycle η ∈ H1(π1(R, e),H(k)). Let H be the R-group scheme that is
the η-twisted form of HR . _en there is aminimal parabolic (not necessarily proper)
R-subgroup scheme P of H○, a Levi subgroup L of P that is a loop reductive group
scheme, and a normal subgroup J of L(K) such that

(2.3) H(K) = ⟨H(R), J ,H(K)+⟩
and J is isomorphic to a quotient of a group admitting a composition series whose
quotients are pro-solvable groups in k-vector spaces.
Clearly, such a group J has no non-trivial quotients of ûnite exponent. We also

claim that in the above setting,

(2.4) H○(K) = H○(R) ⋅ J ⋅H○(K)+ ,
where J ⋅ H○(K)+ is normal in H○(K). Since H○ is a loop reductive group, by [GP3,
Corollary 7.4] the parabolic subgroup PK of H○

K is also minimal. _en, since K has
characteristic 0, one has H○(K)+ = EP(K) by _eorem 2.3(i) and [BT2, Proposi-
tion 6.2]. By [BT2, Proposition 6.11] one has

H○(K) = L(K)EP(K).
_is implies that J ⋅ H○(K)+ is normal in H○(K). It remains to note that H(K)+ =
H○(K)+, sinceGa ,K is connected. Now (2.3) and the equalityH○(R) = H(R)∩H○(K)
imply (2.4).

We proceed to show how the above facts imply the claim of our theorem.
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Case 1: G is a torus. _e proof of the theorem of Chernousov, Gille, and Pianzola for
the case where H = H○ = G is an R-torus does not use the assumption that H is given
by a cocycle with values in H(k) [ChGP2, Proof of _eorem 14.3, Case 1, p. 314].
_erefore, (2.4) implies that our theorem holds for G.

Case 2: G is adjoint. Assume that G is a loop semisimple group of adjoint type over
R. _en G = Aut(G)○, where Aut(G) is the R-group scheme of automorphisms of G.
Since G is loop reductive, the group Aut(G) = H satisûes the conditions of [ChGP2,
_eorem 14.3]. _en (2.4) shows that the claim of our theorem holds for G. Note that
in this case J ⋅G(K)+ is normal in G(K).
Case 3: G is semisimple. Now assume that G is an arbitrary loop semisimple group
scheme over R. _en there is a short exact sequence of R-group schemes

(2.5) 1Ð→ Cent(G)Ð→ G
pÐ→ Gad Ð→ 1,

where Gad is an adjoint semisimple group and Cent(G) is a ûnite group scheme of
multiplicative type. Since Gad has a maximal R-torus if and only if G does, Gad is a
loop semisimple group. By the previous case

Gad(K) = Gad(R) ⋅ J ⋅Gad(K)+ ,
where J has no non-trivial quotients of ûnite exponent. By [BT2, Corollaire 6.3] we
have p(G(K)+) = Gad(K)+. Since H1

ét(K , Cent(G)) is a group of ûnite exponent,
considering the “long” exact sequence of étale cohomology associated with (2.5), we
conclude that J ⊆ p(G(K)). Set I = p−1(J) ⊆ G(K). _en clearly,

G(K) = p−1(Gad(R)) ⋅ I ⋅G(K)+ .
Since H i

ét(R, Cent(G)) = H i
ét(K , Cent(G)) for all i ≥ 0 by [GP2, Prop. 3.4(2)], the

“long” exact sequence also implies that

p−1(Gad(R)) = Cent(G)(K) ⋅G(R) = Cent(G)(R) ⋅G(R) = G(R).
Assume that I has a proper normal subgroup I′ such that I/I′ has ûnite exponent.

Since J has no non-trivial quotients of ûnite exponent,we have I′/Cent(G)(K)∩ I′ =
J, and hence I = Cent(G)(K) ⋅ I′. Since Cent(G)(K) is ûnite, we can ûnd aminimal
subgroup I′ ≤ I such that I′ is normal in I and I/I′ has ûnite exponent. One readily
sees that such I′ has no non-trivial quotients of ûnite exponent. Since Cent(G)(K) =
Cent(G)(R), we have
G(K) = p−1(Gad(R))⋅I ⋅G(K)+ = G(R)⋅Cent(G)(K)⋅I′ ⋅G(K)+ = G(R)⋅I′ ⋅G(K)+ ,
which proves the claim of the theorem for G.

Case 4: G is reductive. Let G be an arbitrary loop reductive group scheme over R. Let
der(G) be the derived subgroup scheme of G and let rad(G) be the radical torus of
G in the sense of [SGA3]. By [SGA3, Exp. XXII, Prop. 6.2.4] there is a short exact
sequence of R-group schemes

1Ð→ C Ð→ rad(G) × der(G) fÐ→ G Ð→ 1,

where C is a ûnite group scheme of multiplicative type that is central in rad(G) ×
der(G). Arguing exactly as in [ChGP2, Proof of _eorem 14.3, Case 2, pp. 314–315]
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(except that the reference to _eorem 11.1 ibid. should be replaced by _eorem 14.1
ibid.), one concludes that

G(K) = G(R) ⋅ f (der(G)(K) × rad(G)(K)) .
Note that der(G) is a loop semisimple group scheme, since it has amaximal R-torus
once G does. _en rad(G) and der(G) are subject to the previous cases of the theo-
rem, and one readily deduces the claim for G.

Corollary 2.13 ([ChGP2, Remark 14.4]) Let k, R,K ,G be as in _eorem 1.1. Assume
in addition that G is semisimple. _en for any minimal parabolic R-subgroup P of G,
themap

KG ,P
1 ( k[x±1

1 , . . . , x
±1
n ]) Ð→ KG ,P

1 ( k((x1)) ⋅ ⋅ ⋅ ((xn)))
is surjective.

Proof SinceG is a loop reductive group, by [GP3, Corollary 7.4] , anyminimal para-
bolic subgroup P ofG remains aminimal parabolic subgroup inGK . _en sinceK has
characteristic 0, one has G(K)+ = EP(K) by [BT2, Proposition 6.2]. It was observed
in [ChGP2, Remark 14.4] that if G is simply connected, then the surjectivity of the
map in question follows from _eorem 1.1, since the group KG ,P

1 (K) has ûnite expo-
nent by [G2, Remarque 7.6]. We claim that KG ,P

1 (K) has ûnite exponent whenever G
is semisimple. Indeed, there is a short exact sequence

(2.6) 1Ð→ C Ð→ Gsc Ð→ G Ð→ 1,

where C is a ûnite group scheme of multiplicative type, contained in the center of
(G)sc. Let Psc ⊆ (G)sc be the parabolic subgroup that is the preimage of P. _e
“long” exact sequence of étale cohomology corresponding to (2.6) readily shows that
KG ,P

1 (K) has ûnite exponent once KG sc ,Psc

1 (K) does, since H1
ét(K ,C) is an abelian

torsion group.

We also obtain the following immediate corollary on R-equivalence class groups.
Note that the group G is not required to have amaximal torus over k[x±1 , . . . , x±1

n ].

Corollary 2.14 Let k be a ûeld of characteristic 0 and let G be a reductive group over
k[x±1

1 , . . . , x
±1
n ]. Set F = k(x1 , . . . , xn).

(i) _e natural map of R-equivalence class groups

G( k(x1 , . . . , xn))/RÐ→ G( k((x1)) ⋅ ⋅ ⋅ ((xn)))/R
is surjective.

(ii) If G is semisimple, then for every strictly proper parabolic subgroup P of GF the
natural map

KGF ,P
1 ( k(x1 , . . . , xn)) Ð→ KGF ,P

1 ( k((x1)) ⋅ ⋅ ⋅ ((xn)))
is surjective.

Proof _e proof is by induction on n starting with n = 1. Set A = k[x±1], F = k(x),
and K = k((x)). By [ChGP1, Propositions 5.9 and 5.10] every semisimple group
scheme G over A is loop reductive, i.e., contains amaximal A-torus.
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By the deûnition ofR-equivalence the subgroupG(K)+ is contained in theR-equi-
valence class of the neutral element. By [V, §17.1, Corollary 2] the group G(K)/R
has ûnite exponent. _erefore, by _eorem 1.1 the natural map G(A) → G(K)/R is
surjective. Since this map factors through the map G(F)/R → G(K)/R, the latter
map is surjective.

Now consider the non-stable K1-functors. By [GP3, Corollary 7.4] minimal par-
abolic subgroups of G, GF and GK are of the same type. _en, since GF contains
a strictly proper parabolic F-subgroup P, we conclude that any minimal parabolic
A-subgroup Q of G is strictly proper. Moreover, QF and QK are minimal parabolic
subgroups ofGF andGK , respectively. By_eorem 2.3we have KG ,Q

1 (F) = KGF ,P
1 (F)

and
KG ,Q

1 (K) = KGK ,PK
1 (K) = KGF ,P

1 (K).
By Corollary 2.13 the natural map KG ,Q

1 (A) → KG ,Q
1 (K) is surjective. Since this

map factors through themap KG ,Q
1 (F)→ KG ,Q

1 (K), the latter map is also surjective.
_erefore, themap

KGF ,P
1 (F)Ð→ KGF ,P

1 (K)
is surjective.
Assume that n > 1. Let F(−) denote any of the functors KGF ,P

1 (−) andG(−)/R on
the category of ûeld extensions of k(x1 , . . . , xn). By the case n = 1 themap

F( k((x1)) ⋅ ⋅ ⋅ k((xn−1))(xn)) Ð→ F( k((x1)) ⋅ ⋅ ⋅ ((xn)))
is surjective. Since this map factors through themap

F( k(xn)((x1)) ⋅ ⋅ ⋅ ((xn−1))) Ð→ F( k((x1)) ⋅ ⋅ ⋅ ((xn))) ,
the latter map is also surjective. By the induction hypothesis themap

F( k(x1 , . . . , xn)) Ð→ F( k(xn)((x1)) ⋅ ⋅ ⋅ ((xn−1)))
is surjective, which completes the proof.

3 KG
1 of Laurent Polynomials and Power Series Over General Rings

3.1 Results Over General Rings

In this section we discuss various relations between KG
1 (R[[t]]), KG

1 (R[t, t−1]), and
KG

1 (R((t))), where R is an arbitrary commutative ring and G is a reductive algebraic
group deûned over R. Our keystone result is the following theorem.

_eorem 3.1 Let R be a commutative ring and letG be a reductive group scheme over
R, such that every semisimple normal subgroup of G contains (Gm ,R)2. _en

E(R((t))) = E(R[[t]])E(R[t, t−1]) .

_e proof of this theorem uses the notions of relative roots and relative root sub-
schemes of reductive groups introduced by V. Petrov and the author in [PSt1]. _eir
deûnitions and a sketch of construction are given in Subsection 3.2, a�er which we
give a proof of _eorem 3.1. As for now, we discuss several easy corollaries of this
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theorem. We begin with a reformulation of _eorem 3.1 in terms of non-stable K1-
functors.

Corollary 3.2 Let R,G be as in _eorem 3.1. _en the sequence of pointed sets

1Ð→ KG
1 (R[t]) g↦(g ,g)ÐÐÐÐ→ KG

1 (R[[t]]) × KG
1 (R[t, t−1]) (g1 ,g2)↦g1 g2

−1

ÐÐÐÐÐÐÐ→ KG
1 (R((t)))

is exact.

Proof Follows immediately from _eorem 3.1 and Lemma 2.7.

Corollary 3.3 Let R,G be as in _eorem 3.1. _en the natural homomorphism

KG
1 (R[[t]])Ð→ KG

1 (R((t)))
is injective.

Proof Assume that the class of g ∈ G(R[[t]]) trivializes in KG
1 (R((t))) , that is, g ∈

G(R[[t]]) ∩ E(R((t))) . _en by _eorem 3.1 we can assume that g ∈ G(R[[t]]) ∩
E(R[t, t−1]). Since
(3.1) G(R[t, t−1]) ∩G(R[[t]]) = G(R[t]),
we have g ∈ G(R[t]) ∩ E(R[t, t−1]). By Lemma 2.7, this implies that g ∈ E(R[t]).
Hence, g ∈ E(R[[t]]).

_e following corollary is what we will use in the proof of_eorem 1.2.

Corollary 3.4 Let R,G be as in _eorem 3.1. If G(R[t]) = G(R)E(R[t]), then the
natural homomorphism

KG
1 (R[t, t−1])Ð→ KG

1 (R((t)))
is injective.

Proof Assume that the class of g ∈ G(R[t, t−1]) trivializes in KG
1 (R((t))) , that

is, g ∈ G(R[t, t−1]) ∩ E(R((t))) . _en by _eorem 3.1 we can assume that g ∈
G(R[t, t−1])∩E(R[[t]]) . By (3.1) we have g ∈ G(R[t])∩E(R[[t]]). Since G(R[t]) =
G(R)E(R[t]), we can write g = g0g1 with g0 ∈ G(R), g1 ∈ E(R[t]). Since g ∈
E(R[[t]]), setting t = 0 we deduce g0 ∈ E(R). Hence, g ∈ E(R[t]) ⊆ E(R[t, t−1]).

Remark 3.5 _emain result of [St13] shows that the equality

G(R[t]) = G(R)E(R[t])
holds if R is a regular ring containing a perfect ûeld k, and G is deûned over k. Using
other results of [St13], Lemma 2.7, and the techniques of [PaStV], we can prove the
same equality whenever R is a regular ring containing an inûnite ûeld k, and G is
deûned over R. _e latter result is still unpublished, sowe decided not to use it in this
paper. Instead,we give an independent andmuch simpler proof in the casewhere R is
a ring of Laurent polynomials, andG satisûes the same assumptions as in_eorem1.2;
see Lemma 4.5.
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3.2 Relative Roots and Relative Root Subschemes

In order to prove_eorem 3.1,we need to use the notions of relative roots and relative
root subschemes. _ese notions were initially introduced and studied in [PSt1] and
further developed in [St09].

Let R be a commutative ring. Let G be a reductive group scheme over R. Let P be a
parabolic subgroup scheme ofG over R, and let L be a Levi subgroup of P. By [SGA3,
Exp. XXII, Prop. 2.8] the root system Φ of Gk(s), s ∈ SpecR, is constant locally in
the Zariski topology on SpecR. _e type of the root system of Lk(s) is determined
by a Dynkin subdiagram of the Dynkin diagram ofΦ, which is also constant Zariski-
locally on SpecR by [SGA3, Exp. XXVI, Lemme 1.14 and Prop. 1.15]. In particular, if
SpecR is connected, all these data are constant on SpecR.

Lemma 3.6 Let G be a reductive group over a connected commutative ring R, let P
be a parabolic subgroup of G, let L be a Levi subgroup of P, and let L be the image of L
under the natural homomorphism G → Gad ⊆ Aut(G). Let D be the Dynkin diagram
of the root system Φ of Gk(s) for any s ∈ SpecA. We identify D with a set of simple
roots of Φ. Let J ⊆ D be the set of simple roots such that D ∖ J ⊆ D is the subdiagram
corresponding to Lk(s). _en there are a unique maximal split subtorus S ⊆ Cent(L)
and a subgroup Γ ≤ Aut(D) such that J is invariant under Γ, and for any s ∈ SpecR
and any split maximal torus T ⊆ Lk(s) the kernel of the natural surjection

(3.2) X∗(T) ≅ ZΦ
πÐ→ X∗(Sk(s)) ≅ ZΦ(S ,G)

is generated by all roots α ∈ D ∖ J, and by all diòerences α − σ(α), α ∈ J, σ ∈ Γ.

Proof We can assume that G = Gad from the start, and L = L. _e radical rad(L) =
Cent(L)○ of L is a torus. Since SpecR is connected, it contains a uniquemaximal split
subtorus S ⊆ Cent(L) by [SGA3, Exp. XXVI, 6.5]. In order to show that the kernel of
themap (3.2) is as required, we use the notion of the Dynkin scheme of G.
By construction [SGA3, Exp. XXIV, §3.7], the Dynkin scheme Dyn(G) over R is

an étale twisted form of the constant Dynkin scheme DR over R. It is thus a ûnite
étale scheme over R endowed with a subscheme E ⊆ Dyn(G) ×R Dyn(G) not inter-
secting the diagonal (the scheme of edges of the Dynkin diagram) and a morphism
Dyn(G) → {1, 2, 3}R (the lengths of simple roots). Clearly, there is a ûnite Galois
ring extension R′/R such thatDyn(G)R′ ≅ DR′ is split. Since SpecR is connected, the
scheme Dyn(G) is uniquely determined by D together with a subgroup Γ of Aut(D)
that represents the action of theGalois groupGal(R′/R) onD. _e orbits of Γ inD are
in one-to-one correspondence with minimal clopen R-subschemes of Dyn(G). _e
parabolic subgroup P ofG is deûned over R, hence by [SGA3, Exp.XXVI, §3] Dyn(G)
contains a clopen R-subscheme t(P), called the type of P, which is a twisted form of
JR ⊆ DR . In particular, J is a Γ-invariant subset of D. _e subscheme Dyn(G)∖ t(P)
is the twisted form of (D ∖ J)R isomorphic to the Dynkin scheme Dyn(L).

Recall that there exists a quasi-split reductive groupGqs over R of the same type as
G (in particular, adjoint) such thatG is an inner twisted formofGqs, that is,G is given
by a cocycle class in H1

ét(R,Gqs) [SGA3, Exp. XXIV, 3.12]. One also has Dyn(G) ≅
Dyn(Gqs) [SGA3,_éorème 3.11]. Let Pqs be a parabolic subgroup inGqs of the same
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type as P that is standard, i.e., contains a Killing couple Tqs ⊆ Bqs, and let Lqs be the
standard Levi subgroup of Pqs containing Tqs.
First, we study the torus S in the case where G = Gqs, P = Pqs, and L = Lqs.

_ere is an explicit presentation of Tqs as a product ofWeil restrictions ofGm [SGA3,
Exp. XXIV Prop. 3.13]:

Tqs ≅ RDyn(Gqs)/R(Gm ,Dyn(Gqs)) ≅∏
O

RO/R(Gm ,O),

where O runs over all minimal clopen subschemes of Dyn(G). _is presentation is
obtained by descent from the standard decomposition of a split maximal torus into
a direct product of 1-dimensional tori corresponding to the vertices of D. By [PSt2,
Prop. 1(2)], we have

Cent(Lqs) ≅ ∏
O /⊆t(P)

RO/R(Gm ,O),

where O runs over all minimal clopen subschemes of Dyn(G) not contained in t(P).
_en, clearly,

(3.3) S = ∏
O /⊆t(P)

Gm ,R ⊆ Cent(Lqs),

where each Gm ,R is the canonical split subtorus of RO/R(Gm ,O). For any π as in the
statement of the lemma, by (3.3) all roots α ∈ D∖ J, and all diòerences α−σ(α), α ∈ J,
σ ∈ Γ, belong to ker π. Since the rank of X∗(S) is equal to the number of orbits of Γ
in D ∖ J, these elements generate ker π.

Now we consider S in the general case where G ≠ Gqs. Let η ∈ Z1
ét(R,Gqs) be

a cocycle corresponding to the twisted form G of Gqs. Let ⊔ SpecRτ → SpecR be
an étale covering (which we can and do assume to be aõne for simplicity) such that
GRτ ≅ (Gqs)Rτ for each τ, and let gστ ∈ Gqs(Rτ ⊗R Rσ) be the elements represent-
ing η on this covering. For each τ, the pair (LRτ , PRτ), considered inside (Gqs)Rτ ,
is conjugate to the pair ((Lqs)Rτ , (Pqs)Rτ) locally in the étale topology on SpecRτ
by [SGA3, Exp.XXVI, 4.5.2]. Reûning our étale covering, we can assume that these
pairs are conjugate already over Rτ , i.e., LRτ = fτ(Lqs)Rτ f

−1
τ and PRτ = fτ(Pqs)Rτ f

−1
τ

for an element fτ ∈ Gqs(Rτ). Note that gστ preserves the pair (LRτ⊗RRσ , PRτ⊗RRσ ),
since L and P are deûned over R. Since the normalizer of ((Lqs)Rτ⊗RRσ , (Pqs)Rτ⊗RRσ )
in (Gqs)Rτ⊗RRσ by [SGA3, Exp.XXVI Prop. 1.2, Prop. 1.6] equals (Lqs)Rτ⊗RRσ ,we con-
clude that

(3.4) f −1
σ gστ fτ ∈ Lqs(Rτ ⊗R Rσ).

Let Sqs be the maximal split R-subtorus of Cent(Lqs). Since Sqs is central in Lqs,
by (3.4) we have that

gστ fτ ∣(Sqs)Rτ⊗R Rσ
= fσ ∣(Sqs)Rτ⊗R Rσ

as Rτ ⊗R Rσ -group schememorphisms from (Sqs)Rτ⊗RRσ to Cent(L)Rτ⊗RRσ induced
by conjugation. By faithfully�atdescent for aõnemorphisms [FGIKNV,Part 1,_eo-
rem4.33], there is a closed embedding of R-group schemes i∶ Sqs → Cent(L) such that
iRτ = fτ ∣(Sqs)Rτ

for each τ. Clearly, i(Sqs) is contained in themaximal split subtorus S
of Cent(L).

Note that we can interchange the roles of the groups (Gqs , Pqs , Lqs) and (G , P, L)
in the argument of the previous paragraph. Indeed, since G is given by a cocycle
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with values in Gqs, conversely, Gqs is given by a cocycle with values in G; cf. [Se,
Ch. I, Proposition 35]. _enwe conclude that there is a closed embedding of R-group
schemes j∶ S → Cent(Lqs) aswell. _erefore, i(Sqs) = S, since these tori have the same
rank. It remains to note that, since Dyn(Gqs) = Dyn(G) and for any s ∈ SpecR the
homomorphism R → k(s) factors through one of the rings Rτ , the torus S ⊆ Cent(L)
satisûes the claim of the lemma on ker π, since Sqs does.

In [PSt1], we introduced a system of relative roots ΦP with respect to a parabolic
subgroup P of a reductive group G over a commutative ring R. _is system ΦP was
deûned independently over eachmember SpecA = SpecA i of a suitable ûnite disjoint
Zariski covering

SpecR =
m

∐
i=1

SpecA i ,

such that over each A = A i , 1 ≤ i ≤ m, the root system Φ and the Dynkin diagram D
of G is constant. Namely, we considered the formal projection

πJ ,Γ ∶ZΦ Ð→ ZΦ/ ⟨D ∖ J; α − σ(α), α ∈ J , σ ∈ Γ⟩
and set ΦP = ΦJ ,Γ = πJ ,Γ(Φ)∖ {0}. _e last claim of Lemma 3.6 allows us to identify
ΦJ ,Γ and Φ(S ,G) whenever SpecR is connected.

Deûnition 3.7 In the setting of Lemma 3.6we call Φ(S ,G) a system of relative roots
with respect to the parabolic subgroup P over R and denote it by ΦP .

Example 3.8 If A is a ûeld or a local ring, and P is a minimal parabolic subgroup
of G, then ΦP is nothing but the relative root system of G with respect to amaximal
split subtorus in the sense of [BT1] or [SGA3, Exp. XXVI §7].

In [PSt1],we have also deûned irreducible components of systems of relative roots,
the subsets of positive and negative relative roots, simple relative roots, and the height
of a root. _ese deûnitions are immediate analogs of the ones for usual abstract root
systems, so we do not reproduce them here.

Let R be a commutative ringwith 1. For any ûnitely generated projective R-module
V ,we denote byW(V) thenatural aõne scheme overR associatedwithV ; see [SGA3,
Exp. I, §4.6]. Any morphism of R-schemes W(V1) → W(V2) is determined by an
element f ∈ Sym∗(V∨

1 ) ⊗R V2, where Sym∗ denotes the symmetric algebra, and V∨
1

denotes the dual module ofV1. If f ∈ Symd(V∨
1 )⊗RV2,we say that the corresponding

morphism is homogeneous of degree d. By abuse of notation,we alsowrite f ∶V1 → V2
and call it a degree d homogeneous polynomial map from V1 to V2. In this context, one
has f (λv) = λd f (v) for any v ∈ V1 and λ ∈ R.

Lemma 3.9 ([PSt1]) In the setting of Lemma 3.6, for any α ∈ ΦP = Φ(S ,G), there
exists a closed S-equivariant embedding of R-schemes

Xα ∶W(Lie(G)α) Ð→ G ,

satisfying the following condition.
(∗) Let R′/R be any ring extension such that GR′ is split with respect to amaximal split

R′-torus T ⊆ LR′ . Let eδ , δ ∈ Φ, be a Chevalley basis of Lie(GR′), adapted to T and
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P, and xδ ∶Ga → GR′ , δ ∈ Φ, be the associated system of 1-parameter root subgroups
(e.g., xδ = expδ of [SGA3, Exp. XXII,_. 1.1]). Let

π∶Φ = Φ(T ,GR′)Ð→ ΦP ∪ {0}
be the natural projection. _en for any u = ∑δ∈π−1(α) aδ eδ ∈ Lie(GR′)α , one has

(3.5) Xα(u) = ( ∏
δ∈π−1(α)

xδ(aδ)) ⋅∏
i≥2

( ∏
θ∈π−1

(iα)

xθ(pi
θ(u))) ,

where every pi
θ ∶Lie(GR′)α → R′ is a homogeneous polynomial map of degree i, and

the products over δ and θ are taken in any ûxed order.

Proof Proceeding exactly as in [PSt1,_. 2], we prove the existence of a closed em-
bedding

Xα ∶W(Vα)Ð→ G
satisfying condition (∗),whereVα is a ûnitely generated projective R-module of rank
∣π−1(α)∣, implicitly constructed by descent. However, once we identify the system of
relative roots ΦP in the sense of [PSt1] with Φ(S ,G) as discussed above, it follows
from the proof of [PSt1, _. 2] that Vα is canonically isomorphic to Lie(G)α . _e
S-equivariance of Xα follows immediately from condition (∗).

Deûnition 3.10 Closed embeddings Xα , α ∈ ΦP , satisfying the statement of
Lemma 3.9, are called relative root subschemes of G with respect to the parabolic sub-
group P.

Remark 3.11 Relative root subschemes of G with respect to P, actually, depend on
the choice of a Levi subgroup L in P, but their essential properties stay the same, so
we usually omit L from the notation.

Example 3.12 Let A be a connected commutative ring that containsQ and let G be
a semisimple reductive group of adjoint type over A containing a parabolic subgroup
P with a Levi subgroup L. We identify G with its image under the natural homo-
morphism G → AutA(Lie(G)). _en the relative root A-subschemes Xα , α ∈ ΦP ,
of Lemma 3.9 can be constructed as follows. For any ring extension B/A and any
v ∈ Vα ⊗A B = Lie(GB)α , set

Xα(v) = exp(adv) =
∞

∑
i=0

1
i!
(adv)i ∈ AutB(Lie(GB)).

Here the “inûnite” sum is necessarily ûnite, since we have (adv)i = 0 for any i > ∣ΦP ∣.
It is clear that Xα ∶W(Lie(G)α)→ AutA(Lie(G)) is amorphism of A-schemes.
Apart from that, we need to show that each Xα is an S-equivariant closed embed-

ding that satisûes condition (∗) of Lemma 3.9. Let A′/A be any ring extension such
thatGA′ is splitwith respect to amaximal split A′-torus T ⊆ LA′ . We recall that xδ(t),
δ ∈ Φ, t ∈ A′, coincide with exp(tadeδ) in the adjoint representation of GA′ ; see,
e.g., [Che]. _en the Baker–Campbell–Hausdorò formula implies that (3.5) holds,
and that each morphism

Xα ∶W(Lie(GA′)α)Ð→ GA′
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is SA′-equivariant. Denote by XH
α themorphism Xα considered as amorphism from

W(Lie(GA′)α) to the unipotent closed A′-subgroup

H =∏
i≥1

∏
δ∈π−1(iα)

xδ(Ga) ≅W(∑
i≥1

Lie(GA′)iα)

of GA′ . _en (3.5) readily implies that XH
α is universally closed and universally injec-

tive, and hence the same is true for Xα . Since the tangent map Lie(Xα), correspond-
ing to the inclusion of Lie(GA′)α into Lie(GA′), is also injective, we conclude that Xα
is formally unramiûed. Summing up, this implies that Xα is a closed embedding of
W(Lie(GA′)α) into GA′ .
Finally, note that, locally in the étale topology, the group G over A is split with

respect to a torus T contained in L ⊆ P, see [SGA3, Exp. XXII, Cor. 2.3; Exp. XXVI,
Lemme 1.14]. _en faithfully �at descent implies that in order to prove that Xα is an
S-equivariant closed embedding over A, it is enough to prove the same over every A′

as above. Since the latter is already established, we conclude that Xα satisûes all the
conditions present in Lemma 3.9.

We will use the following properties of relative root subschemes.

Lemma 3.13 ([PSt1, _eorem 2, Lemma 6, Lemma 9]) Let Xα , α ∈ ΦP , be as in
Lemma 3.9. Set Vα = Lie(G)α for short.

(i) _ere exist degree i homogeneous polynomial maps q i
α ∶Vα ⊕ Vα → Viα , i > 1,

such that for any R-algebra R′ and for any v ,w ∈ Vα ⊗R R′, one has

(3.6) Xα(v)Xα(w) = Xα(v +w)∏
i>1

X iα (q i
α(v ,w)) .

(ii) For any g ∈ L(R), there exist degree i homogeneous polynomialmaps ϕ i
g ,α ∶Vα →

Viα , i ≥ 1, such that for any R-algebra R′ and for any v ∈ Vα ⊗R R′, one has

gXα(v)g−1 =∏
i≥1

X iα (ϕ i
g ,α(v)) .

If g ∈ S(R), then ϕ1
g ,α is multiplication by a scalar and all ϕ i

g ,α , i > 1, are trivial.
(iii) (generalized Chevalley commutator formula) For any α, β ∈ ΦP such that

mα ≠ −kβ for all m, k ≥ 1, there exist polynomial maps

Nαβ i j ∶Vα × Vβ Ð→ Viα+ jβ , i , j > 0,

homogeneous of degree i in the ûrst variable and of degree j in the second variable, such
that for any R-algebra R′ and for any for any u ∈ Vα ⊗R R′, v ∈ Vβ ⊗R R′ one has

(3.7) [Xα(u), Xβ(v)] = ∏
i , j>0

X iα+ jβ(Nαβ i j(u, v))

(iv) For any subset Ψ ⊆ X∗(S) ∖ {0} that is closed under addition, themorphism

XΨ ∶W( ⊕
α∈Ψ

Vα) Ð→ UΨ , (vα)α ↦∏
α
Xα(vα),

where the product is taken in any ûxed order, is an isomorphism of schemes.
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3.3 Proof of Theorem 3.1

By assumption, every semisimple normal subgroup ofG contains (Gm ,R)2. We claim
that there is a split subtorus S0 of G such that S0 ∩ H contains (Gm ,R)2 for every
semisimple normal subgroup H of G. Indeed, if G is semisimple and simply con-
nected, this follows from the fact that G is a direct product of its minimal normal
semisimple subgroups [SGA3, Exp.XXIV, §5]. In general,G is a quotient of the direct
product Gsc × rad(G) by a central ûnite subgroup, where rad(G) is the radical of G,
and Gsc is the simply connected cover of the derived group scheme of G. One readily
sees that if Ssc

0 is the split subtorus of Gsc whose intersection with every semisimple
normal subgroup of Gsc contains (Gm ,R)2, then the same is true for its image S0 in
G.

Let P be a parabolic subgroup of G with a Levi subgroup L = CentG(S0) con-
structed as in Remark 2.10. Clearly, P is strictly proper. Let P− be the opposite para-
bolic subgroup to P, satisfying L = P ∩ P−. For any R-algebra A, we have

E(A) = ⟨UP(A),UP−(A)⟩ .

Now we show that, in order to prove the equality

(3.8) E(R((t))) = E(R[[t]])E(R[t±1]) ,

we can assume that R is connected. Fix an element g ∈ E(R((t))) . _e commmu-
tative ring R is a direct limit of its Noetherian subrings, R = limÐ→Rα . Fix an element
g ∈ E(R((t))) . SinceG, its semisimple normal subgroup schemes, P, P− and L are all
ûnitely presented R-group schemes, there is an index α and a reductive group scheme
G′ over Rα such that all these group schemes are deûned over Rα , P is strictly proper
over Rα , and g ∈ E(Rα((t))) ≤ E(R((t))) ; cf. [SGA3, Exp. XIX, Remarque 2.9].
Clearly, in order to show that g belongs to the right-hand side of (3.8), it is enough
to prove the equality (3.8) for the Noetherian ring Rα in place of R. _us, we can as-
sume from the start that R is Noetherian. _en R =∏m

i=1 A i , where A i , 1 ≤ i ≤ m, are
connected rings. Set R1 = R((t)), R2 = R[t±1], and R3 = R[[t]]. _en

E(R j) = ⟨UP(R j),UP−(R j)⟩ =
m

∏
i=1
E(A i ⊗R R j)

for all R j , j = 1, 2, 3. _erefore, it is enough to show that (3.8) holdswith R replaced by
each of the connected ringsA i . _us,we can assume fromnow on that R is connected.

Let S ⊆ Cent(L) be the split torus constructed in Lemma 3.6, ΦP = Φ(S ,G), and
Xα , α ∈ ΦP , be the relative root subschemes over R that exist by Lemma 3.9. Since,
clearly, S contains the image of S0 in Gad, every irreducible component of ΦP in the
sense of [PSt1] has rank ≥ 2.
By Lemma 3.13(iv) the group E(R((t))) is generated by root elements Xα(v), α ∈

ΦP , v ∈ Vα ⊗R R((t)). Write v = ∑∞j=−k v j t j , v j ∈ Vα , k ≥ 0. By equality (3.6) of
Lemma 3.13 we have

Xα(v) = Xα(
0

∑
j=−k

v j t j)Xα(
∞

∑
j=1

v j t j)∏
i≥2

X iα(u i)
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for some u i ∈ Viα ⊗R R((t)). Applying induction on the height of α, we conclude that
Xα(v) decomposes into a product of elements from E(R[t−1]) and E(R[[t]]), that is,

E(R((t))) = ⟨E(R[t−1]), E(R[[t]])⟩ .

Similarly, one concludes that E(R[t, t−1]) is generated by elements Xα(tnu), n ∈ Z,
u ∈ Vα , α ∈ ΦP . Consequently, in order to prove (3.8), it is enough to show that for
any β ∈ ΦP , v ∈ Vβ ⊗R R[[t]] we have

(3.9) E(R[t, t−1])Xβ(v) ⊆ E(R[[t]])E(R[t, t−1]) .
For any R-algebra R′, any ideal I ⊆ R′, and any additively closed set Ψ ⊆ X∗(S) ∖

{0}, we set
UΨ(I) = ⟨Xα(u), α ∈ Ψ, u ∈ Vα ⊗R I⟩ ⊆ UΨ(R′)

and
E(I) = ⟨Xα(u), α ∈ ΦP , u ∈ Vα ⊗R I⟩ ⊆ E(R′).

We show that for any β ∈ ΦP , v ∈ Vβ ⊗R R[[t]], one has

(3.10) Xβ(v) ∈ E( tNR[[t]])E(R[t]) for any N ≥ 0.

More precisely, set (β) = {iβ ∣ i ≥ 1}; we show that

(3.11) Xβ(v) ∈ U(β)( tNR[[t]]) ⋅U(β)(R[t])
arguing by descending induction on the height of β. Since Vβ is a ûnitely generated
projective R-module, we can write v = v1 + tNv2, where v1 ∈ Vβ ⊗R R[t] and v2 ∈
Vβ ⊗R R[[t]]. _en (3.6) of Lemma 3.13 implies that

(3.12) Xβ(v) = Xβ(tNv2) ⋅∏
i>1

X iβ(q i
β(v ,−v1)) ⋅ (Xβ(−v1))

−1
.

By the induction hypothesis, for any i > 1 one has

(3.13) X iβ(q i
β(v ,−v1)) ∈ U(iβ)( tNR[[t]]) ⋅U(iβ)(R[t])

⊆ U(β)( tNR[[t]]) ⋅U(β)(R[t]) .
Note that by (3.7) of Lemma 3.13 the group U(β)(R[t]) normalizes the group
U(β)(tNR[[t]]). _en, clearly, (3.12) and (3.13) together imply (3.11). _is ûnishes
the proof of (3.10).

Next, we show that for any n ∈ Z, u ∈ Vα , α ∈ ΦP , and M ≥ 0 there is N ≥ 0 such
that

(3.14) Xα(tnu)E( tNR[[t]])Xα(tnu)−1 ⊆ E( tMR[[t]]) .
Clearly, this statement and (3.10) together imply (3.9).
By [PSt1, Lemma 11] we know that if N ≥ 3, then E(tNR[[t]]) is contained in the

subgroup of E(R[[t]]) generated by Xγ(Vγ⊗R t⌊
N
3 ⌋R[[t]]) for all γ ∈ ΦP ∖Z α. On the

other hand, for any such γ by the Chevalley commutator formula (3.7) of Lemma 3.13,
we have

[Xα(tnu), Xγ(Vγ ⊗R t⌊
N
3 ⌋R[[t]])] ⊆ E (t⌊ N

3 ⌋−∣ΦP ∣⋅∣n∣R[[t]]) .

_is implies the claim (3.14).
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4 Proof of the Main Results

4.1 Diagonal Argument for Loop Reductive Groups

Our main results are based on the following observation.

Lemma 4.1 (“diagonal argument”) Let k be a ûeld of characteristic 0. Let G be a
loop reductive group over R = k[x±1

1 , . . . , x
±1
n ]. For any integer d > 0, denote by fz ,d

(respectively, fw ,d ) the composition of k-homomorphisms

R Ð→ k[z±1
1 , . . . , z

±1
n ,w

±1
1 , . . . ,w

±1
n ]Ð→ k[z±1

1 , . . . , z
±1
n , (z1w−1

1 )± 1
d , . . . , (znw−1

n )± 1
d ]

sending x i to z i (respectively, to w i) for any 1 ≤ i ≤ n. _en there is d > 0 such that

f ∗z ,d(G) ≅ f ∗w ,d(G)

as group schemes over k[z±1
1 , . . . , z

±1
n , (z1w−1

1 )± 1
d , . . . , (znw−1

n )± 1
d ].

Proof Let G0 be a split reductive group over k such that G is a twisted form of G0.
Let A0 = Aut(G0) be the group scheme of automorphisms of G0. Denote by k the
algebraic closure of k, and by Γ the Galois group Gal(k/k). We also introduce the
following auxiliary notation. We write Xx for the k-scheme Spec k[x±1

1 , . . . , x
±1
n ], Xz

for Spec k[z±1
1 , . . . , z

±1
n ], etc.

According to Deûnition 2.11, G is given by a cocycle η in H1(π0(Xx , e),A0(k)) .
Considering the description (2.2), we can assume that

η ∈ H1(Gal( k[x±
1
d

1 , . . . , x±
1
d

n ]/k[x±1
1 , . . . , x

±1
n ]) ,A0(k))

for some integer d > 0, and we know that

Gal( k[x±
1
d

1 , . . . , x±
1
d

n ]/k[x±1
1 , . . . , x

±1
n ]) = Mx ⋊ Γ,

where Mx ≅ (Z /d Z)n acts on k[x±
1
d

1 , . . . , x±
1
d

n ] by sending x
1
d
i to ξk i

d x
1
d
i , for any

(k1 , . . . , kn) ∈ Mx . We will denote by Mz and Mw respectively the group (Z /d Z)n

operating in the same way on k[z±
1
d

1 , . . . , z±
1
d

n ] and k[w± 1
d

1 , . . . ,w± 1
d

n ].
Denote by iz (respectively, iw) the k-homomorphism

k[x±1
1 , . . . , x

±1
n ]Ð→ k[z±1

1 , . . . , z
±1
n ,w

±1
1 , . . . ,w

±1
n ]

sending x i to z i (respectively, tow i) for any 1 ≤ i ≤ n. Consider the images i∗z (η) and
i∗w(η) of η in H1(π0(Xz ×k Xw , e),A0(k)) as elements of

H1((Mz ×Mw) ⋊ Γ,A0(k)) .
Denote by ∆ the diagonal subgroup ofMz×Mw . _e subgroup ∆⋊Γ of (Mz×Mw)⋊Γ
is closed, and it is straightforward to check that

i∗z (η)∣∆⋊Γ = i∗w(η)∣∆⋊Γ .

Since

( k[z±
1
d

1 , . . . , z±
1
d

n ,w± 1
d

1 , . . . ,w± 1
d

n ]) ∆⋊Γ = k[z±1
1 , . . . , z

±1
n , (z1w−1

1 )± 1
d , . . . , (znw−1

n )± 1
d ],

we conclude that f ∗z ,d(G) ≅ f ∗w ,d(G), as required.
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We introduce additional notation that will be used every time when we apply
Lemma 4.1 in proofs of other statements.

Notation 4.2 In the setting of the claim of Lemma 4.1, set

t i = (z iw−1
i )1/d , 1 ≤ i ≤ n,

where z i ,w i , and d are as in that lemma. Note that this is equivalent to

z i = w i tdi , 1 ≤ i ≤ n.

We denote by Gz the group scheme over k[z±1
1 , . . . , z

±1
n ], which is the pull-back of G

under the k-isomorphism

k[x±1
1 , . . . , x

±1
n ] x i↦z iÐÐÐ→ k[z±1

1 , . . . , z
±1
n ].

_e group scheme Gw over k[w±1
1 , . . . ,w

±1
n ] is deûned analogously. Note that Gz and

Gw are isomorphic a�er pull-back to

k[z±1
1 , . . . , z

±1
n , t

±1
1 , . . . , t

±1
n ] = k[w±1

1 , . . . ,w
±1
n , t

±1
1 , . . . , t

±1
n ].

4.2 Proof of Theorem 1.4 on R-equivalence Class Groups

_e surjectivity of the natural map

G( k(x1 , . . . , xn))/RÐ→ G( k((x1)) ⋅ ⋅ ⋅ ((xn)))/R
follows fromCorollary 2.14. To prove the injectivity, recall that sinceG has amaximal
torus over k[x±1

1 , . . . , x
±1
n ], it is loop reductive by [GP3, Corollary 6.3]. _us, we can

apply Lemma 4.1 to G. We use Notation 4.2.
Consider the following commutative diagram, where the horizontal maps j1 and

j2 are the natural ones:

G( k(x1 , . . . , xn))/R G( k((x1)) ⋅ ⋅ ⋅ ((xn)))/R

Gz( k(z1 , . . . , zn , t1 , . . . , tn))/R Gz( k((z1)) ⋅ ⋅ ⋅ ((zn)))/R

Gw( k(w1 , . . . ,wn , t1 , . . . , tn))/R Gw( k(w1 , . . . ,wn)((t1)) ⋅ ⋅ ⋅ ((tn)))/R

j1

j2
≅

f2 ∶x i↦z i ≅f1 ∶x i↦z i ≅

≅g1 ∶z i↦w i tdi g2 ∶z i↦w i tdi

_e map f1 in this diagram is an isomorphism, since Gz is deûned over
k(z1 , . . . , zn), and by [V, §16.2, Proposition 2], for any reductive group H over an
inûnite ûeld l one has H(l)/R ≅ H( l(t))/R. _emap f2 is an isomorphism by deû-
nition. _emap g1 is an isomorphism by Lemma 4.1. _emap j2 is an isomorphism,
since Gw is deûned over k(w1 , . . . ,wn), and by [G1, Corollaire 0.3] for any reductive
group H over a ûeld l of characteristic ≠ 2, one has H(l)/R ≅ H( l((t)))/R.

Since
g2 ○ f2 ○ j1 = j2 ○ g1 ○ f1

is an isomorphism, we conclude that themap j1 is injective.
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4.3 Proof of Theorem 1.2

In order to prove_eorem 1.2, we still need to prove some technical lemmas.

Lemma 4.3 Let k be an arbitrary ûeld, let A be a commutative k-algebra, and let
G be a reductive group deûned over A[z±1

1 , . . . , z
±1
n ] such that every semisimple normal

subgroup of G contains (Gm ,k)2. For any set of integers d i > 0, 1 ≤ i ≤ n, themap

KG
1 (A[z±1

1 , . . . , z
±1
n , t1 , . . . , tn])

z i↦w i t
d i
iÐÐÐÐ→ KG

1 (A⊗k k(w1 , . . . ,wn)[t±1
1 , . . . , t

±1
n ])

is injective.

Proof We prove the claim by induction on n ≥ 0. _e case n = 0 is trivial. To prove
the induction step for n ≥ 1, it is enough to show that

ϕ∶KG
1 (A⊗k k[z±1

1 , . . . , z
±1
n , t1 , . . . , tn])

z1↦w1 t
d1
1ÐÐÐÐ→

KG
1 (A⊗k k(w1)[t±1

1 ][z±1
2 , . . . , z

±1
n , t2 , . . . , tn])

is injective. Indeed, a�er that we can apply the induction assumption with k substi-
tuted by k(w1) and A substituted by A⊗k k(w1)[t±1

1 ]. Set

B = A[z±1
2 , . . . , z

±1
n , t2 , . . . , tn]

and omit for simplicity the subscript 1. _en we need to show that themap

ϕ∶KG
1 (B[z±1 , t]) z↦w tdÐÐÐ→ KG

1 (B ⊗k k(w)[t±1])

is injective. Here, G is deûned over B[z±1]. We have

B ⊗k k(w)[t±1] = limÐ→
g
B ⊗k k[w±1]g[t±1] = limÐ→

g
B ⊗k k[w±1 , t±1]g ,

where g = g(w) runs over all monic polynomials in k[w] with g(0) ≠ 0. Since
ϕ(z) = w td , we have g(w) = g(ϕ(z)t−d) = t−Nd f (t) for a suitable integer N , where
f (t) is a polynomial in t with coeõcients in k[ϕ(z)±1] such that its leading coeõcient
is invertible. _en by Lemma 2.7 the natural map

KG
1 (B[z±1 , t]) z↦w tdÐÐÐ→ KG

1 (B ⊗k k[w±1 , t±1]g) = KG
1 (B ⊗k k[ϕ(z)±1 , t]t f )

is injective. Since KG
1 commutes with ûltered direct limits, we conclude that ϕ is in-

jective.

Lemma 4.4 Let k be an arbitrary ûeld, let A be a commutative k-algebra, and let G
be a reductive group scheme over A such that every semisimple normal subgroup of G
contains (Gm ,A)2. For any n ≥ 0, the natural map

KG
1 (A[t±1

1 , . . . , t
±1
n ]) Ð→ KG

1 (A⊗k k(t1 , . . . , tn))

is injective.
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Proof We prove the claim by induction on n; the case n = 0 is trivial. Set l =
k(t1 , . . . , tn−1). By the inductive hypothesis, themap

KG
1 (A[t±1

1 , . . . , t
±1
n ]) Ð→ KG

1 (A[t±1
n ]⊗k l) = KG

1 (A⊗k l[t±1
n ])

is injective, so it remains to prove the injectivity of themap

KG
1 (A⊗k l[t±1

n ]) Ð→ KG
1 (A⊗k l(tn)) .

We have l(tn) = limÐ→g
l[tn]tn g , where g ∈ l[tn] runs over all monic polynomials co-

prime to tn . Since KG
1 commutes with ûltered direct limits, it remains to show that

every map

(4.1) KG
1 (A⊗k l[t±1

n ]) Ð→ KG
1 (A⊗k l[tn]tn g)

is injective. Assume that

x ∈ G(A⊗k l[t±1
n ]) ∩ E(A⊗k l[tn]tn g) .

By [St13, Lemma 2.3] there exist x1 ∈ E(A⊗k l[tn]tn) and x2 ∈ E(A⊗k l[tn]g) such
that x = x1x2. We have x , x1 ∈ G(A⊗k l[t±1

n ]), therefore, x2 ∈ G(A⊗k l[t±1
n ]). Since

G(A⊗k l[t±1
n ]) ∩G(A⊗k l[tn]g) = G(A⊗k l[tn]) ,

we have x2 ∈ G(A⊗k l[tn]) ∩ E(A⊗k l[tn]g). By Lemma 2.7 this implies that x2 ∈
E(A ⊗k l[tn]). Summing up, we have x = x1x2 ∈ E(A ⊗k l[t±1

n ]). _erefore, the
map (4.1) is injective.

Lemma 4.5 Let k be a ûeld of characteristic 0 and let G be a reductive group over
X = Spec k[x±1

1 , . . . , x
±1
n ], having a maximal X-torus and such that every semisimple

normal subgroup of G contains (Gm ,X)2. _en
(i) the natural map

KG
1 ( k[x±1

1 , . . . , x
±1
n ]) Ð→ KG

1 ( k(x1 , . . . , xn))

is injective;
(ii) one hasKG

1 ( k[x±1
1 , . . . , x

±1
n ]) = KG

1 ( k[x±1
1 , . . . , x

±1
n , y1 , . . . , ym]) for anym ≥ 0.

Proof First we show that for any m ≥ 0, the natural map

KG
1 ( k[x±1

1 , . . . , x
±1
n , y1 , . . . , ym]) Ð→ KG

1 ( k(x1 , . . . , xn)[y1 , . . . , ym])

is injective. _is includes (i). In short, we write y instead of y1 , . . . , ym .
As in _eorem 1.4, we note that G is loop reductive over k[x±1

1 , . . . , x
±1
n ] by [GP3,

Corollary 6.3]. We apply Lemma 4.1 to G, and we use Notation 4.2. Consider the
following commutative diagram. In this diagram, the horizontal maps j1 and j2 are
the natural ones, and all maps always take variables t i to t i , 1 ≤ i ≤ n, and y to y. _e
isomorphisms g1 and g2 exist by Lemma 4.1:
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KG
1 ( k[x±1

1 , . . . , x
±1
n , y]) KG

1 ( k(x1 , . . . , xn)[y])

KGz
1 ( k[z±1

1 , . . . , z
±1
n , t1 , . . . , tn , y]) KGz

1 ( k(z1 , . . . , zn , t1 , . . . , tn)[y])

KGz
1 ( k(w1 , . . . ,wn)[t±1

1 , . . . , t
±1
n , y])

KGw
1 ( k(w1 , . . . ,wn)[t±1

1 , . . . , t
±1
n , y]) KGw

1 ( k(w1 , . . . ,wn , t1 , . . . , tn)[y])

j1

j2

f2 ∶x i↦z if1 ∶x i↦z i

h∶z i↦w i tdi

g1 ≅

g2 ∶z i↦w i tdi ≅

In order to prove that j1 is injective, it is enough to show that all maps j2 , g1 , h, f1
are injective. _e map j2 is injective by Lemma 4.4. As explained above, g1 is an
isomorphism. _e map h is injective by Lemma 4.3. Finally, the map f1 is injective,
since it has a retraction that sends z i to x i and t i to 0. _erefore, themap j1 is injective.

Now we prove (ii). Consider the commutative diagram

KG
1 ( k[x±1

1 , . . . , x
±1
n ][y])

y i↦0 //

��

KG
1 ( k[x±1

1 , . . . , x
±1
n ])

��
KG

1 ( k(x1 , . . . , xn)[y])
y i↦0 // KG

1 ( k(x1 , . . . , xn)) .

_e bottom arrow is an isomorphism by [St13,_eorem 1.2]. _e vertical arrows are
injective by the previous paragraph. _erefore, the top arrow

KG
1 ( k[x±1

1 , . . . , x
±1
n ][y]) y i↦0ÐÐ→ KG

1 ( k[x±1
1 , . . . , x

±1
n ])

is also injective. Since it has a section, it is an isomorphism.

Proof of_eorem 1.2. We prove the injectivity claim by induction on n starting
with the trivial case n = 0. To prove the induction step, it is enough to show that
themap

j∶KG
1 ( k[x±1

1 , . . . , x
±1
n ]) Ð→ KG

1 ( k((x1))[x±1
2 , . . . , x

±1
n ])

is injective. _e latter follows from the injectivity of the composition

j1∶KG
1 ( k[x±1

1 , . . . , x
±1
n ]) jÐ→ KG

1 ( k((x1))[x±1
2 , . . . , x

±1
n ])

Ð→ KG
1 ( k[x±1

2 , . . . , x
±1
n ]((x1))) ,

which we proceed to establish.
_e groupG is loop reductive by [GP3, Corollary 6.3], since it has amaximal torus.

We apply Lemma 4.1 to G, and we use Notation 4.2. Consider the following commu-
tative diagram. Here j1 , j2 are the natural maps, and the isomorphism g1 and themap
g2 exist by Lemma 4.1:
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KG
1 ( k[x±11 , . . . , x±1n ]) KG

1 ( k[x±12 , . . . , x±1n ]((x1)))

KGz
1 ( k[z±11 , . . . , z±1n , t±11 , . . . , t±1n ]) KGz

1 ( k[z±12 , . . . , z±1n ]((z1)))

KGw
1 ( k[w±11 , . . . ,w±1n , t±11 , . . . , t±1n ]) KGw

1 ( k[w±11 , . . . ,w±1n , t±12 , . . . , t±1n ]((t1)))

j1

j2

f2 ∶x i↦z i ≅f1 ∶x i↦z i

≅g1 ∶z i↦w i t
d
i g2 ∶z i↦w i t

d
i

In order to show that j1 is injective, it is enough to show that f1 and j2 are injective.
_emap f1 is injective, since it has a retraction that sends z i to x i and t i to 1. Set

A = k[w±1
1 , . . . ,w

±1
n , t

±1
2 , . . . , t

±1
n ].

By Lemma 4.5(ii)we have KGw
1 (A[t1]) = KGw

1 (A); therefore, byCorollary 3.4 themap
j2 is injective. _erefore, themap j1 is injective.

To ûnish the proof of the theorem, it remains to note that, if G is a semisimple
group, themap

KG
1 ( k[x±1

1 , . . . , x
±1
n ]) Ð→ KG

1 ( k((x1)) ⋅ ⋅ ⋅ ((xn)))
is surjective by Corollary 2.13.

5 Application to Lie Tori

_roughout this section, we assume that k is an algebraically closed ûeld of charac-
teristic 0. We ûx a compatible set of primitive m-th roots of unity ξm ∈ k, m ≥ 1.

Let G be an adjoint simple algebraic group over k (a Chevalley group), and L =
Lie(G) the corresponding simple Lie algebra over k. It is well known that

Autk(L) ≅ Autk(G) ≅ G ⋉ N ,

where N is the ûnite group of automorphisms of the Dynkin diagram of the root
system of L and G. Fix two integers n ≥ 0, m ≥ 1 and let

σ = (σ1 , . . . , σn)
be an n-tuple ofpairwise commuting elements of orderm inAutk(L). Such an n-tuple
determines a Zn-grading on L with

L i1 ⋅⋅⋅in = {x ∈ L ∣ σ j(x) = ξ i j
mx , 1 ≤ j ≤ n} .

Set R = k[x±1
1 , . . . , x

±1
n ], and let R̃ = k[x±

1
m

1 , . . . , x±
1
m

n ], m ≥ 1, be another copy of
R, considered as an R-algebra via the natural embedding R ⊆ R̃. _en R̃/R is aGalois
ring extension with the Galois group Gal(R̃/R) ≅ (Z /mZ)n .

Deûnition 5.1 _emultiloop Lie algebraL(L, σ) is theZn-graded k-Lie subalgebra

L(L, σ) = ⊕
(i1 , . . . , in)∈Zn

L i1 ⋅⋅⋅in ⊗ x
i1
m
1 ⋅ ⋅ ⋅ x

in
m
n

of the k-Lie algebra L ⊗k R̃.
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Note that, considered as an R-Lie algebra, the algebra L(L, σ) is an R̃/R-twisted
form of the R-Lie algebra L ⊗k R. Indeed,

L(L, σ)⊗R R̃ ≅ (L ⊗k R)⊗R R̃.

Let ∆ be a ûnite root system in the sense of [Bou] togetherwith the 0-vector,which
we include following the tradition in the theory of extended aõne Lie algebras. We
set ∆× = ∆ ∖ {0}, Q = Z∆, and

∆×ind = {α ∈ ∆× ∣ 1
2α /∈ ∆}.

_e importance of multiloop Lie algebras stems from the fact that they provide
explicit realizations for a class of inûnite-dimensional Lie algebras over k called Lie
tori. _iswas shown by B.Allison, S. Berman, J. Faulkner and A. Pianzola in [ABFP].

Deûnition 5.2 ([ABFP, Def. 1.1.6]) A Lie Λ-torus of type ∆ is a Q × Λ-graded Lie
algebra L =⊕(α ,λ)∈Q×Λ L

λ
α over k satisfying

(i) L
λ
α = 0 for all α ∈ Q ∖ ∆ and all λ ∈ Λ;

(ii) L
0
α ≠ 0 for all α ∈ ∆×ind;

(iii) Λ is generated by the set of all λ ∈ Λ such that Lλ
α ≠ 0 for some α ∈ ∆;

(iv) for all (α, λ) ∈ ∆× × Λ such that Lλ
α ≠ 0, there exist elements eλα ∈ L

λ
α and

f λα ∈ L−λ
−α satisfying

L
λ
α = keλα , L

−λ
−α = k f λα , and [[eλα , f λα ], x] = ⟨β, α∨⟩ x

for all x ∈ Lµ
β , (β, µ) ∈ ∆ × Λ;

(v) L is generated as a k-Lie algebra by the subspaces Lλ
α , (α, λ) ∈ ∆× × Λ.

If Λ = Zn , then n is called the nullity of L.

In what follows we will always assume that Λ = Zn .
By [ABFP, Lemma 1.3.5 and Prop. 1.4.2], if a centerless Lie torus L with Λ ≅ Zn is

ûnitely generated over its centroid (fgc), then the centroid is isomorphic as a k-algebra
to

k[Zn] ≅ k[x±1
1 , . . . , x

±1
n ] = R.

Note that, according to an announced result of E. Neher [N,_eorem 7(b)], all Lie tori
are fgc, except for just one class of Lie tori of type An called quantum tori; see [ABFP,
Remark 1.4.3].

If a centerless Lie torus L is fgc, the Realization theorem [ABFP, _eorem 3.3.1]
asserts that L as a Lie algebra over its centroid R is Zn-graded isomorphic to a mul-
tiloop algebra L(L, σ). In particular, the Lie torus L is a R̃/R-twisted form of a split
simple Lie algebra L ⊗k R. Consequently, the group scheme of R-equivariant auto-
morphisms AutR(L) is a twisted form of AutR(L ⊗k R), and AutR(L)○ is an adjoint
simple reductive group over R. Moreover,

Lie(AutR(L)○) ≅ L

as Lie algebras over R, e.g., [GP1, Prop. 4.10].
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Proof of_eorem 1.3. First we show that the adjoint simple reductive group G =
AutR(L)○ over R contains a closed R-subgroup S ≅ (Gm ,R)r , where r = rank∆. In-
deed, the Lie algebra L over R is Q-graded, where Q = Z∆. _is grading naturally
determines a closed subgroup S ≅ (Gm ,R)r of AutR(L), where r = rank∆. Namely,
let Π ⊆ ∆ be a system of simple roots, ∣Π∣ = r. For any simple root α ∈ Π, any com-
mutative R-algebra R′, and any c ∈ (R′)× = Gm(R′), there is a unique automorphism
tα(c) of L⊗RR′ such that, for any λ ∈ Zn , one has

tα(c)(eλα) = ceλα , tα(c)( f λα ) = c−1 f λα , and

tα(c)(eλβ) = eλβ , tα(c)( f λβ ) = f λβ for all β ∈ Π, β ≠ α.

Clearly, S ⊆ AutR(L)○.
Conversely, the grading induced by the adjoint action of S on Lie(AutR(L)○) ≅ L

is exactly the initial Q-grading. _e system of simple roots Π ⊆ ∆ determines a de-
composition ∆ = ∆+∪∆−∪{0}, and by Lemma 2.8 there exist two opposite parabolic
R-subgroups P+ = U∆+∪{0}, P− = U∆−∪{0} ofG, and their unipotent radicals are of the
form U∆+ andU∆− , respectively. Since SpecR is connected, the relative roots and rel-
ative roots subschemeswith respect to P± are deûned over SpecR. By Lemma 3.13(iv)
the groups U∆± are generated by the root elements Xα(v), α ∈ ∆±, v ∈ Lie(G)α . By
Example 3.12 we can identify Xα(v) with exp(adv). _erefore, we have

EP+(R) = ⟨U∆+(R),U∆−(R)⟩ = Eex p(L).

Since rank∆ ≥ 2, the group G contains (Gm ,R)2. It also contains a maximal R-
torus, since by [GP2, p. 532] the group G is loop reductive. It remains to apply _eo-
rem 1.2.
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