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In this paper, we explore the hydrodynamics of spheroidal active particles in viscosity
gradients. This work provides a more accurate modelling approach, in comparison to
spherical particles, for anisotropic organisms such as Paramecium swimming through
inhomogeneous environments, but more fundamentally examines the influence of particle
shape on viscotaxis. We find that spheroidal squirmers generally exhibit dynamics
consistent with their spherical analogues, irrespective of the classification of swimmers
as pushers, pullers or neutral swimmers. However, the slenderness of the spheroids
tends to reduce the impact of viscosity gradients on their dynamics; when a swimmer
becomes more slender, the viscosity difference across its body is reduced, which leads to
slower reorientation. We also derive the mobility tensor for passive spheroids in viscosity
gradients, generalizing previous results for spheres and slender bodies. This work enhances
our understanding of how shape factors into the dynamics of passive and active particles in
viscosity gradients, and offers new perspectives that could aid the control of both natural
and synthetic swimmers in complex fluid environments.
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1. Introduction

Active particles, which include both biological organisms and synthetic particles, have
the capability to convert stored energy to directed movement (Schweitzer 2007). A large
number of active particles can form a dynamic system commonly referred to as active
matter. The active constituents in active matter can span a wide range of scales, from
nanorobots and microswimmers to larger organisms like birds, fish and even humans
(Vicsek & Zafeiris 2012; Marchetti et al. 2013). In this study, we focus on micron-sized
active particles. The widespread existence of microorganisms in natural settings, combined
with substantial advancements in microfluidic experimental techniques, has led to an
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explosion of research focusing on the motion of small active particles, both biological
and synthetic, in viscous fluids (Lauga & Powers 2009; Elgeti, Winkler & Gompper 2015;
Bechinger et al. 2016).

Active particles often exist within gradients of a variety of physical quantities, such
as heat, light (Jékely 2009) or chemicals (Moran & Posner 2017), and often respond by
reorienting themselves to swim up or down these gradients, a behaviour known as taxis.
For instance, E. coli is found to display chemotaxis in gradients of oxygen, galactose,
glucose, aspartic acid, threonine or serine (Adler 1966). Meanwhile, the photophobic
behaviour of E. coli can be used to ‘paint’ with bacteria by selective exposure to light
(Arlt et al. 2018). Here, we focus on taxis due to environments that are mechanically
inhomogeneous, specifically where the viscosity is spatially varying. Viscosity gradients
can be found in nature when properties of the fluid such as temperature, salinity or even
suspended substances are spatially varying. As an example, numerous coral species secrete
mucus that builds up on the sea’s surface, leading to areas with differing viscosities where
marine microorganisms navigate (Wild er al. 2004; Guadayol ef al. 2021). It has also been
shown that the movement and distribution of intestinal bacteria is influenced by viscosity
variations in the mucus layer (Swidsinski et al. 2007).

Previous experimental studies have observed that several microorganisms demonstrate
apparent viscotaxis. For example, Leptospira and Spiroplasma are observed to propel up
viscosity gradients (Kaiser & Doetsch 1975; Petrino & Doetsch 1978; Daniels, Longland &
Gilbart 1980; Takabe et al. 2017). In contrast, E. coli have been observed to swim down the
viscosity gradients (Sherman, Timkina & Glagolev 1982). Chlamydomonas reinhardtii,
a type of green microalgae, demonstrates complex behaviour in viscosity gradients: it
accumulates in high-viscosity regions when gradients are weak, but reorients towards
low-viscosity regions in strong gradients (Stehnach et al. 2021). When interacting with
sharp viscosity gradients, this same alga displays dynamics analogous to the refraction of
light, as observed experimentally (Coppola & Kantsler 2021) and modelled theoretically
(Gong, Shaik & Elfring 2023). Experiments on the effects of viscosity differences on
synthetic swimmers are as of yet limited to helical swimmers crossing perpendicular to a
viscosity interface and thus not displaying reorientation (Esparza Lopez et al. 2021).

Recently, it was demonstrated by Liebchen er al. (2018) that a purely hydrodynamic
mechanism can lead to viscotaxis. In that work, active particles were modelled as
interconnected spheres propelled by a fixed thrust in weak viscosity gradients. These
particles were shown to display positive viscotaxis due to an imbalance in viscous drag
acting on different spheres. Later work included the effect of viscosity variations on thrust
using the spherical squirmer model where the particle activity responsible for generating
thrust is represented as a surface slip velocity (Lighthill 1952; Blake 1971). It was shown
that hydrodynamic interactions between the active slip conditions on the squirmer’s
surface and the fluid with spatially varying viscosity generally lead to negative viscotaxis
(Datt & Elfring 2019; Shaik & Elfring 2021; Gong et al. 2023). The dynamics of a
spherical squirmer in spatially varying viscosity that results from non-uniform distribution
of nutrients has also been explored (Shoele & Eastham 2018). And recently, the scallop
theorem (Purcell 1977) was shown to hold in viscosity gradients (Esparza Lopez & Lauga
2023).

While previous work has focused on spherical squirmers, the influence of particle
shape on viscotaxis has yet to be investigated. Previous studies using a two-dimensional
swimming sheet have shown that speed increases when it moves either along or against
gradients (Dandekar & Ardekani 2020). More recently, it was demonstrated that viscosity
gradients can introduce new forces on slender bodies, offering potential ways to control
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their orientation and drift (Kamal & Lauga 2023). Sedimenting spheroids were also shown
to reorient in viscosity gradients, unlike in homogeneous fluids (Anand & Narsimhan
2024).

In order to understand the impact of particle shape on swimming in viscosity gradients,
in this paper we use a prolate spheroid squirmer as a model microswimmer. Spheroidal
squirmers can be used to represent ciliates with non-spherical bodies (such as Tetrahymena
thermophila and Paramecium). The model was first proposed by Keller & Wu (1977), who
showed that the streamlines predicted by their model aligned closely with experimental
streak photographs of freely swimming and inertly sedimenting Paramecium caudatum.
Later, other researchers modified the model by adding a force-dipole mode to represent
various types of swimmers, such as pushers or pullers, to examine the behaviour of a single
or pair of spheroidal squirmers moving in a narrow slit (Theers et al. 2016). More recent
work explored the dynamics, power dissipation and swimming efficiency of a spheroidal
squirmer in shear-thinning fluids (van Gogh et al. 2022) using the reciprocal theorem, an
approach similar to that which we employ in this work.

We organize this paper as follows. In § 2, we provide the essential mathematical details
of an active prolate spheroid swimming in constant viscosity gradients. We then use the
reciprocal theorem and asymptotic analysis to derive expressions for the translational and
rotational velocity of the particles in § 3. In §4, we give an analytical expression for the
mobility tensor of passive particles subject to an external force and/or torque. In § 5, we
calculate the swimming dynamics of active prolate spheroids, and compare our results
with those of a spherical squirmer. In § 6, we discuss the effect of disturbance viscosity,
and § 7 concludes the paper.

2. Prolate spheroids in viscosity gradients

We consider a prolate spheroid particle in an otherwise quiescent Newtonian fluid.
A prolate spheroid has two equatorial semi-axes of equal length, and one polar longer
semi-axis (see figure 1 for a schematic). We label the semi-major axis length a, and the

semi-minor axis length b (b < a). The eccentricity e = /1 — (b/a)? is a measure of the
slenderness of the particle, e = 0 being spherical, while ¢ = 1 is infinitely slender. The
orientation of the prolate spheroid is defined as the direction p along its major axis.

The viscosity of the fluid n(x) is taken to be non-uniform due to spatial differences in
some physical property of the fluid, such as temperature or salinity. Here, we assume a
constant viscosity gradient

Noo
Vn=-"2d, 2.1
n=-7 2.1

where 1 /L is the magnitude and d the direction of the viscosity gradient. The size of
the particle is assumed to be small compared with the macroscopic length scale of the
variation of viscosity, L, so we introduce a small parameter ¢ = a/L < 1. The viscosity
gradient can then be written as Vi = e(n/a)d.

The fluid surrounding the particle is assumed to be incompressible and Newtonian. In
the limit of zero Reynolds number, the governing equations for the flow induced by the

particle are

V.eu=0, 2.2)
V.o=0, 2.3)
984 A26-3
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Figure 1. Sketch of a prolate spheroidal active particle swimming in a constant viscosity gradient. Here, a and
b are the lengths of the semi-major and semi-minor axes. The background colour variations depict the viscosity
variations.

where u is the velocity field, and o is the stress tensor. The stress tensor can be written in
the form

0 = —pl + Ny + TN, (2.4)
T = (%) — N0 ¥, (2.5)

where p is the pressure, y = Vu + (Vu)T, and 7y is the extra deviatoric stress due to
viscosity differences (from an arbitrary constant viscosity 7o).
The boundary conditions on the velocity field u are as follows. The disturbance flow

caused by the particle should diminish in the far field,
u— 0 as|r| > oo, (2.6)

where r = x — x., with x, the centre of the spheroid. And the fluid velocity should satisfy
no-slip conditions on the surface of the particle S,:

uxeS,)=U+R xr+u'. 2.7)

The surface velocity u® arises from activity such as deformation or slip, while the unknown
translational and rotational velocities U and 2 are found by enforcing the dynamic
conditions on the particle.

We use the prolate spheroidal squirmer model to represent non-spherical active
swimmers in this paper. This model is a reasonable representation of ciliates such as
Paramecium caudatum that utilize synchronized beating cilia to facilitate movement. The
original spheroidal squirmer model developed by Keller & Wu (1977) includes only one
swimming mode, u* = —Bj(s - p)s, where s is the unit tangent vector to the surface of
the spheroidal microswimmer. Subsequent studies have incorporated the contribution of
a force-dipole into this model as a second mode. Following Theers et al. (2016) and van
Gogh et al. (2022), the slip velocity in our model is expressed as

u' = —B(s -p)s — By (2 -p) (s+p)s. (2.8)

The sign of squirming ratio 8 = B>/Bj can be used to divide the swimmers into three
types: pushers (8 < 0), pullers (8 > 0) and neutral swimmers (8 = 0). Pushers, such
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as E. coli, generate propulsion from the back. Chlamydomonas reinhardtii, on the other
hand, is categorized as a puller because it uses its flagella to pull fluid from the front.
Finally, neutral squirmers produce a flow corresponding to a source dipole. The two-mode
spheroidal squirmer model simplifies to the spherical squirmer model in the case of zero
eccentricity.

Recent research offers a more general representation of the flow field around a
spheroidal squirmer, accounting for an infinite number of squirming modes (P6hnl,
Popescu & Uspal 2020). The swimming speed and stresslet of such a squirmer are
influenced by more than just the By and B, modes. However, these additional modes
significantly affect the outcome only when the particle is notably slender (P6hnl er al.
2020), so the two-mode prolate squirmer model is generally sufficient to depict swimming
behaviour (Theers et al. 2016; Qi et al. 2020; Chi et al. 2022; van Gogh et al. 2022). For
simplicity, we use only two modes in our calculations.

Finally, in the absence of inertia, the net force and torque on the particle must be zero,
ie.

F.:.+ F=0. (2.9)
Here, F = [F L]T is a six-dimensional vector including both hydrodynamic force and
torque, respectively, i.e.

F:/ n-ods, (2.10)
S,

P

L =/ rx (n-0)ds, @2.11)
S,

P
and n is the unit normal vector to the surface of the spheroidal particle, whereas

Foit = [Foyt Lot represents any external forces and torques acting on the particle.
Enforcing this dynamic condition sets the particle’s translational and rotational velocities.

3. Reciprocal theorem

Rather than solving the velocity field due to the spheroid directly, we instead use the
reciprocal theorem to project onto operators from a known auxiliary flow in order to obtain
the hydrodynamic force and torque. Following the approach outlined by Elfring (2017),
active particle dynamics in a fluid of arbitrary rheology can be written as

U= Rz} (Fox + Fs+ Fry), (3.1)

where U =[U £]" is a six-dimensional vector including translational and rotational
velocities.
The term

F, = / u - (n- ?—U) ds (3.2)
N

P
represents the propulsive force and torque exerted by the particle due to the slip velocity
u’, in a homogeneous Newtonian fluid, while the term

FNN = —/ TNN - éudV (3.3)
v

accounts for the additional force and torque stemming from the extra deviatoric stress T yy
in the fluid volume V where the squirmer is immersed.

984 A26-5
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The terms denoted with a hat are linear operators associated with the auxiliary flow
solution of rigid-body motion of a body of the same shape in a homogeneous Newtonian
fluid of viscosity 7eo. The tensors Ty and Ey are spatlally dependent functlons that
map velocities of the particle U to the stress ¢ = Ty - U and rate of strain y =2Ey-
respectively, while R,:U is the (6 x 6) resistance tensor. These operators are well known
for prolate spheroids (see Appendix A for further details).

The extra stress 7y due to small viscosity variations is parametrized by ¢, so we expand
all flow quantities in regular perturbation series in &:

{u’ g, TNN# j’v Ua ‘{2} = {u()v 607 07 )’o, U07 SZO}
+e{u, o1, v, 1. Ut 21} + O(eD). (3.4)

At leading order, we have a homogeneous Newtonian fluid of viscosity 1. Viscosity
variations are captured at the next order, O(¢), where the extra stress is

T = (1(x) — 1) ¥ + O(e?), (3.5)
and p is the strain rate of the flow of an active particle in the leading-order homogeneous

fluid. Upon substitution of (3.5) in (3.3), we see that calculation of the extra force and
torque

Fyy = — /v(n(x) — 1100)¥0 : EydV + 0(s?), (3.6)

due to spatial variations of viscosity, up to O(¢g), requires only the integration of known
Stokes flow solutions p, and Ey from the auxiliary resistance problem. Analytical
evaluation of the integral is performed most easily in a particle-aligned spheroidal
coordinate system, with details given in Appendix B.

We note that the functional form of the viscosity 1(x) is restricted insofar as we have
assumed a regular perturbation expansion of all flow quantities and 1 = 74 in the limit
& — 0. When dealing with a linearly varying viscosity field such that (7(x) — ns0) ~ €x,
the expansion maintains regularity only for x ~ o(1/¢); however, the far-field contribution
of a squirmer at distances » ~ O(1/¢) is O(e?) with respect to the non-Newtonian force
Fxn, and O(&3) with respect to the non-Newtonian torque Lyy. The velocity field of a
passive spheroid decays slower than that of a squirmer, but in constant viscosity gradients,
the far-field contribution to the integrals at O(¢) is exactly zero (due to symmetry), making
these systems suitable for analysis using a regular perturbation scheme.

4. Passive spheroids
Before examining the dynamics of an active particle, we first derive the mobility of a
passive prolate spheroid subject to an external force and torque F,; in a viscosity gradient.
For a passive spheroid, there is no active slip, u* = 0, thus F; = 0.

At leading order, Fyy = 0, and from (3.1), we simply obtain the dynamics of a passive
spheroid in a homogeneous Newtonian fluid of viscosity 1, under an external force and
torque F,y;, which satisfies the usual mobility relationship (Kim & Karilla 1991)

Uo = Rg}y + Fou. 4.1

The flow field at this order is identical to the auxiliary flow field in the previous section
(see Appendix A), thus the strain rate yy = 2Ey - Up can be written as

Yo =2Ey- Rz} - Fex. 4.2)
984 A26-6
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At first order, substitution of (4.2) into (3.6) yields
Fyy = —Rpyn - ﬁ’;b * Fext, 4.3)
where for convenience we have defined the tensor

Ry = f 2((x) = noo)Eu : EudV. (4.4)

Using (3.1), we obtain the translational and rotational velocity of a passive prolate
spheroid at first order:

el = FU * BRnn - RFU Fext. (4.5)
Combining (4.1) and (4.5),
U=Uy+eUy = (Rp), — Rel - Byy - REl) « Fou, (4.6)

we obtain the mobility Myr = R,_-U RHI, Ry - R,_-U, connecting the particle velocities
U to the external force and torque F,,;, valid to first order in &, where

Myr Myr
Myr = 4.7
UF (M.QF M.QL) ; 4.7

and Myr = M}z p- In homogeneous fluids, the mobility is determined solely by the
shape and orientation of the particle, specified by the eccentricity ¢ and the orientation
vector p. In viscosity gradients, the mobility also depends on V7. The expressions for
the force-translational velocity coupling, My F, and the torque-angular velocity coupling,
Mgy, are essentially identical to when the viscosity is constant,

1 1
Myr = — 4.8
UF = Gnlea [XA PP+ i yA ( pp)} (4.8)
Mor=— | Lo L= pp) (4.9)
QL = 87”7|xga3 3C —c PP yc pp .

except that the viscosity is now evaluated at the instantaneous particle centre x.. Here,
Nlx, = Noo + Xc + V1, hence nl|x, = 1o + O(e) as long as the reference viscosity 1eo 1S
defined close to the particle, |d - x.|/a = O(1). The coefficients XA, A x€ )€ are
functions of eccentricity e, and their expressions are given in Appendix A.

Unlike in homogeneous Newtonian fluids, in viscosity gradients there arises a
torque-translational velocity (and force-angular velocity) coupling

£
Myr = Mgp = ——— [A1(d x ) + Aa(p-d)(p x 1) + Asp(d x p)],  (4.10)
6T N0t
where
3[2e — (1 — €2 L,]
Al = 411
1 627 : (4.11)
3[2e(—3 + €2 3—2e2 +3eYL,
Ay = [2e(—3 +¢e°) + ( e~ + 3¢") ]’ @.12)
32632 — €2)
3[2¢(9 — 562 —9+ 82+ ML,
As = [2e( e)+ (=94 8e” +¢7) ], @.13)
32e3(2 — €2)
984 A26-7
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and L, =In((1 +e)/(1 — e)).
In the spherical limit (¢ — 0), (4.10) simplifies to

&

——d x I, 4.14
24mns0a? (414)

MyL = Mgy =
and the inverse of the mobility agrees with the resistance tensor for a sphere
reported previously by Datt & Elfring (2019). Applying a constant external force
F.y (say due to gravity), the angular velocity due to a viscosity gradient would be
2= (8/24117700a2)Fm xdor 2 = (1/4)Uy x V(n/Nso), Where Uy = F oy /(6TIN00a).

We have also made a comparison between our calculations and the results for an
elongated prolate spheroid sedimenting in viscosity gradients by Kamal & Lauga (2023).
At large aspect ratios 4 = a/b — oo, the mobilities can be written as

1 3InA 3InA
Myr ~ pp+ (I—=pp) |, (4.15)
611 |y, 2 4
3 3InA 3
My, ~ ——— |~ @dxD+——(p-d)(px D+ =>pdxp)|. (4.16)
6Ttnsca? | 8 4 4
1 322
Mop ~ ——— | ——pp+3InA(l—pp)|. (4.17)
&nnly.a 2

In this limit, we obtain the mobility matrix for an asymptotically slender spheroid in
a constant viscosity gradient. Calculating the leading-order translational and rotational
velocities with external force F,,; = mg and torque L., = 0, our results coincide exactly
with the sedimenting velocities of slender filaments in viscosity gradients found by Kamal
& Lauga (2023).

Recent work by Anand & Narsimhan (2024) also explored the dynamics of sedimenting
passive spheroids in viscosity gradients numerically. The authors of that work constructed
a dimensionless mobility matrix, and following their approach, we rescale so that the
dimensionless torque-translational velocity tensor is

- 67 00a? ~ ~ ~
My =~ Myz = e LA x D)+ Aa(p- d)(p x D+ Aspd x p)l. (418)
where
~ Aj .
Ai = /12—/, 1= 1, 2, 3 (419)

We then compare dimensionless coefficients A; with the corresponding numerical results
by Anand & Narsimhan (2024) for different aspect ratios, as shown in figure 2. We find
very good agreement, with only minor discrepancies for A, and A3 at larger aspect ratios.
As another point of comparison, we also calculate the corresponding values of A; from
Kamal & Lauga (2023), and as shown in figure 2, when the aspect ratio is very large, our
analytical results align closely.

5. Active spheroids

Microswimmers are often considered to be neutrally buoyant; we do the same here, hence
we assume that there is no externally applied force or torque, F,,; = 0, on an the active
spheroid swimming in a viscosity gradient.

984 A26-8
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0.5 ;
—— Present work

»  Anand & Narsimhan (2024)
= RFT: Kamal & Lauga (2023) |/
Sphere: Datt & Elfring (2019)

04 -

0 20 40 60 80 100

Figure 2. A plot of mobility coefficients A; as functions of aspect ratio A. Solid lines represent the present
work, and triangles are those found by Anand & Narsimhan (2024). Also shown are the data for a sphere from
Datt & Elfring (2019) (circles) and for an asymptotically slender spheroid from the resistive force theory (RFT)
of Kamal & Lauga (2023) (squares).

At leading order in &, we have an active spheroid swimming in a homogeneous
Newtonian fluid of viscosity 7. The swim speed is well known (Keller & Wu 1977;
Theers et al. 2016; Pohnl et al. 2020; van Gogh et al. 2022):

2¢e — (1 —e*)L.
a1 N e a— Bip
Upo=Rg,-Fs= 2e . (5.1)
0

The corresponding flow field is given in Appendix A.
At first order, the translational and rotational velocities

8U1 = i?;b . FNN (5.2)

are obtained using (3.6), with p, calculated from the flow field solutions of a two-mode
active spheroidal squirmer in Appendix A. Combining (5.1) with (5.2), U = Uy + €Uy,
we obtain expressions valid up to O(e) for the translational and rotational velocities of a
prolate spheroidal squirmer:

U= Uo—?()(UI YY3pp) - V(n ) (5.3)

SZ_——XQUOXV(n ) (5.4)
(0,0)

where the coefficients
5[—6e + 4e’ + 3(1 — €2) L ][—6e + 10> + 3(1 — €2)2L,]

v = 24¢5[6¢ — (3 — €2)Le] (5-5)

Y 5[—6e + 4> +3(1 — e?) L, ][—18¢ + 6¢> + (9 — 6¢? +Se4)£e] 5.6)
72e5[6e — (3 — e2)L,] ’
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(1 —eH)[-2e+ (1 +e>)L,]
Q2—eHe—(1—e)L,] "’

are monotonically decreasing functions of the eccentricity. In the spherical limit e — 0,

X? =

(5.7)

we have XU = 1, YV = 1 and X¥? = 1, and we recover exactly the dynamics for spheres
found by Datt & Elfring (2019). Conversely, in the slender limit ¢ — 1, we have XV =
0,V =5 /9 and X 2 -, meaning that infinitely slender squirmers do not reorient in
viscosity gradients, but there is still a change in their translational velocity due to the
interaction of the dipolar flow with the spatial variations in viscosity. Generally (for e <
0.9988), the speed change is greater for spheroids than spheres when aligned with the
gradient.

In general, the behaviour of spheroidal squirmers is qualitatively similar to spherical
squirmers as they navigate through constant viscosity gradients (Datt & Elfring 2019):
all swimmers display negative viscotaxis by reorienting to swim down viscosity
gradients, except that the impact of the gradient is diminished with increasing
slenderness. The mechanistic reason for this change is straightforward: the viscosity
difference across a slimmer body is reduced, which leads to slower reorientation,
and in the slender limit viscotaxis ceases. Examining (5.4) more closely, we see
that the angular velocity scales as the viscosity difference across the particle,
2/(Ug/a) ~b|V(n/nx)| In2/A) = eln /l//lZ. Thus for weak viscosity gradients ¢ < 1
and slender particles A >> 1, the rotation rate tends to zero. But one can certainly envision

a scenario where for sufficiently sharp gradients, £ In 1/A%> = O(1). Our formulas are not
strictly valid in this setting, but formulas for spheres in weak gradients (Datt & Elfring
2019) reproduce accurately the reorientation found crossing sharp gradients (Gong et al.
2023).

In figure 3(a), we compare trajectories of spherical squirmers and spheroidal squirmers
(e = 0.5) for all three types of swimmers (8 = %2 for pullers and pushers, and ¢ =
0.1). Spheroidal pushers still exhibit the greatest range of movement, traversing both
horizontally across the gradient and vertically along it, whereas pullers cover the least
distance. As expected, figure 3(a) shows that spheroidal squirmers take longer to reorient
than spherical squirmers. In figure 3(b), we show the effect on a neutral squirmer as the
eccentricity increases, making the spheroid more elliptical in shape, illustrating that the
effect on the dynamics becomes dramatic for increasingly slender swimmers.

We also plot, in figure 4, the trajectories of squirmers swimming in a radially varying
viscosity field,

V(n/nx) = er/a, (5.8)

as shown by Datt & Elfring (2019) for spheres. Here, the assumption is that (5.3) and (5.4)
still hold as a local approximation of dynamics even in radial viscosity gradients because
at the particle length scale, the distinctions between the two types of gradients should be
minimal. In this viscosity field, the dynamics of all three types of spheroidal squirmers
again closely resembles that of spherical squirmers except that the reorientation dynamics
is slowed as the squirmers become more slender. In particular, as with spheres, pushers
and neutral swimmers have a stable orbit about the viscosity minimum, and as the particle
becomes more slender, the radius of that orbit expands correspondingly.

6. Disturbance viscosity effects

Up to this point we have assumed that spatial variations in viscosity are prescribed and
not disturbed by the presence of the particle. However, because variations in the viscosity
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Figure 3. (a) Trajectories of spheroidal (e = 0.5) and spherical squirmers with an initial orientation p
orthogonal to the viscosity gradient Vn from ¢t = 0 to t = 100a/B;. (b) Trajectories of neutral spheroidal
squirmers of different eccentricities swimming at an initial orientation p orthogonal to the viscosity gradient
Vi from t = 0 to t = 250a/B;. All squirmers eventually swim down the viscosity gradient.

a b c
( )130 ( )60 ( )400
65 175
10
via 0 =50
—65 —40 275
130 = 90 500
-130 -65 0 65 130 50 0 50 100 —-400 -250 -100 50 200
x/a x/a x/a

Figure 4. Planar trajectories of three types of spheroidal swimmers: (a) neutral swimmers, (b) pushers, and
(c) pullers, from ¢ = 0 to t = 4000a/B; . The initial position of each swimmer is x/a = 1, y/a = 1, indicated by
ared dot, with the swimmers initially pointing in the positive x-axis direction. These swimmers are placed in a
radial viscosity gradient, where the viscosity increases radially outwards from the original point. The dynamics
of the spheroidal squirmers qualitatively resembles that of spherical swimmers, except that the reorientation is
slowed so orbits have a larger radius.

generally arise from variations in an underlying field that affects the viscosity, such as
temperature, salt or nutrient concentration, we should take into account the effect of
boundary conditions on the surface of the particle for that underlying field. For example,
in an otherwise linear salt concentration field, the presence of a particle may disrupt the
field (and thus the coupled viscosity field) due to salt impermeability, or in an otherwise
linear temperature field, the particle may disrupt the field due to differences in thermal
conductivity between the fluid and the particle. Although these disturbances diminish
with distance from the particle, the disturbance does have a leading-order effect on the
dynamics of the active particle (Shaik & Elfring 2021).

Here, we determine the dynamics of a prolate spheroid swimmer in an otherwise
constant viscosity gradient while considering the disturbance viscosity caused by a no-flux
condition on the boundary of the particle, following the work of Shaik & Elfring (2021)
for spheres. We write the total viscosity field as the superposition of an ambient viscosity
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field (denoted as 19) and a disturbance viscosity field (indicated by a prime),
n=rno+mn, (6.1)
where the disturbance viscosity diminishes in the far-field region:
n — 0 as|rl — oo. (6.2)

The transport of a scalar such as temperature or salt concentration is governed by
an advection—diffusion equation. When the scalar variations are weak, the changes
in viscosity are directly proportional to the changes in the underlying scalar field,
hence viscosity transport is governed by a similar advection—diffusion equation. For
microswimmers moving slowly in a highly diffusive scalar such as temperature or salt
concentration, advection is usually small. In this limit, the distribution of viscosity satisfies
Laplace’s equation. As the ambient viscosity field is linear, the disturbance viscosity must
also satisfy Laplace’s equation:

VZn =V =0. (6.3)

The disturbance viscosity is also determined by the boundary conditions present on
the particle’s surface. Here, we consider that the surface is impermeable to nutrient or
salt concentration, or insulating to the temperature. In this scenario, the particle surface
maintains a no-flux condition for viscosity, where

n-Vp=0 onS,. (6.4)

The detailed disturbance viscosity field is given in Appendix C (where we also give
solutions with an alternative boundary condition n(x € S,) = const). Here, we explain
only the effect of disturbance viscosity on the dynamics of the active spheroid.

The impact of the total viscosity field (both ambient and disturbance viscosities) on the
swimming velocity of a particle with a no-flux condition is, to leading order,

13aB
Uy = ——=2 (xUnf— yUnf3ppy v (22 6.5)
60 Noo
5 .
R, =—2X2My,x vV (ﬂ) , (6.6)
8 Moo

where

XU = 5[462(63 — 117¢* + 52¢*) + 12e(1 — €2)> (=21 + 2¢*) L,

—9(=T+ &A1 — )L —6e(l — e*)L3]

x {13¢%[6€ 4 (=3 + ) Lol[—2¢ + 4e> — (=1 + ) L1}, (6.7)
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YU = 10[8¢* (48 — T7e? + 32¢%) — 4e* (75 — 129¢* + 58¢*) L,
4 2 45 2 252 2\ 3 2\3 p4
+2e"(33 — 56e” + 23e")L; —e(1 —e")" (=33 +37e )L, — 3(1 —e”) " L,]

x {39¢[6e + (=3 + e L, N[—2e 4 4e® — (=1 + ) Lo)[2e + (—1 + M L),
(6.8)
2(1 — e2)[4e*(7 — 8e?) + de(—T7 + Te® +2e) L, — (=T + 6% + e*) L2]

XQ’nf —
52 —e2)[2e+4e3+ (1 —eD)L][2e + (—1 4+ €2 L,]

(6.9)

are monotonically decreasing functions of the eccentricity. In the spherical limit e — O,
we have XU =1, YU = 1 and X = 1, and we recover exactly the dynamics for
spheres found by Shaik & Elfring (2021). Conversely, in the slender limit e — 1, we have
xUnf =0, YU =20/39 and X = 0.

We see that the disturbance viscosity does not alter the fundamental physics of a
spheroidal particle governed in comparison to effects of the ambient viscosity alone. It
primarily increases the rate at which the particle rotates to align against the viscosity
gradient. It also enhances the effects of the ambient viscosity field on various swimmer
types: pushers speed up, pullers slow down, while neutral swimmers maintain consistent
speeds relative to those in a homogeneous fluid.

Finally, we note that any underlying field that changes fluid viscosity will also affect the
fluid density, be it temperature or salinity or the concentration of a nutrient or a polymeric
additive. However, changes in viscosity can be significant without meaningful changes in
density, as shown in experiments using polymers (Coppola & Kantsler 2021; Stehnach
et al. 2021) or glucose (Esparza Lépez et al. 2021).

7. Conclusion

In this paper, we analysed the hydrodynamics of prolate spheroids, both passive and active,
in constant viscosity gradients. For passive spheroids, we determined the mobility tensor
that governs the dynamics of a spheroid under an external force and torque in viscosity
gradients. Our analytical expression agrees with, and generalizes, previous results for
spheres (Datt & Elfring 2019) and asymptotically slender bodies (Kamal & Lauga 2023).
We also derived formulas for the dynamics of active spheroids in constant viscosity
gradients. These results generalize previous results for active spherical squirmers (Datt
& Elfring 2019; Shaik & Elfring 2021) to include the effects of particle shape. In general,
the behaviour of spheroidal squirmers is qualitatively similar to spherical squirmers as they
navigate through constant viscosity gradients. All swimmers display negative viscotaxis
by reorienting to swim down viscosity gradients, except that the impact of the gradient
is diminished with increasing slenderness. The viscosity difference across their body is
reduced for slimmer swimmers, which leads to slower reorientation, and in the slender
limit, viscotaxis ceases. The implications of this may seem limited, but it actually raises
interesting new possibilities. For example, consider a swimmer that consists of a slim ‘tail’
that produces thrust but is too slender to drive reorientation in a viscosity gradient, coupled
with a large spherical passive ‘head’ that strongly interacts with a viscosity gradient. In
such a case, the reorientation of the swimmer would be dictated entirely by the head, and
using our results for the mobility of a passive sphere (4.14) driven by a propulsive force
from the tail, F;, we obtain £2 o« F; x Vn, indicating that such a swimmer would display
positive viscotaxis by reorienting to swim up viscosity gradients in a fashion analogous
to what was originally proposed by Liebchen et al. (2018). Extending this idea further,
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one can see that geometry and activity can be tailored to control or eliminate viscotaxis.
These results enrich the current understanding of how particle shape impacts viscotaxis,
and the insights gleaned from this study may have implications not only for understanding
the complex dynamics of natural microswimmers, but also for guiding the design and
manipulation of synthetic active particles in complex fluidic systems. One can envision
designing active particles that navigate gradients in temperature, or a particular chemical
species (that affects fluid viscosity) acting as autonomous sensors. Our study quantifies
this mechanism only for simple shapes and weak gradients, and further experimental or

computational studies would be needed to really probe the limits of this mechanism.
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Appendix A. Spheroids in Stokes flow

Here, we give solutions to the Stokes equations for a passive and active spheroid in a

Newtonian fluid with constant viscosity.

A.l. Spheroidal multipoles

Before proceeding to the solution of a passive prolate spheroid, we first introduce the

spheroidal multipole solutions (Chwang & Wu 1975) that are used.

The Green’s function G of the Stokes equations and derivatives is given by, in

component form,

Sij  XiXj
Gj= A —I3J, Stokeslet,
r r
Ojxxi + Sikxj — Sjxk XiX;j
d kAt T OikAj — O i :
Gijk =Gjjr = 3 -3 — dipole,
dij XiX;j
GP =Gyju=2—2—-6—2, potential doublet,
ij Y, 3 P
1 SikXxi — SiiXy
R _ . oy Gkt T O
Gl.'i =3 (Gijk — Gixj) = — 3 rotlet,
1 SkiXi XiXjXp
A . L) = )
Gl.j =3 (Gijx + Girj) = -3 3 5 stresslet,
Sjkxi + Sixxj + jjx XiXjX .
Gl.Q.k = Gjuk = —6 (L B B + 30 2 k, potential quadrupole.
ij ’ I 7!

(A)

Spheroidal multipoles are a weighted distribution of the above multipoles between the
foci £ = —c and ¢, where ¢ = ae, used to represent flows around spheroidal particles:

Qi = / ‘Gij(X— &p) dé,

c

0f = | (*—&)Gj(x—&p)dk,
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Of = | (P —&)Gh(x—¢&p)de, (A4)
On = [ (& —E)Gh(x—¢Ep)de, (A5)
05 = | (=& GG(x—&p) de. (A6)

Explicit expressions for spheroidal multipoles are taken from Einarsson et al. (2015) and
Abtahi & Elfring (2019):

Qij = 8} + xixil3 — (xipj + xip)13 + pipj3, (A7)
QF = 2653 + 61—xixJ2 + (xipj + xipi)J3 — pipjJ3), (A8)
OF = Ginxj — 850 I3 + Sjpx — Sup)J3. (A9)

Qi = Sixil3 — Sixpid3

+ 3[—xl~xjkag + (xixepj + xjxpi + xix;pk)JSI

— (kpipj + Xipjpk + Xipip) Iz + pipipidil, (A10)
08, = 61— (Bjxxi + Suxj + 8x)KS + (Biepi + ups + v K3 ]

+ 30[x,~xjka9 — (xixppj + xjxppi + x,'x]‘pk)K%

+ (apipj + xipjpk + ijiPk)K% - PinPkK;’ 1y (A1)
Ok = (=8 + 8ixx; + 8jpx) I3 + Sypi — Sikpj — Sipi) s
+ 3[—xpxpxile + (exp; + xppi + xixpi)Ia], (A12)

ij),k = 6[—(8xk + S + 8ixi) I + (8px + Sup; + Sjpi) L]

+ 30[x,-xjka(7) — (xixkpj + xjpxepi + xixjpk)J%

+ Capipj + xipipk + X;pipi) Ty — pipipid3 ], (A13)
O m = GiSim — 88m)J3

+ 3ux; — 85%) (P35 — xmJ3)

+ 38k — Sikp) (I3 — XmJ3), (Al4)
Om = SikSimJ3 + 38ixi( pmd§ — X ) — 38pi( pmI5 — xmJ3)

+ 3[—(Bimxjxi + Sjmxixy + (Skmxi)g;)fg — Sxixjxg( pmJ7l — me9 )

+ SimXkpj + SkmXiDj + SimXkPi + SmXiPi + SimXipk + SmXipi)J s

+ 5(p; + xxupi + xXip) (Pd 3 — Xmd D)

— Stmpipj + Simpik + 8mpiP)J5 + PPk (Pmd7 — Xind3)

— 5(apipj + Xipipk + Xpip) (Pmd3 — Xmd D1, (A15)
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0%y = 61— (SSim + Sidim + 858K — 5(Sicxs + 8ixxj + 8500 (pmKd — xKY)
+ 5jpi + 8ixpj + 8ip) (PmKT — xnK7)]
+ 30[(Simxjxi + Sjmxixi + (Skmxix]')Kg + 7xixjxk(me91 - xng)
— BimXkDj + StmXipj + SjmXkDi + SkmXipi + SimXipx + Sjmxipi) K7
— T(xixp; + xpxkpi + Xixipi) (pmK§ — xmK§)

+ Bmpipj + Simpipk + Simpipi) K3 — pipipiK3

+ 7pipj + xipipk + xipipi) (PmK3 — XK1, (A16)
where
S e (A17)
x — &pl™’
Jh = c21,'}1 — 2, (A18)
K = 2T — J2 = A 20 (A19)

The integrals I}, satisfy the relationship

a
8—1” = mp; ") — mx,I"

m+2 m+2° (A20)
i

To simplify integration, one may employ an auxiliary coordinate system (x', y', 7'), with x’
aligned with p such that

Sn gl’l
5 [ — &)2+ (V)2 + (2)2]m/? / dé (0 —£)2 + Rp2” (A21)

where on the surface of the particle we have

TR,
Ry =+ (X —0c)?+R2 (A22)
R=/(1 —e)(a®—x?).

The integrals also satisfy the relationship

(n _ I)In 2 Cn—l((_l)nR2—ﬂ’l +R2—m)
In — /In—l 1 2 . A23
m =Xl ¥ m—2 m—2 (A23)

Integrals J?! and K, can be calculated easily from (A18) and (A19).

A.2. A passive prolate spheroid

A.2.1. Rigid-body translation
The flow field due to a prolate spheroid translating with velocity U in a quiescent fluid is

= (Qy + 1 O A pipm + BY 8jm — pipm)1Un. (A24)
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where
B 1 — &2
“r= 4¢2
U e
AY = , A25
—2e+ (1+e2)L, ( )
U _ 2¢?
2e + (B2 — DL,
The strain-rate tensor can be written as
y=2ky. U, (A26)
where
Euy,, = 5 + 105D LA pipm + BY 8jm — pipm)], (A27)

and ng = Qjj.k + Q- Here, Qijk is defined similarly to ka

A.2.2. Rigid-body rotation
The flow field due to a prolate spheroid rotating with angular velocity £ in another
quiescent fluid is

= {_ejlegk[AQPlPs + B2 (85— pips)]

+ (QUk + O‘ZQUk)CQ (Ejsmpkpm + Eksmpjpm)}QSa (A28)
where
1 —¢?
oy =
2 8e2
Q_ 1 —é?
—de+2(1 —e>L,’
-k a2
Q_ 2—e
4e —2(1 4+ AL,
2 _ e
4e —2(1 4+ eL,

The strain-rate tensor can be written as

y=2Eq -2, (A30)
where
Eg,, = 3{—6uQnt [ A pips + B (81 — pipy)]
(Q,]km szkm)c (stmpkpm + 6kwnpjpm)} (A31)
and kam = Qijem T Qmjk ;- Here, kam and kam are defined similarly to Q§/<Tm~
Finally, the tensor Ey used in the integral (3.3) is simply defined as
N Ey
Ey=|."]. A32
! <Esz> (A32)
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A.2.3. Mobility tensor for a prolate spheroid in a Newtonian fluid
The mobility tensor

Y p—1 MUF MUL
Myr = Rz = (MQF Mﬂ) (A33)

couples force and torque to rigid-body translation and rotation for a body in Stokes flows.
For a prolate spheroid in a Newtonian fluid with constant viscosity 7, there is no
torque-translation (or force-rotation) coupling. Specifically, the terms are (Kim & Karilla
1991)

N 1 1 1
Myr = — — (- ,
UF = Ginea [XA pp+ A ( pp)]
N 1 1 1 (A34)
Mo = —— | — — (- ,
oL = [cher ¢ ( pp)]
My = Mer = 0,
where X4, YA, X€ and V¢ are functions of eccentricity e:
A_ 8¢e3
3[—2e+(1+eH)L,])
3
A — 16e
3[2 3¢2 - DL,
[2¢ + (3e VL] | (A35)
c_ 4e3(1 — €?)
3[2¢e — (1 —eA)L,]’
Y _ 46’2 — &%) ‘
3[—2e+ (1 +e2)L,]
A.2.4. Extra stress tensor
In (4.4), we defined the tensor
Ry = / 200(0) — o) B : By V. (A36)
y
Writing
Rru Rre
Ryy = A37
NN (RLU Ruz)’ (A37)
we have
Rry = / 20000 — no)Ew : By dv,
%
Rro = / 20000 — no)Ew  Eg dV,
v (A38)

Rry = / 2(n(x) — 1oc)Eg : Eydv,
Vv

Rrg = / 20(0) — o) Eg : Eg dv,
Y

and Rrgo = R{U.
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A.3. An active prolate spheroid in Stokes flow

The flow field ug around a two-mode spheroidal squirmer swimming in a Newtonian fluid
with constant viscosity can be written in terms of a stream function o (Keller & Wu 1977;
Theers et al. 2016; van Gogh et al. 2022) using a particle-aligned coordinate system
0't182¢ (see Appendix B for details), as

1 dvo 19y

uyg = heshy 90 e, — heihg 001 e, (A39)
where
Yo = C1 Hy(41) Go(82) + Cati (1 — ¢3)
+ C3 H3(81) G3(82) + Cato(1 = &3) + 5Uoc* (¢ — D1 — ¢3). (A40)

Here, H,(x) and G, (x) are Gegenbauer functions of the first and second order of degree
—1/2 (Theers et al. 2016). The coefficients C,, are

2+ 1) — 2B 2
C = 2c2 NUO@I + N)z 1(11 —,
=&+ (1 +¢f)coth™ ¢
, Bigilg — (¢ — Decoth™ 11— Uy
G=c ~Z1+ (1423 coth™! ¢
' : ' (A41)
C3 = C2 = 43%21 R
381+ (1 = 3¢7)coth™ &
i Byti[2/3 — ¢+ 6i(¢f — D coth ™' g1]
! 3% + (1— 382 coth ™

and ;:1 =1/e.

Appendix B. Coordinate transformation

We choose an arbitrary point O and construct a lab-frame Cartesian coordinate system
with unit vectors e; (i = 1, 2, 3) and position vector x = xe| + ye> + ze3. The centre of
the particle can be expressed as x. = xce; + y.e» + z.e3. Without loss of generality, we
can always adjust the axes to make sure that the ambient viscosity varies only in the
e direction. However, the volume integrations in the reciprocal theorem are difficult to
evaluate analytically in the lab-frame coordinate system Oxyz. To solve this problem,
we use a particle-aligned Cartesian coordinate system O'XYZ and the corresponding
spheroidal coordinate system O’¢1¢>¢p, where O’ is the centre of the spheroid at x,
(figure 5). The Cartesian coordinate axes are determined by the viscosity gradient direction
d = Vn/|Vn| and the swimming direction p. The unit vectors are

_ @xp) xp

~|(d xp) xpl’

_dxp (B1)
~ldxpl|’

ez =p.

ex

ey
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4 TR
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Figure 5. The particle-aligned Cartesian coordinate system O'XYZ and prolate spheroid coordinate system

0't1529.

When d is parallel or anti-parallel to p, we can simply set ex = e, ey = e> and
ez = e3 without loss of generality. The position vector in this coordinate system is
r=x—Xx, = Xex + Yey + Zez. We then write the viscosity field as

nznoo+s’%°<xc+r-e1>, (B2)

where e; is obtained by inverting (B1).
In the particle-aligned Cartesian coordinate system, the surface of a spheroid satisfies

72 X2 +4v?
St = 1. (B3)

Cartesian coordinates (X, Y, Z) can be written in terms of (¢, {2, ¢) as

X = c@ﬁcosdx
Y =c¢/¢d — 1)1 —¢3sing, (B4)

Z=ctit,
where 1 <) <00, —1 <& <1 and 0 < ¢ < 2m. Here, ¢ = v/a? — b? is half of the

focal length. The unit normal vector and the tangent vector to the particle are n = e;, and
s = —e;,. Scale factors are

(2 -}
21

2_ 2
b —e [T75 (BS)
1—-1¢

hg =c\/¢f —1,/1 =25

9

h(] =c
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Appendix C. Disturbance viscosity field
The general solution of (6.3) in spheroidal coordinates satisfies

WK

=YD [Atumcos(me) + B sin(mp)] PY'(22) OF'(51), (C1)
m=k

~
Il

0

where Ay, Bk are the constant coefficients, while P}’ and Qf' are the associated
Legendre polynomials of the first and second kind, respectively, with k the degree and
m the order. Mathematical expressions for P;' and Q}' can be found in Abramowitz &
Stegun (1964). Below, we determine the coefficients for first a no-flux boundary and then
a constant viscosity boundary condition.

C.1. No flux

Supposing that the ambient viscosity field is aligned with ej, we can write the no-flux
constraint in particle-aligned coordinates as

o £ 4 Y L-n J1—c2eosg (C2)
— = —eNooprels + ———1/1 — ¢J cos @,
* e 1 — e2 2

¢ t=0

where p1 = p - e1. The expression for the disturbance viscosity field is

1’ =A10PY(%) 00(¢1) + A11 Pl (&) QL(&1) cos(h), (C3)
where
B 2e(1 — ¢?)
A1,0 = €NooP1 m’ (C4)
2
Avt = enooy1 —pp —2L =) (C5)

TP s a -,

The changes in the translational and rotational velocity due to the disturbance viscosity
are

B ’ !
Uy = —“6—02 (XU —yvn3pp) . v (:—0) : (C6)
o0
1 ;o
2 =S X7 Uy x ¥ (:—‘)) , (C7)
o

where

XU = 5(—1 4 e»)[8e° (=9 — 33¢% + 32¢*) — 4e*(—27 — 39¢* + 62¢4) L,
+ 6e(—9 + Te* — 3e* +5¢%) L2 — 3(—3 4 9¢ — 13¢* 4 7e5)L3]
x {26°[6€ + (=3 4+ ) Lol[—2¢ + 4> — (=1 + ) L1}, (C8)
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YU = 5(—1 + ®)[16e* (=27 + 54 — 102¢* + 64¢°)
— 16€3(—=54 + 117¢* — 135¢* + 74 L,
+ 8¢2(—81 + 189¢% — 150¢* + 31 + 13¢%) £2
— de(—54 + 135¢* — 99¢* + ¢® +17e%) L2 — 3(3 — 4e? + M2 L]

x {6€°[6€ + (=3 + €*) Lel[—2¢ + 4> — (=1 + 2 Lol[2e + (=1 + ) L1171,
(C9)

2(1 — e®)[4e>(5 — 4e?) +20e(—1 + )L, + (5 — 6e + e*) L2]
2 —e2)[—2e+4e+ (1 —e2)L]R2e + (—1 + €2 L,]

Adding (C6) and (C7) to (5.3) and (5.4), one obtains (6.5) and (6.6).

X — (C10)

C.2. Constant viscosity
The constant viscosity constraint n(x € S,) = 1, = const in spheroidal coordinates is

0'lg g, = Ne = ENooP162 + snOO\/(l —pD(1 = e)(1 = ¢3) cos p, (C11)

where e = 1y — oo — €(0o/@)X, is a constant, while the other term varies on the surface
of the spheroid. The disturbance viscosity field satisfying this constraint is

1’ = Ao0 PY(22) 0(¢1) +A1,0 PY(22) 00(¢1) + A11 PL(22) QL (¢1) cos(g),  (C12)

where

n 277('
App = —, Cl13
0.0 L. (C13)
. 2
ALo = ensept ———, (C14)
’ 2¢ — L,
, 2e(1 — &2
Ary = enooy/1 — p2 20 =) (Cl15)

e —a=az,

The changes in the translational and rotational velocity due to the disturbance viscosity
are then

! B ! N
1= 2+ 2 Ve - yUespp) v (22 ) (C16)
126150 30 00
1 o
2, =-x2 Uy xv (2], (C17)
4 Noo
where
;61 —e®)(2e — Lo)?
v o_ ( e”)(2e e) ’ (C18)
e2L.2e — (1 — e L,]
XU = 5(—1 4 eH)[8e3(—9 — 33¢? + 32¢*) — 4e2(—27 — 3962 + 62¢%) L,
+6e(—9 + 7e* — 3e* + 5% L2 — 3(=3 + 9¢% — 13¢* + 75 L3]
x {4e°[6e 4+ (=3 + €2 Lel[2e + (—1 + €M) L}, (C19)
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VU = 5[16e%(27 — 27€* — 33e* + 32¢°) — 863 (108 — 15362 — 9¢* + 626%) L,
+ 4€2(162 — 297¢* + 147¢* — 23¢® + 15¢%) L2
— 2e(108 — 243¢% + 189¢* — 77¢° + 23¢%) L2 + 3(3 — 4e? + €M) L1]
x {12¢°(2e — L)[6e + (=3 + 2 L ][2e + (=1 + €A L]}, (C20)
(1 — e)[4e*(5 — 4€?) +20e(—1 + e} Lo + (5 — 6e + ) L2]
Q2 —eM)2e+ (=1 +e>)L.]? '

Adding (C16) and (C17) to (5.3) and (5.4), we obtain the combined effects of the ambient
and disturbance viscosities on the particle’s translational and rotational velocities:

X = (C21)

B
U= - 2VU, - 2 (V1 - YVespp) . v (12 ) (€C22)
12en00 6 Moo
1
2= L x%ey v (ﬂ) , (C23)
4 Noo

where
v 6(1—e?)Qe—L,)?

e2L,[2e — (1 —e2)L,]’

XU = [—4e*(45 — 75¢* + 32¢*) + 12¢(15 — 28¢* + 13¢M L,
—9(1 — )25+ ) L2 + 6e(1 — D)L
x {2e2[6e + (=3 + e} L A[2e + (=1 + ) L1} 7L,

YUC = [—4e*(—39 4 32¢%) — (168¢° — 156¢7) L,
— 2 (—63 4 54¢% 4+ 5¢M L2 — e(15 — 16¢* + €4 L3 + 3(1 — *)> L]
x (3e[6e + (=3 4 ) Lo)(2e — L) [2e + (=1 + A L]}, (C25)

(1 — eN[4e* (=T +4e?) — 4e(=T + 53 Lo + (=7 + 6€* + €*) L2]
2 —e?)[2e — (1 —e2)L,])? ’

(C24)

X.Q,C —

(C206)

Compared to the no-flux condition, the disturbance viscosity here introduces a more
complex influence on the swimming dynamics of a spheroidal particle. However, the
particles will still generally display viscophobic dynamics.
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