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ABSTRACT

The Lee–Carter model has become a benchmark in stochastic mortality mod-
eling. However, its forecasting performance can be significantly improved
upon by modern machine learning techniques. We propose a convolutional
neural network (NN) architecture for mortality rate forecasting, empirically
compare this model as well as other NN models to the Lee–Carter model
and find that lower forecast errors are achievable for many countries in the
Human Mortality Database. We provide details on the errors and forecasts of
our model to make it more understandable and, thus, more trustworthy. As
NN by default only yield point estimates, previous works applying them to
mortality modeling have not investigated prediction uncertainty. We address
this gap in the literature by implementing a bootstrapping-based technique
and demonstrate that it yields highly reliable prediction intervals for our NN
model.
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1. INTRODUCTION

Lee and Carter (1992) propose a seminal stochastic mortality model, the Lee–
Carter (LC) model, in which they decompose logarithmic death rates into an
age-specific base level and a time-varying component (period effect) multiplied
by an age-modulating parameter (age effect). Since then, many other stochastic
mortality models have been introduced (Cairns et al. 2009). While, initially,
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they were used to describe one population, there are situations in which it
is useful or even necessary to model the mortality of multiple populations
simultaneously. To this end, multi-population models such as the augmented
common factor (ACF) model by Li and Lee (2005) have been proposed.

The structure of the LC model and many of its descendants is simple. They
are easy to understand and implement but have the potential drawback of
not being optimal with respect to forecasting performance, which is one of
the main requirements for a mortality model. In fact, there is a broad consen-
sus in the literature that LC-type models work well for some but certainly not
for all mortality data. It seems promising to apply more sophisticated methods
such as machine learning to mortality forecasting, which might, for example,
be able to handle nonlinearities better than existing models. Here, we focus on
neural networks (NN), in particular feed-forward neural networks (FFNN),
recurrent neural networks (RNN) and convolutional neural networks
(CNN).

FFNN have been applied to mortality forecasting by Shah and Guez (2009)
and more recently Richman and Wüthrich (2021), who provide a review of
existing stochastic multi-population mortality models and point out some of
their drawbacks: Sometimes, they are difficult to calibrate, and some model
structures are hard to justify and lack theoretical foundations. Thus, they pro-
pose to refrain from making any structural assumptions at all on mortality
development and fully rely on an NN to learn mortality intensities from his-
torical data. To this end, they train an FFNN and find that it outperforms the
LC model and other stochastic models in an out-of-sample test on a data set
comprised of 41 countries.

Nigri et al. (2019) base their approach on the LC model. Instead of the
standard random walk or a general autoregressive integrated moving aver-
age (ARIMA) process, they use a certain type of RNN called long short-term
memory (LSTM) network for projecting the period effects. They find that
this leads to more accurate forecasts for several populations. Richman and
Wüthrich (2019) provide an in-depth explanation on how to model and fore-
cast death rates directly using LSTM or other RNN architectures. They
evaluate their approach on Swiss data and find that their NN outperforms the
LCmodel, but it is not very stable over different runs of the training algorithm.
Therefore, they advocate the use of network ensembles to reduce the variance
in the forecast under different random seeds.

Until very recently, CNN have not been considered in the mortality fore-
casting literature. Originally introduced by LeCun et al. (1989) for image
recognition, they have become a key technology for modern computer vision.
There are some possible advantages for convolution-based architectures over
FFNN and RNN. CNN are designed to leverage local spatial relationships
in the input data. For images, this means that each neuron only handles a
small part of the whole image, whereas for mortality data one can, for example,
think of neurons which are only activated by higher-age mortality and others
which focus on lower-age mortality. Furthermore, the convolution parame-
ters are shared, which can make CNNmore parsimonious and their parameter
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estimates more stable. Motivated by this, we apply two-dimensional CNN to
mortality forecasting.

There have been similar efforts in parallel to our work. Perla et al. (2021)
investigate the use of RNN and one-dimensional CNN for mortality fore-
casting and show that their NN, which can be interpreted as nonlinear
extensions of the classical LC model, work very well on real data. They use
one-dimensional convolutions, which means that the model performs the con-
volution operations only in the time and not in the age dimension. To capture
the specific input structure of this application, in particular the correlation
structure in the age dimension and interactions along the age–year plane
(e.g., cohort effects), we believe that two-dimensional convolutions might be
more appropriate. This is in line with the approach of Meier and Wüthrich
(2020), who use two-dimensional CNN for detecting anomalies in mortality
data. Wang et al. (2021) consider CNN with two-dimensional convolutions as
well and show that they produce more accurate one-step point forecasts than
classical stochastic mortality models.

Despite their typically stronger predictive performance, practitioners do not
always prefer NN because they are hard to interpret. The ability to understand
why a model makes a certain prediction or at least the conviction that the
model creates a meaningful representation of the features is sometimes con-
sidered more important than the forecasting performance of the model. We
will make some theoretical and practical efforts towards better explainability
of our NN models. Even if a fully interpretable model is required for a partic-
ular application, it is still worthwhile to consider an NN as a benchmark, for
example, to find out where the interpretable model could be improved in terms
of forecasting performance.

In many applications, it is not only necessary to make accurate mortality
forecasts but also useful or even required to quantify the uncertainty related
to these forecasts. For example, insurance companies have to build up reserves
based on risk measures such as the value-at-risk in order to be prepared for
extreme mortality events. One of the main motivations for stochastic mortal-
ity models such as the LC model is that they provide estimates for dispersion
measures and quantiles. It is a material shortcoming of all the NN approaches
to mortality modeling described above that their output exclusively consists
in point estimates. Therefore, we are also interested in a suitable method for
uncertainty quantification and prediction interval estimation for our NNmod-
els. For this, we consider a bootstrapping-based technique. We show in an
empirical study that it produces reliable and informative prediction interval
estimates for the CNN, whereas the intervals obtained from the standard LC
approach fail to contain the target values as often as required.

In total, our main contributions to the literature consist in

• proposing to train a CNN on the age–period mortality surface,
• comparing its forecasts to four benchmarks from the literature: two
other types of NN (FFNN, RNN), the ACF model and the LC model,
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• presenting and applying a bootstrapping approach for quantifying the
uncertainty of NN forecasts.

The remainder of this article is structured as follows. In Section 2, we
describe the NN methodology and architectures with a focus on the CNN. In
Section 3, we explain how prediction uncertainty is quantified and prediction
intervals are obtained. In Section 4, we perform an empirical comparison with
respect to goodness-of-fit, forecasting performance and uncertainty quantifi-
cation. Section 5 concludes.

2. NEURAL NETWORK MODELS

We assume that a data set of death rates mi
x,t with ages x ∈X := {x1, . . . , xA},

populations i ∈P := {1, . . . ,P} and years t ∈ T := {t1, . . . , tY } is given. Data
availability by year usually depends on the population. We ignore this in our
notation for simplicity. In our numerical experiments, we train the NNmodels
on the whole available age range x ∈X =Xin := {0, . . . , 100} to make use of
all data during training, and we usually evaluate them on the ages x ∈Xout :=
{60, . . . , 89}, which are most relevant for annuity payments and therefore often
considered in actuarial mortality forecasting applications.

2.1. Convolutional neural networks

A two-dimensional CNN can pick up spatial relationships in the data which
other models might not be able to exploit. Intermediate data representations
calculated by this network topology are based on death rates adjacent to each
other both in the time and age dimension. Thereby, the model can incorporate
the correlation structure of mortality rates along the age dimension as well as a
variety of age–year interaction effects. These are generally referred to as neigh-
borhood effects by Wang et al. (2021), who provide some further motivation
for the approach. Similar ideas have been investigated in the mortality mod-
eling literature based on classical time series analysis, for example, by Denton
et al. (2005), who find that correlations between the residuals of their ARIMA
mortality models for adjacent age groups tend to be high. They propose a
block bootstrap method for generating long-term mortality forecasts, using
age–year matrices as inputs, an approach which aims to preserve the age cor-
relation structure of mortality rate changes. A simple example for age–year
interactions are cohort effects, which depend on the year of birth and are often
present in mortality data (Renshaw and Haberman 2006).

The convolution operation is equivariant to shifts in the input data, which
essentiallymeans that similar patterns of mortality observed over different ages
or at different points in time should lead to similar outputs. This could allow
the model to learn general patterns of mortality development even though they
might not appear exactly in the same age range or at the same time across
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different populations. For more details on CNN, we refer to (Goodfellow
et al. 2016, Chapter 9) and Section A.3 of the Online Supplementary Material.

We begin by fixing τ ∈N, the maximal length of a historical time window
influencing predictions. There is a tradeoff: larger values allow for a longer
history of observations to be used for prediction, taking into account the pos-
sibility of longer serial correlations in mortality data, but they also reduce the
number of available training data and increase the number of network param-
eters. For our numerical studies, we follow Perla et al. (2021) and set τ = 10.
We have done some experiments with τ = 20, for which we observed a decline
in forecasting accuracy. Then, for all populations i ∈P, we arrange the death
rate data in age–time matrices via the rolling window approach(

mi
x,t
)
x∈Xin,t=t1,...,tτ , . . . ,

(
mi
x,t
)
x∈Xin,t=tY−τ ,...,tY−1

. (2.1)

These matrices are standardized element-wise over the training data set and
then passed as inputs to the CNN. The corresponding outputs which the net is
trained to forecast are, respectively, given by(

mi
x,tτ+1

)
x∈Xout

, . . . ,
(
mi
x,tY

)
x∈Xout

.

In other words, the network is trained on the death rates of the past τ years
(matrices of dimension Ain × τ ) to give a prediction for the next year (a vector
of dimension Aout). We obtain forecasts for multiple years ahead by recursive
1-year predictions, using the forecast for year 1 as an input for the forecast of
year 2, and so on, an approach which is well-established in time series analysis
and has, for example, also been applied by Perla et al. (2021).

An example for the input data of the CNN is shown in Figure 1. In the
demographic literature, such a two-dimensional arrangement is called a Lexis
diagram. It is a classical method of visualizing mortality dynamics (see Pitacco
et al. 2008, p. 94). We could additionally include country and gender informa-
tion via embedding layers (Guo and Berkhahn 2016). However, the network
might achieve good forecasts solely based on historical death rates as inputs.
This could lead to more stable forecasts for populations for which just a small
amount of training data or only test data is available. Therefore, we do not
provide the network with such information.

CNN contain three different types of layers. Convolutional layers create
several representations of their inputs where different properties characteriz-
ing these inputs are amplified. Pooling layers are then used for reducing the
redundancy introduced by these multiple representations of the same input by
extracting the most dominant output signals of the convolutional layers. Dense
layers, which are basic feed-forward layers also used in FFNN, often follow
after some repetitions of convolutional and pooling layers. Therefore, we can
interpret the convolutional and pooling layers of a CNN as sophisticated fea-
ture extractors, whose outputs are passed on to an FFNN which learns how to
translate these special features into mortality rate predictions. Figure 2 shows
a schematic illustration of a CNN with four layers.
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FIGURE 1: Illustration of an input matrix for the CNN with x1 = 0, xA = 100, τ = 10, as a heat map
displaying the log-transformed death rates of English and Welsh females. The colors range from blue (low

death rates) to red (high death rates).

FIGURE 2: CNN with input size (1,101,10) consisting of a convolutional layer of size (10,99,8), a pooling
layer of size (10,49,4), a dense layer of size 50 and a dense output layer of size 30. Figure produced using the

tool by LeNail (2019).

We can interpret our CNN in terms of an LC-type modeling approach along
the lines of Perla et al. (2021). Taking into account our hyperparameter choices
(linear activation for the output layer), for fixed x ∈Xout, t ∈ T , i ∈P the model
reads

logmi
x,t = bx +

〈(
Wx,j

)
j=1,...,k ,Z

i
t

〉
, (2.2)

where Zi
t ∈R

k is a nonlinear function of
(
mi
x̃,t̃

)
x̃∈Xin, t̃=t−τ ,...,t−1

. In this sense,

our model generalizes the common age effect model considered by Wen et al.
(2021),

logmi
x,t = αx +

k∑
j=1

β
j
xκ

i,j
t , (2.3)

where both the base mortality level αx (corresponding to the CNN bias term
bx) and the age effects β1

x , . . . , β
k
x (corresponding to a row in the CNN

weight matrix W) are assumed to be identical over all considered popula-
tions. However, we use a sequence of convolutional, pooling and dense layers,
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which can capture complex, nonlinear interaction effects across the age and
time dimension of the death rates, to create a powerful generalizationZi

t of the
period effects κ

i,1
t , . . . , κ i,kt .

2.2. Hyperparameter selection and model training

As usual, we perform a hyperparameter tuning before starting the training of
the NN. We initially divide the available data into a training set (containing
all available years up to 2006) and a test set (containing the years from 2007 to
2016). The latter is exclusively used for a final evaluation and comparison of
the chosen models in Section 4. On the training set, we perform threefold cross-
validation and choose the hyperparameter configuration which minimizes the
obtained cross-validation mean-squared error. Compared to the use of a sin-
gle validation set at the end of the training data, this approach ignores the
existing temporal dependence structure of the data to some extent. However,
it has been found that this theoretical shortcoming of applying random cross-
validation for time-dependent data usually does not have significant practical
consequences for sufficiently large and flexible models (Bergmeir et al. 2018).
On the contrary, it makes better use of the available data and can therefore
lead to a more robust model selection.

We have evaluated over 8500 hyperparameter combinations by threefold
cross-validation. The chosen network architecture is similar to the one depicted
in Figure 2 except for an additional sequence of a convolutional and a pooling
layer before the dense layers. Details can be found in Section A.3 of the Online
Supplementary Material. Note that there are more sophisticated hyperparam-
eter selection strategies (Goodfellow et al. 2016, Chapter 11), which could yield
further improvements in performance.

As the weights of an NN are initialized randomly and stochastic gradient
descent is used for optimization, training the same network multiple times
yields different parameters and predictions. It is a popular approach to train
multiple networks and average their outputs to obtain more robust forecasts
(see, for example, Richman and Wüthrich 2020), and we have found this to
improve performance for our application as well. Therefore, once we have
fixed the values for the hyperparameters, we train such a model ensemble of
1000 CNN. To allow for an additional source of randomness and make the
model more robust with respect to the choice of training data, each CNN is
trained on a bootstrap sample of the original training data. This approach has
been proposed by Breiman (1996), where it is termed a bagging (bootstrapping
and aggregating) ensemble.

The ordinary bootstrapping approach does not explicitly account for depen-
dence structures in the covariates. However, as can be seen from (2.1), the input
data for our CNN model are Ain × τ -sized blocks of mortality rates. In this
sense, the bootstrapping procedure preserves the age–time dependence struc-
ture. The dependence between populations is ignored here because we have
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FIGURE 3: The process for choosing hyperparameters, training and evaluating models.

empirically found the model to achieve better performance when the popu-
lation does not explicitly enter as a feature. Improvements might be possible
by using modifications of the bootstrap procedure such as stratified or Sieve
bootstrap (D’Amato et al. 2011; 2012). We leave a deeper investigation of this
matter and a potential further improvement of the models in this direction for
future research.

Figure 3 summarizes the process we follow from data acquisition up to the
test set evaluation of the final model.

2.3. Feed-forward and recurrent neural networks

We consider two other NN architectures from the literature as benchmarks
for our CNN model. FFNN for mortality forecasting have been investigated
by Richman and Wüthrich (2021). We adopt their method and calibrate an
FFNN on the year as a continuous input and on age, country and gender as
categorical inputs, which are fed to the network via embedding layers. RNN
are particularly suited for modeling and forecasting sequential data. Here, we
adapt the LSTM mortality forecasting approach of Richman and Wüthrich
(2019) to multiple populations.

For both FFNN and LSTM, hyperparameters are chosen based on three-
fold cross-validation. Afterwards, bagging ensembles of 100 FFNN and 10
LSTM, respectively, are trained. For further details, we refer to Sections A.1
and A.2 of the Online Supplementary Material and to textbooks such as
Denuit et al. (2019).

3. PREDICTION UNCERTAINTY

Uncertainty in forecastingmi
x,t can be quantified by calculating a lower bound

m̂i, lower
x,t and an upper bound m̂i, upper

x,t such that
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P

(
m̂i, lower
x,t ≤mi

x,t ≤ m̂i, upper
x,t

)
≥ a (3.1)

for some given threshold a ∈ (0, 1). The interval [m̂i, lower
x,t , m̂i, upper

x,t ] is called
a prediction interval for mi

x,t at level a. Prediction interval calculation for
stochastic mortality models has been extensively dealt with in the litera-
ture. We present details on how we obtain them in Section B of the Online
Supplementary Material.

For calculating prediction intervals in our NN models, we rule out several
existing methods from the literature because they would require substantial
structural changes, such as the insertion of dropout layers for Monte Carlo
dropout (Gal and Ghahramani 2016), a change of the loss function for lower
upper bound estimation (Khosravi et al 2011b) or a substantial increase of the
output dimension for mean–variance estimation (Nix and Weigend 1994). We
prefer not to change these hyperparameters because doing so might decrease
the forecasting performance, the optimization of which is still our main goal.
Khosravi et al. (2011a) provide a survey of multiple approaches for calculating
prediction intervals. They refer to bootstrapping as the most commonly used
technique and find it to achieve the largest variability in prediction interval
width compared to other methods. This shows it is able to respond to differing
levels of uncertainty in the data, an important quality for mortality forecast-
ing applications. Therefore, we adapt the bootstrapping approach of Heskes
(1997) to our setup, for which no change of our existing model structure is
necessary.

We assume the process generating logarithmic death rates is given by

y(z)= f (z)+ ε(z), (3.2)

where ε(z) is zero-mean noise, f is the true, unobservable input–output rela-
tionship and y(z) := logmi

x,t is the noisy observation of f (z). Note that we
consider logarithmic death rates here in order to make the normal assumption
we are going to use at a later point more appropriate. The input z depends on
the modeling framework, for example, we consider z := (x, t, i) with age x, year
t and population i for FFNN, while we use previous death rate observations
as inputs for RNN and CNN as well.

NN aim to learn an estimator f̂ (z) of the true value f (z) based on some
training data, which typically do not contain z. The natural question arises
how well f̂ (z) predicts the actual target value, the realization of the random
variable y(z). Under the assumption that f (z)− f̂ (z) and ε(z) are uncorrelated,
this is addressed by the well-known bias-variance decomposition

E

((
y(z)− f̂ (z)

)2)=Bias
(
f̂ (z)

)2 +Var
(
f̂ (z)

)
+Var (ε(z)) . (3.3)

We call σ 2(z) := Var
(
f̂ (z)

)
model uncertainty and σ 2

ε (z) := Var (ε(z)) noise

variance. They sum up to the total variance s2(z) := Var
(
y(z)− f̂ (z)

)
.
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As described in Section 2, we train NN f̂m, m= 1, . . . ,NE, on boot-
strap samples of the training data and obtain the ensemble estimator by
averaging,

f̂ (z) := 1
NE

NE∑
m=1

f̂m(z). (3.4)

From this, assuming Bias
(
f̂m(z)

)
≈ 0 for allm= 1, . . . ,NE, we estimate model

uncertainty σ 2(z) for FFNN and for one-step forecasts of RNN and CNN by
the ensemble variance

σ̂ 2(z) := 1
NE − 1

NE∑
m=1

(
f̂m(z)− f̂ (z)

)2
. (3.5)

This mainly accounts for variance arising from the randomness in the initial-
ization and calibration of the NN (by considering an ensemble of multiple such
networks) and for the uncertainty of the model parameters with respect to the
training data (by bootstrapping).

As stated in Section 2.1, we perform recursive one-step predictions to obtain
multi-step forecasts for RNN and CNN. Directly applying the one-step for-
mula (3.5), a natural way to estimate model uncertainty σ 2

h in a recursive h-step
forecast for fixed h∈ {1, 2, . . . } would be via

(
σ̂E
h

)2
:= 1

NE − 1

NE∑
m=1

⎛
⎝f̂m (zh) − 1

NE

NE∑
p=1

f̂p (zh)

⎞
⎠

2

. (3.6)

The input of the one-step forecast, z1 ∈R
Ain×τ , consists entirely of data avail-

able at the beginning of the forecasting period. For h≥ 2, we drop the first
column of zh−1, denote the resultingmatrix by −1zh−1 ∈R

Ain×(τ−1) and then set

zh :=
(

−1zh−1, f̂ (zh−1)
)

∈R
Ain×τ . This means the input zh for the h-step fore-

cast depends on the previous forecasts f̂ (z1), . . . , f̂ (zh−1), which are themselves
subject to uncertainty. Therefore, it would be plausible for model uncertainty
to increase with h, mirroring the subjective belief that mortality rates further
in the future are more uncertain.

To achieve this, we consider the following heuristic modification of (3.6):

(
σ̂P
h

)2
:= 1

NE − 1

NE∑
m=1

⎛
⎝f̂m (zh,m)− 1

NE

NE∑
p=1

f̂p
(
zh,p

)⎞⎠
2

. (3.7)

The input of the one-step forecast, z1,m := z1, is the same for all m=
1, . . . ,NE . For h≥ 2, using analogous notation as above, we set zh,m :=(

−1zh−1,m, f̂m(zh−1,m)
)
. This means that we recursively supply to each ensem-

ble member only its own past forecasts instead of the averaged forecasts of all
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ensemble members, which we normally use as the forecast of our entire model
and which also appears in (3.6). We have found in our numerical studies that
this approach indeed works as

(
σ̂P
h

)2
tends to increase with h (see Section 4.3).

Therefore, we use
(
σ̂P
h

)2
to estimate model uncertainty.

We estimate noise variance σ 2
ε via an additional FFNN with exponential

output activation which is fit to the floored residuals

r2(ξ ) :=
((

y(ξ )− f̂ (ξ )
)2 − σ̂ 2(ξ )

)+
(3.8)

by maximum likelihood, that is, minimizing

L := 1
2

N∑
j=1

(
log

(
σ̂ 2

ε (ξj)
)

+ r2(ξj)
σ̂ 2

ε (ξj)

)
(3.9)

over all available training data. Apart from that, we use the hyperparame-
ters as described in Section A.1 of the Online Supplementary Material. We
have also experimented with RNN and CNN for noise variance prediction but
found them to be less numerically stable and yield less plausible uncertainty
estimates than an FFNN.

Finally, once model uncertainty and noise variance have been estimated,
we set ŝ2(z) := σ̂ 2(z)+ σ̂ 2

ε (z) and obtain prediction interval bounds under a
normal assumption (cf. Carney et al. 1999) by

ŷlower|upper(z) := f̂ (z)± 	−1
(
1+ a
2

)
ŝ(z). (3.10)

These bounds for the logarithmic death rates are easily transformed to yield
prediction intervals for the death rates themselves.

4. EMPIRICAL MODEL COMPARISON

For the numerical studies in this section, we use death rates from the Human
Mortality Database (2019, HMD) with zeros replaced by a small, positive
number because we often work with logarithmic death rates. We calibrate the
three NN models on the death rates mi

x,t for ages x= 0, . . . , 100, almost all
available populations and all the years t≤ 2006 for which data are available.
The reason why we use all available years is that NN generally need many
training data.

The Poisson LC model proposed by Brouhns et al. (2002) is trained on the
death rates of the ages x= 60, . . . , 89, the 54 populations for which there are
data available for every year between 1987 and 2016 and on 10 (LC10) or 20
(LC20) years of data. One might argue that these calibration periods are too
short for a fair comparison. However, the LC model does not necessarily bene-
fit frommore training data because the longer the calibration period, the higher
the risk that its underlying assumptions are violated (see Booth et al. 2002). In
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fact, we will see that the LC10 model produces slightly lower out-of-sample
errors than the LC20 model, and we have found that it even achieves slightly
superior out-of-sample performance compared to an LC model calibrated on
30 years of data. Therefore, and in order to have as many populations as pos-
sible available for performance evaluation, we restrict ourselves to a maximum
calibration period of 20 years for the LC model. As an additional classical
benchmark model, we consider the ACF model (Li and Lee 2005), using 20
years of data for calibration and allocating countries to regions as proposed
by (Richman and Wüthrich 2021, Appendix A).

With each model, we produce forecasts m̂i
x,t for ages x= 60, . . . , 89,

years t= 1997, . . . , 2006 to evaluate the in-sample errors and years t=
2007, . . . , 2016 to evaluate the out-of-sample errors by comparing the fore-
casts with the corresponding observations mi

x,t. The years for the in-sample
evaluation are chosen as the intersection of the training sets of all models. We
calculate the error measures

• mean squared error MSE= 1
N

∑
x,t,i

(
m̂i
x,t −mi

x,t
)2,

• mean absolute error MAE= 1
N

∑
x,t,i

∣∣m̂i
x,t −mi

x,t

∣∣,
• median absolute percentage error MdAPE=medianx,t,i

{∣∣m̂i
x,t−mi

x,t
∣∣

mi
x,t

}
,

• mean Poisson deviance Dev= 2
N

∑
x,t,i

Di
x,t

(
log

mi
x,t

m̂i
x,t

+ m̂i
x,t

mi
x,t

− 1
)
,

where ages x, years t and populations i range over all observations consid-
ered for evaluation and N denotes the number of these observations. The
MAE and particularly the MSE penalize forecasting errors more when the
target death rate is higher. They are strongly influenced by errors in forecast-
ing high-age mortality becausemi

x,t usually increases with age. To prevent this,
weighted versions of these measures could be considered. Alternatively, evalu-
ations could focus on theMdAPE as a relative measure. We also include mean
Poisson deviance as an error measure, which assigns more weight to errors in
larger populations or age groups as it depends on the death counts Di

x,t.
For implementing the networks, we use the R interface to the packageKeras

(R Core Team 2019; Falbel et al. 2019). For producing figures, we use the data
visualization package ggplot2 by Wickham (2016).

4.1. Goodness-of-fit

Table 1 contains the in-sample error measures. The LC10 model achieves the
highest goodness-of-fit, which is no surprise since it is evaluated exactly on the
years it was calibrated on, while all the other models were trained on more
data. Intuitively, they will not fit as well on subsets of their training data as
a model that was trained specifically on that subset, but they might be able
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TABLE 1

GOODNESS-OF-FIT MEASURES FOR 54 POPULATIONS, AGES 60–89, YEARS 1997–2006 (MODELS
TRAINED ON YEARS UP TO 2006). THE BEST VALUE IN EACH COLUMN IS MARKED IN BOLD.

Model MSE×105 MAE×103 MdAPE (%) Dev

LC10 1.9 2.0 2.0 1.8
LC20 2.3 2.3 2.4 2.4
ACF 2.1 2.2 2.4 2.3
FFNN 2.8 3.0 4.3 11.7
RNN 6.0 4.5 6.0 19.1
CNN 3.7 3.4 4.3 12.3

FIGURE 4: Coefficients of a log-linear global surrogate model for the CNN.

to generalize better. We will see in the following subsection that the good in-
sample performance of the LC models contrasts with their weaker predictive
performance, indicating some degree of overfitting for these models.

In order to check whether our CNN is an appropriatemodel despite its com-
parably high in-sample errors, we consider a log-linear global surrogate model.
The basic idea lies in fitting a simple, interpretable model to the fitted values
of a complex model in order to better understand what the complex model is
doing by interpreting the simple model. More precisely, we calibrate a linear
model to the fitted logarithmic death rates of the CNN using age, gender and
country as categorical regressors and year as a numerical regressor. Its coeffi-
cients are displayed in Figure 4. They suggest that the network has learned an
overall plausible internal representation of the training data.

We observe, as expected, a log-linear pattern for the age dependency of mor-
tality forecasts, a decrease of predicted mortality rates with time, a tendency
to predict higher death rates for males than for females and country-specific
adjustments with respect to the reference country (Australia) which look
mostly sensible. Some countries with long mortality history which have expe-
rienced relatively high mortality rates in earlier times such as France, Italy
or Switzerland are assigned somewhat high country-specific coefficients com-
pared to their current mortality levels. This is not problematic for forecasts
with the CNN because it only receives current mortality levels as input and
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TABLE 2

OUT-OF-SAMPLE ERROR MEASURES FOR 54 POPULATIONS, AGES 60–89, YEARS 2007–2016
(MODELS TRAINED ON YEARS UP TO 2006). THE BEST VALUE IN EACH COLUMN IS MARKED IN

BOLD.

% of pop. % of pop.
with lower MSE with lower MdAPE

Model MSE ×105 MAE ×103 MdAPE (%) Dev than LC10 than LC10

LC10 4.9 3.7 5.7 19.5 0.0 0.0
LC20 5.5 4.0 5.8 21.9 51.9 50.0
ACF 3.4 3.3 5.5 19.7 61.1 61.1
FFNN 2.6 3.0 5.9 32.5 64.8 53.7
RNN 5.9 4.2 6.1 22.9 46.3 46.3
CNN 2.9 3.0 4.9 30.7 79.6 75.9

no other information on the country. However, it shows that the information
obtained from a surrogate model depends on the data it is calibrated on – for
example, one could calibrate another surrogate model only on a subset of fit-
ted CNN predictions for years after 1970 or 1980 to get an impression of its
behavior on more recent data.

We have checked how well the global surrogate model works by calcu-
lating its coefficient of determination R2 = 0.9698. This shows that a simple
regression model describes the in-sample predictions of the CNN well and the
insights obtained from Figure 4 should be reasonably reliable. With respect
to out-of-sample forecasts of death rates, we have found the surrogate model
to perform very poorly. This is not surprising due to its limited model struc-
ture. We emphasize that surrogate models are not meant to describe the data
and their future development but to make the global in-sample behavior of
black-box models more interpretable. In this regard, it is also important to
observe that the surrogate model is trained on different input features (age,
country, gender, year) than the CNN (matrices of death rates) for better
interpretability.

4.2. Forecasting performance

Table 2 contains out-of-sample error measures. The ACF and LC models
achieve low Poisson deviances. FFNN andCNNhave larger Poisson deviances
because their forecasting performance is suboptimal for the USA and Japan,
respectively, which are very populous countries and therefore heavily influence
this measure. Except for Poisson deviance, both LC models and the RNN per-
form similarly and noticeably worse than the FFNN (except for the MdAPE)
and the CNN. The rather high errors of the RNN might be explained by the
fact that it is the hardest to train as it takes a lot of computational resources,
which is why we can only build a small ensemble consisting of 10 models with
relatively few neurons per model. The ACF model yields better results than
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the LC model but is still outperformed by the CNN. The FFNN achieves
good performance with respect to absolute measures such as MSE and MAE
but has a rather high MdAPE, which will be investigated in Figure 5 below.
The CNN minimizes MAE and MdAPE. To get a better impression of the
performance for different populations, we have evaluated the percentage of
populations for which each model achieves a lower MSE (MdAPE) than the
LC10. Here, the CNN performs best as it produces lower MSE (MdAPE)
than the LC10 for 43 (41) out of 54 populations, which corresponds to 79.6%
(75.9%).

Figure 5 shows the MdAPE of the 10-year forecast of the CNN by age, year
and population compared to the FFNN, RNN, ACF and LC20 models. This
is a more detailed evaluation of the corresponding column in Table 2, which
can, for example, help us understand why the FFNN has comparably high
MdAPE in spite of having the lowest MSE. We display the MdAPE because it
is a relative error measure, which is especially useful to compare performance
at different ages. All models tend to yield lower MdAPE for higher ages (75
and above). In particular, the FFNNproduces quite largeMdAPE for younger
ages and seems to be more recommendable for ages above 80. For the forecast
error in the time dimension, there is an unsurprising increase with the length
of the forecasting period, which is more pronounced for the RNN and less
pronounced for the FFNN and CNN. Looking at the population-wise errors,
none of the models performs best for all the populations. For the female popu-
lations of Spain, France and especially Japan, the MdAPE of the CNN model
is noticeably larger than that of the other models. For many of the remaining
populations, however, the CNN performs better than or at least similarly to
the other models.

To better understand the forecast errors of the CNN for Japanese females,
we plot its forecasts for some ages and compare them to the ground truth
and the LC20 benchmark model in Figure 6. They increase over time at all
ages, which is neither plausible nor in accordance with the real development.
Curiously, for most ages even the prediction for the first out-of-sample year is
too high. This wrong prediction is then used as an input for the second out-
of-sample year forecast and so on, possibly leading to a propagation of errors.
This observation illustrates the need for an evaluation of the forecasts of any
mortality model, but of course especially of black-box models, with respect
to biological reasonableness (see Cairns et al. 2006). A potential reason for
this behavior might be the fact that mortality rates of Japanese females are
very low. Therefore, the CNN receives input matrices with death rates which
are smaller than most of – or for some ages even all – the death rates it was
trained on. It has to extrapolate in the sense of making a prediction for an input
which lies on the boundary or even outside of the range of the training data.
Other types of NN are structurally better suited to deal with this issue, either
by learning a decreasing dependence on the year (FFNN) or by extrapolating
an observed falling trend (RNN), whereas caution has to be taken when apply-
ing a CNN for the prediction of populations with very low mortality rates. If
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(a)

(b)

(c)

FIGURE 5: MdAPE by age, year and population of CNN (red circles), FFNN (brown squares), RNN (blue
inverted triangles), ACF (green diamonds) and LC20 (magenta triangles).
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FIGURE 6: CNN (red, long dash) and LC20 (magenta, dash) forecasts and ground truth (black, solid) from
2007 to 2016 for Japanese females aged 60, 65, 71, 77, 83, 89.

one is interested in forecasting mortality in such populations, the training data
should possibly be adjusted to include further low-mortality populations so
that more data in the mortality range of interest are shown to the NN during
training.

4.3. Prediction uncertainty

For measuring the quality of prediction intervals, Khosravi et al. (2011a)
consider the prediction interval coverage probability (PICP)

PICP := 1
N

∑
x,t,i

1{
mi
x,t∈

[
m̂i,lower
x,t , m̂i,upper

x,t

]}, (4.1)

where 1 denotes an indicator function. A large PICP only ensures reliability
(true values lie in the interval sufficiently often) but not informativeness of the
intervals (intervals are as narrow as possible). For this aspect, Khosravi et al.
(2011a) propose the mean prediction interval width (MPIW)

MPIW := 1
N

∑
x,t,i

(
m̂i,upper
x,t − m̂i,lower

x,t

)
. (4.2)

Good prediction intervals should minimize MPIW under the constraint that
PICP is at or above the specified threshold a. Here, we set a= 0.95.

In Table 3, we show an evaluation of prediction interval performance
for all models. The prediction intervals for the LC, ACF and RNN models
ignore some uncertainty as their realized coverage probabilities are signifi-
cantly smaller than 95%. Both the FFNN (97.0%) and the CNN (98.0%) fulfil
the requirement that PICP≥ 0.95. As a look at the MPIW shows, this comes
at the cost of a slightly higher prediction interval width, where the predic-
tion intervals of the FFNN are slightly more informative (narrow) on average
compared to the CNN.
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TABLE 3

PREDICTION INTERVAL MEASURES OVER 54
POPULATIONS, AGES 60–89, YEARS 2007–2016 (MODELS

TRAINED ON YEARS UP TO 2006).

Model PICP (%) MPIW

LC10 74.0 0.012
LC20 74.3 0.011
ACF 77.2 0.010
FFNN 97.0 0.017
RNN 86.0 0.015
CNN 98.0 0.019

We provide some details regarding the dependence of the PICP on age, year
and population in Figure 7. The ACF and LC models are very unreliable at
the boundaries of the considered age range, while the NN approaches are more
stable across ages. There is also a dependence on the length of the forecasting
horizon. The LC model improves from a PICP of around 60% in the first year
to around 75% in the last year, while the RNN gets less reliable with increasing
forecasting horizon. Both FFNN and CNN have high PICPs over the whole
forecasting horizon. However, the reliability of the FFNN slightly decreases
over time. Finally, the PICP also varies by population, and the mortality rates
of some populations are very hard to anticipate for the ACF, LC and RNN
models. For some male populations (Belarus, Estonia, Latvia, Lithuania),
the CNN is outperformed by the FFNN, but apart from that its prediction
intervals are remarkably reliable.

The MPIW of the NN models is entirely determined by their central fore-
casts and their variance estimates. Therefore, it is equally informative to
directly consider these estimated variances instead of MPIW. We show model
uncertainty σ̂ 2, noise variance σ̂ 2

ε and total variance ŝ2 by age, year and pop-
ulation in Figure 8. For all three models, we observe a decrease both in model
uncertainty and noise variance with age. On the other hand, there is an increase
with the length of the forecasting horizon, which is particularly strong for the
model uncertainty of the CNN. This indicates that the estimation method for
multistep prediction intervals outlined in Section 3 leads to an increase of the
estimated uncertainty in long-term forecasts as required. For the FFNN, total
variance is also increasing, but the slope is rather modest. The dependence
of the variances on the population is dominated by some populations with
high estimated noise variance, very notably Iceland but also Estonia, Northern
Ireland and Slovenia. The noise variances of some populations are estimated
quite differently by the three models. For example, compared to the other
two models, the FFNN seems to overestimate the noise variance of Danish,
Scottish and US females and the CNN seems to overestimate the noise vari-
ance of Japanese females. This is interesting considering the failure of the CNN
to accurately forecast mortality rates of this population, see Section 4.2.
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(a)

(b)

(c)

FIGURE 7: PICP by age, year and population of CNN (red circles), FFNN (brown squares), RNN (blue
inverted triangles) ACF (green diamonds) and LC20 (magenta triangles).
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(a)

(b)

(c)

FIGURE 8: Estimated variances by age, year and population for the forecasts of CNN (red circles), FFNN
(brown squares) and RNN (blue inverted triangles).

https://doi.org/10.1017/asb.2021.34 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.34


POINT AND INTERVAL FORECASTS OF DEATH RATES 353

(a)

(b)

FIGURE 9: CNN (red, long dash) and LC20 (magenta, dash) forecasts along with prediction intervals
(a= 0.95; dot for CNN, in (b) also dot and dash for LC20) and ground truth (black, solid) from 2007 to 2016

for ages 60, 65, 71, 77, 83, 89.

In fact, the availability of prediction intervals somewhat ameliorates this
failure as we see in Figure 9(a). Even though the central forecast of the CNN
for Japanese females is both erroneous and biologically implausible, all the
observations lie within the prediction intervals. In particular, when relying
on the lower bound we would never have overestimated the true death rates.
Figure 9(b) shows the forecasts of the CNN and the LC20 model for the
English and Welsh females with the prediction intervals included. Here, we
mainly observe that the CNN intervals can be considerably wider than the LC
intervals. One should keep in mind the results in Table 3 and Figure 7, which
show that the LC prediction intervals are often too narrow – compared to this,
prediction intervals which are sometimes too wide, that is, too conservative
would be preferable in many applications.

4.4. Robustness check

To check the robustness of our forecasting performance results with respect
to different training data and a larger test set, we have trained the models
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TABLE 4

ROBUSTNESS CHECK.OUT-OF-SAMPLE ERROR MEASURES FOR 50 POPULATIONS, AGES 60–89,
YEARS 1997–2016 (MODELS TRAINED ON YEARS UP TO 1996). THE BEST VALUE IN EACH COLUMN,

WHERE APPLICABLE, IS MARKED IN BOLD.

Model MSE×105 MAE×103 MdAPE (%) Dev PICP (%) MPIW

LC20 18.9 7.8 11.1 69.0 67.6 0.024
ACF 14.9 7.4 11.0 64.3 57.8 0.016
FFNN 14.4 6.9 10.6 59.5 85.0 0.027
RNN 21.2 8.8 12.4 83.6 60.3 0.020
CNN 9.1 5.7 8.2 94.7 92.5 0.030

on the years up to 1996 and evaluated them on 1997–2016. In doing so, we
use some out-of-sample information at training time for this particular eval-
uation because the optimal hyperparameters for the NN models were chosen
based on data containing the years 1997–2006. However, as this holds true for
all three NN models, at least a fair comparison between them should be pos-
sible. The resulting out-of-sample error measures are shown in Table 4. We
find that the RNN still performs worst, while the CNN is the best model with
respect to all error measures except for the Poisson deviance (Dev). This indi-
cates that the performance of the CNN could become clearly superior when
longer forecasting horizons are considered. As in Table 2, its high deviance
is mostly driven by Japanese females and would equal 49.5 when exclud-
ing this population. The second-best model is the FFNN, followed by ACF
and LC20.

We refer to Section C.2 of the Online Supplementary Material for an addi-
tional robustness check with respect to the evaluation age range, which shows
that the CNN is superior to the other models when evaluated over all available
ages as well.

4.5. Long-term forecasts

For actuarial applications, mortality models should produce plausible fore-
casts even for longer time horizons. Figure 10 shows the development of
age-specificmortality forecasts for themale and female populations of England
and Wales by the three NN models, the LC model trained on 30 years of data
(LC30) and the ACF model over a 1-year, 10-year, 20-year and 30-year hori-
zon. For the 1-year and the 10-year forecasts, which correspond to the years
2007 and 2016, we also provide the ground truth, that is, the realized death
rates during these years.We consider LC30 here because according to an often-
used rule of thumb, the training horizon for an LC model should be at least as
long as the forecasting horizon (see Janssen and Kunst 2007).

All models predict an approximately linear dependence of log death rates
on age even in the far future and, with the exception of the RNN, age-
specific improvements which tend to decrease over age. This is in line with
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(a)

(b)

FIGURE 10: Log death rate forecasts of different mortality models and, where available, ground truth for
the years 2007 (red, solid), 2016 (lime green, dash), 2026 (blue, dot) and 2036 (violet, long dash; including

prediction intervals) for England and Wales.

the demographic literature (see Li et al. 2013). The FFNN forecasts substan-
tial mortality improvements at all ages, which might turn out to be somewhat
optimistic considering the real development between 2007 and 2016. The CNN
and the LC model forecast stronger improvements for males than for females.
While ACF, LC and particularly RNN model yield narrowing intervals for
higher ages, FFNN and CNN prediction interval widths are similar over the
considered age range. The notable differences between the forecasts of the
models indicate the existence of a nonnegligible amount of model risk. This
model risk can to some degree be quantified numerically by calculating implied
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present values of annuities, which we present in Section C.3 of the Online
Supplementary Material.

5. CONCLUSION

We have proposed a CNN for mortality forecasting. It outperforms the ACF,
LC and RNN models in an out-of-sample evaluation with respect to all con-
sidered error measures except for Poisson deviance, which heavily depends
on population size. An FFNN achieves lower out-of-sample quadratic errors
than our CNN, but with respect to relative errors the CNN outperforms
the FFNN as well. Checking the robustness of our results on a longer time
period (20 years), we confirm the convincing forecasting performance of
our CNN.

There is no single model which performs best for all ages, years or popu-
lations. In particular, a look at population-specific errors illustrates the need
for a careful investigation whether a model works well for a population of
interest. For example, we observe unrealistic forecasts of the CNN for a few
populations with low mortality rates so that we recommend either not to use
this model for populations which lie at the boundary of the training data
distribution or to extend the training data accordingly.

Generally, NN models have the limitation of being conceptually more com-
plex and less interpretable than, for example, the LCmodel.We strongly advise
for preliminary studies similar to those in Section 4 before basing any decisions
on a black-box model to ensure that the forecasts are biologically reasonable.
Looking at a global surrogate model and at long-term forecasts produced by
the CNN, we gain confidence that this is the case for many of the populations
we consider. Based on our results, we believe that black-box models can be (at
least) a helpful addition to classical approaches such as the LC model or deter-
ministic life tables in demographic and actuarial modeling. This is supported
by the results we obtain on prediction uncertainty. Our CNNmodel yields reli-
able prediction intervals as well as a plausible increasing development of model
uncertainty with the length of the forecasting horizon.

NN models are computationally expensive. Training our models takes
approximately 3–4 days (on a machine with 28 CPU cores, 2.6 GHz per core
and 192 GB RAM), with an additional 3 days for the noise variance FFNN
if prediction uncertainty is to be quantified. As re-training a model is only
necessary when new mortality data are available, which can be expected to
occur with yearly rather than weekly frequency, and obtaining forecasts from
an already trained model is achieved very quickly, this does not impede the
practical applicability of these models.

There are several ways to improve or extend the considered models:

• As proposed by Perla et al. (2021), combinations of model architec-
tures could be considered, for example, by connecting the outputs of
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an FFNN and a CNN to a further dense layer and in this sense training
an FFNN–CNN ensemble. This is an application of stacking (Wolpert,
1992) with the dense layer as meta learner. Averaging multiple different
models in this way could also reduce model risk.

• We have trained both the RNN and the CNN model to make one-step
forecasts and then obtained multistep forecasts by recursion. Although
this is a standard approach in time series forecasting, there are other
strategies which are worth investigating, see Ben Taieb and Atiya (2016)
and the references therein.

• For estimating prediction uncertainty we make two assumptions,
namely that the noise ε(z) in (3.2) follows a normal distribution and that
the out-of-sample bias of the NN estimators equals zero. The convinc-
ing results in Section 4.3 justify these assumptions ex post. Nevertheless,
the quality of the uncertainty estimates if they are violated and possible
remedies should be investigated.
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