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Abstract. In this paper, we study the existence and concentration phenomena of
solutions for the following non-local regional Schrodinger equation

€*(=A)u+ Q(x)u = K(x)|ul’"'u, in R",
ue HYRY)

. .. n+2a . . . .
where € is a positive parameter, 0 < « < 1,1 < p < 1552, n > 2a;(—A); isa variational

version of the regional fractional Laplacian, whose range of scope is a ball with radius
p(x) >0, p, O, K are competing functions.

1. Introduction. The aim of this paper is to study the existence of ground state
solution for a non-linear Schrodinger equation with non-local regional diffusion and
competing potentials of the type

@) { e (—A) u+ Q(x)u = K(x)|uf~'u, in R,

u e H*(R"),
where 0 <o <1, € >0, n> 2a, O, K € C(R", R") are bounded and the operator

(—=A); is a variational version of the non-local regional fractional Laplacian, with
range of scope determined by a positive function p € C(R”, R"), which is defined as

/ (= AYeu(x)p(x)dx = / f [u(x + 2) — u@)]lp(x + 2) — p(x)] dedx.
R~ n ) B

0.p() | 2|+

Recently, the study of problems involving fractional Schrodinger equations has
attracted much attention from many mathematicians. For example, when (—A)7 is
replaced by (—A)* and € = 1, Cheng [1] studied the existence of ground state solution
of non-linear fractional Schrodinger equation

(=A)u+ V(x)u = [uf"'u in R, (1)
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with unbounded potential. The existence of a ground state of (1) was obtained by
using Lagrange multiplier theorem on Nehari manifold. If V(x) = 1, Dipierro et al.
[4] proved existence and symmetry of ground state solutions of (1). Felmer et al. [5],
studied the same equation with a more general non-linearity f(x, u), they obtained the
existence, regularity and qualitative properties of ground states. Secchi [11] obtained
positive solutions of a more general fractional Schrodinger equation by critical point
theory and variational method. When € # 1, Chen and Zheng [2] showed that whenn =
1, 2, 3, € is sufficiently small, max{%, %} < o < 1 and Q satisfies some smoothness and
boundedness assumptions, the equation (P) has a non-trivial solution u,. concentrated
to some single point as € — 0. In [3], Davila, del Pino and Wei generalized various
existence results of (P) with « =1 to the fractional Laplacian. Moreover, we also
mention the works by Shang and Zhang [12,13], where it was considered the non-
linear fractional Schrodinger equation with competing potentials

X (=A)u+ V(x)u = K)|ulP2u+ O(x)|ul!"%u, xeR", (2)

where 2 < g < p < 2}. By using perturbative variational method, mountain pass
arguments and Nehari manifold method, they analyzed the existence, multiplicity
and concentration phenomena of solutions of the equation (2).

On the other hand, research has been done in recent years regarding regional
fractional Laplacian, where the scope of the operator is restricted to a variable region
near each point. We mention the work by Guan [8] and Guan and Ma [9] where they
studied these operators, their relation with stochastic processes, and the work by Ishii
and Nakamura [10], where the authors considered the Dirichlet problem for regional
fractional Laplacian modelled on the p-Laplacian.

Recently, Felmer and Torres [6, 7] established the existence of positive solution for
the non-linear Schrédinger equation with non-local regional diffusion

& (—A)su+u=f(u), ueH'R"), (3)

where the operator (—A)7 is defined as above. Under suitable assumptions on the
non-linearity f and the range of scope p, they obtained the existence of a ground
state solution by mountain pass argument and a comparison method. Furthermore,
they analyzed symmetry properties and concentration phenomena of these solutions.
These regional operators present various interesting characteristics that make them
very attractive from the point of view of mathematical theory of non-local operators.
We also mention the recent works by Torres [14-16], where existence, multiplicity and
symmetry results were considered for related problems.

Motivated by these previous works, in the present paper, we intend to study the
existence and concentration behaviour of solutions for (P). We will prove the existence
of solutions that concentrate around a global minimum point of the ground state
energy function & — C(&), where C(€) is defined as being the mountain pass level of
the energy functional associated with the problem

(—A)u+ QE)u = KE)ul'u, xeR",

where & € R” is regard as a parameter instead of an independent variable. Here, the
functions p, Q and K satisfy the following conditions:
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(Hop) There are positive real numbers Q,, K such that

Ox= lim Q&) and K, = lim K(§).
|&]—+00 |&|—> 400
(Hp) There are numbers 0 < py < ps < 00 such that
po < p(§) < poo,  VE €R" and |§1|i—r>noo p(E) = Poo-
(Hy) 0O, K : R" — R are continuous functions satisfying

0<a <0Q0¢),KE)<a V&EeR",

for some positive constants ay, a.

Before stating our main result, let us introduce more some notations. By
considering the change of variable x — €x, the problem (P) is equivalent to

(P) (—A)2 v+ Qex)v = K(ex)lof v, xeR’,
where p. = é p(ex). Associated with (P') we have the energy functional 7, : H*(R") —
R defined by
1 lu(x + 2) — v(x)I? 2
nw=5(/ [ + [ o) -
g 2 ( v JBO. L pexy  12IMT R Q
b K(ex)v(x)|Pdx
p+1Jg 7

Hereafter, we say that v € H*(R") is a weak solution of (P’) if v is a critical point of
1,.. Moreover, we say that v is a ground state solution of (P') if

I, (v)=0 and 1, (v)=C,,

where C,, denotes the mountain pass level associated with /,, .

Now, we are ready to state the main result of this paper:

THEOREM 1.1. Assume (Hy) — (H3). Then, if
0 inf C(¢§) < liminf C(§),

seRr [§]—>+00

problem (P') has a ground state solution u. € H*(R") for € small enough. Moreover, for
each sequence €,, — 0, there is a subsequence such that for each m € N, the solution u.,,

concentrates around a minimum point £* of the function C(§), in the following sense:
given § > 0, there are €y, R > 0 such that

/ |uEm|2 dx <e€,8 and |u€m|2dx > e, C, Ve, <€,
B(&*,emR) B(E*,enR)

where C is a constant independent of § and m.
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We would like to point out that the condition (C) is not empty, because it holds
by supposing that there is &y € R” such that

" p+l n

pj_i [ﬁ7E
0 E ok
K@) kL

For more details, see Corollary 2.1 in Section 3.

(H3)

2. Preliminary results. The main goal of this section is to study some properties
involving the function & +— C(&), which is the mountain pass level of the functional
Je : H*(R") — R given by

2y — 2
Je(u) = % ( / ” f n lutx TZ;HQ”(X)' dzdx + /R n Q(s)|u(x)|2dx)

4)
o [ K@t
By using well-known arguments, J; € C'(H*(R"), R) and
Je(w = (u, v)g — /R” K& u(x)PP tu(x)v(x)dx, Vv e HYR,
where
(, V) = / ,, /B (o,,,(,f:(x +9) - ”ﬁjl[fz(x L 1G] I [ o@pwvax.
From this, it is clear that critical points of J; are weak solutions of
(—A)u+ Q) = K@)ul"'u, xcR". ®)

The same arguments explored in Willem [17, Chapter 4] work to prove that

0 < C&) = inf J(w),

where MV; is the Nehari manifold defined by
Ne = {ue H*(R")\ {0} : Jo(wu = 0}.
Moreover, the characterization below also occur

C¢) = inf  maxJg(fv) = inf max J, 1)),
) veH'}(R”)\{O} >0 ¢(1v) yele 1ef0,1] (1)

where
e ={y € C([0, 1], H*(R")) : y(0) =0, J:(y(1)) <0}

By [5], we know that (5) has a non-trivial non-negative ground state solution, that
is, C(&) is the least critical value of J;. Next, we will study the continuity of C(§).
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LEMMA 2.1. The function & — C(§) is continuous.

Proof. Let {§,} € R" and &, € R” verifying
& —> & in R
By using the conditions (Hy) and (H,), we know that there are 4;, B; > 0 such that
0<A; <CE)<B, VéeRY,

showing that {C(&,)} is a bounded sequence. Next, let v, € H*(R") be a function that
satisfies

Je.(v)) = C(§) and Jg (v) = 0.

In the sequel, we will consider two sequences {&,,} and {§,} such that

C(,) = Co), Vr ()
and
C&r) = C&o),  Vr. (1)
Analysis of (7): Using the fact that { C(&,,)} is bounded, there are {§,, } C {§,}and Cy > 0
such that
Cé,) — Go.

By using the notations
vi=v, and §&=§,,
it follows that
& — & and C&)— C.

Claim A: C() = C(Eo)
From (1),

li?q C(&) = C(&),
and so,
Co = Cléo). ©)

Now, we are going to prove that Cy < C(&). To this end, let wy € H*(R") be a function
satisfying

Je(wo) = C(&) and  Jg (wo) =0
and #; > 0 be a real number satisfying

Jgi(l‘in) = m%x Jgi(lwo).
=
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From definition of C(§;),

C(g,) < Jgi(l,'wo).

We claim that {z;} is a bounded sequence. In fact, by definition of ¢#; we have

llwl2 = 1+ fR KEIwo(0P dx. &
Now for each i € N, two things can be happen
0<t;<1 or t;>1.
We suppose that there is iy > 0 such that
ti>1, Vi>i,

otherwise {#;} would be limited. Fixing u € (2, p + 1), we derive that
[ K@ motortax = o [ K@ ueor s
R p+1 Jp

> M / K (&) wo(x)P dx.
p + 1 R

Consequently,
Fllwollg = t‘,-’“/ K(&) wo(x)Pdx = L/ K (&) wo(x)H dx,
; R P+ 1 Jre
or yet
. (» + Dllwol » + Dllwol, ,
e < s ; as i — 00,
1 g KE)wo()PHdx e [ K(&o)wo(x) P dx

which is absurd, because 7/ 2 4o Therefore, {t;} be a bounded sequence. Then

without loss of generality, we can assume that 7; — #y. This limit combined with the
Lebesgue’s Theorem provides
lim Jg,(two) = Jg (towo) < Jg,(wo) = C(&o),
leading to
Co < C(&). ®)
From (6)—(8),
C(%) = Co.

The above study implies that

lim C(&,,) = C(&)-
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Analysis of (/7): By the definition of {v,},

11 , 1
(E - m) ”Ur”g, = Jé,-(vr) - m']é_(vr)vr =< C(%_r) + C”Ur”é,-v

from where it follows that {v,} is a bounded sequence in H%(R"). Consequently, there
is vg € H*(R") such that

v, —~vy in H*R").

By using [6, Lemma 2.1], we can assume that vy # 0, because for any sequence of the
type v,(x) = v,(x + y,) also satisfies

Jo(@) = CE) and J}(3)=0.

The above information permits to conclude that vy is a non-trivial solution of the
problem

(=A)u+ QEo)u = KE)|ul"'u  inR". ©)
By Fatous’ lemma, it is possible to prove that
limrinf Je (v) = Jg, (o). (10)
On the other hand, there is s, > 0 such that
CE) < Je (sr0). V.
Thus,

lim sup J¢, (v,) = limsup C(&,) < limsup Jg, (s,v0) = Jg,(vo). (11)

From (10)—(11), we get the limit below

lim J, (v,) = Jg, (vo),

which leads to
_ 2 _ 2
[ [ DR [ [ D wl
d

|Z|n+2a |Z|n+2a

an
/R 0 ()P /R 0o,
Since v, — vy in H*(R"), the above limits ensure that
v, —> vy in  HYR".

On the other hand, as {C(§,)} is bounded, there are a subsequence {§,, } C {§,} and
C, > 0 such that

C(&,) — C..
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Setting the notations
ve=v, and & =§, ,
we have
ve = vy, & — & and C(&)— C..
In what follows, we denote by #; > 0 the real number that verifies

Jgo(lkvk) = II[1>86X Jgo(lvk).

Thus, by definition of C(&),

C(&) < Jg (trve).

It is possible to prove that {#;} is a bounded sequence, then without loss of generality,
we can assume that 7, — ¢,. This limit together with the Lebesgue’s Theorem gives

lilzn Je, (trvi) = Jg, (Lvg) = lilzn Je (trv) < lilzn CéE)=C
implying that
C(é) = C.. (12)
On the other hand, from (/7),
lim C(§) = C(6o).
leading to
Ci = C(5). (13)
From (12)—(13),
Ci = C(&).
The above analyze guarantees that
lim C(&,,) = Cléo).
From (/) and (11),
lim C(&) = C(&),

showing the lemma. O

In the next lemma, D denotes the mountain level of the functional J : H*(R") — R
given by

_ 2 !
J(u) = (/n /n |L|‘ECX)_ Z|Z£21| d dx+/ |u(x)|2dx> _m 5 |u|p+1dx
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LEMMA 2.2. The function C(§) verifies the equality

C&) = Q@);D Ve € R, (14)

K(&)r

Proof. Let u € H*(R") be a function verifying

Jw)y=D and J'(u)=0.

For each £ € R” fixed, let 02 = Q(E) and define
Tx
ww = |22

A simple change of variable gives

Je(w) = % (0205/ lw(x +2) — w(x)|2dzdx+ |w|2dx>
n R R

|Z|n+2a

1
) / K(@)lwp*'dx
_QOF e Gt D G :
- K(€)7 [( 2 // |z|+2 dzdx + / Iu( )| dx>j|

JQOTIT L x ]
K(E)r [pH/Rn'u(a)' =
_ 0@ E

K@)

The same type of argument yields J; (w)(w) = 0, from where it follows

J(u).

C() < Q@)iﬁn, Ve € R". (15)

K(&)r1
On the other hand, taking w € H*(R") such that
Je(w) = C(§) and Jy(w) =

and

_[k®7
ulx) = [Q(S)} wio)

we can show that

() < L Je(w),

P17 2a
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that is,

ptl n

QO - ) ve e R,
K@)

(16)
By (15) and (16), we get (14)
O
As a byproduct of the last proof, we have the following corollary
COROLLARY 2.1. Assume (H3). Then,

inf C(¢) < liminf C(&) = C(c0),
EeRn |&]—+00

where C(00) is the mountain pass level of the functionals J, : H*(R") — R given by

1 |u(x) — u(z)|? P
o)== == 7 izd solt)?dx ) — —— | KoolulP™dx.
Jecltt) 2 (/[R{ Re |X — 2|2 st R"Q jufdx P+ 1 Jp ™ dx

3. Ground state solution.

By using the studies made in the previous section, we
are going to prove that C,, is a critical level for I, for € small enough, that is, there is
u. € H*(R") satisfying

L.u)=C, and I, (u)=0.

The function u, that verifies the above equality is called a ground state solution of (P’).
From now on, we are considering in H*(R") the following norm

_ lu(x +2) — v(x)|?
vl </n /B(O,pe(x))

BT dzdx + /I‘R" Q(ex)lv(x)|2dx)

which is equivalent the usual norm of H%(R"), more precisely, there exists a constant
& > 0 independent of € such that

o=

’

lullpe < Null < Sllull,,, Yu e H*(R"). 0]

For more details about this subject see [6, Proposition 2.1]. This fact combined with
the embeddings given in [6, Theorem 2.1] ensures that I, € C'(H*(R"), R) with

I, (v = (u, v),, — /R” K(ex)|u(x)]P u(x)v(x)dx, Y ve HYRY,

[u(x + 2) — u(x)][v(x + 2) — v(x)]

o B dzdx +

<us v)pF:/ f
n B(O,pf R

Using well-known arguments, it is possible to show that 7, verifies the mountain
pass geometry. Then, there is a (PS). sequence {u;} C H*(R") such that

where
O(ex)uvdx.

L, (u) — C,, and I () — 0,

(18)
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where C,, is the mountain pass level given by

C,, = inf sup I, (y(?)) > 0,

© vl 10,1
with
={y € C([0, 1], H*(R")) : y(0) = 0, I, (y(1)) < O}.
In the sequel, NV, denotes the Nehari manifold associated to the functional 7, , that is,
Ny, ={ue H*R)\{0} : I, (wu = 0}.

It is easy to see that all non-trivial solutions of (P’) belongs to N, . Moreover, by
applying standard arguments, it is possible to prove the equality below

Cy. = inf I, (u). (19)

and the existence of 8 > 0, which is independent of ¢, such that
B <llul},, Vue HYR"). (20)

From (19), if C,, is a critical value of I, then it is the least energy critical value of

- The next lemma studies the behaviour of function C,_ when € goes to 0.
LEMMA 3.1. lim S(l)lp C, < mf C(&). Hence, lim S(l)lp C,, < C(c0).
e
Proof. Fix & € RY and w € H*(R") with
Jey(w) = max Je,(tw) = C(50) and Jg (w) =
where

1 _ 2
T = 3 ( [ [ SO sk [ o@mrar)

— / K(&o)|ul”dx.
1 Jr

Then, we set We(x) = w(x — %) and 7z, > 0 satisfying

C, <1, (twe) = maoxlpf(n’u}).
>
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&

€

2 ~ o~ a2
L (1.%,) = < WX +2) =W )i+ [ Oexyi?(xydx
r 2 . JB |z|n 2 e

0. p(ex)) Rr

The change of variable X = x — 2 gives

Z‘p-&-l
€
p+1

2 ~ 2
_ L / / W+ 2) — w45 4 / Oex + &)w*(¥)dx
2 n J B0, L p(ex+£o)) |z|ter R7

Zp+l
€
p+1

/ K(ex) [P (0dx
RH

/ K(ex + &) |w’ ' (R)d¥.
Rn

On the other hand, for any sequence €, — 0, the equality I}, (7, We,)(Zc,We,) = 0 yields
{tc,} is bounded. Thus, we can assume that

te, = t. >0,
for some ¢, > 0. Thereby, taking the limit of # — +o00, we can infer that
Ji, (tw)(t,w) = 0.

On the other hand, we know that J; (w)(w) = 0, then we must have

t, =1
From this,
I, (te,We,) = Jg(w) = C(&) as € — 0.
As the point & € R” is arbitrary, the lemma is proved. 0

THEOREM 3.1. For € > 0 small enough, the problem (P') has a ground state solution.

Proof. In what follows, {1} ¢ H*(R") is a sequence satisfying
I, (w) — C,, and I (u) — 0.

If ;. — 0 in H*(R"), then

e — 0 in L) (R") for p e[2,2)). 21
By (Hy), we can take 8, R > 0 such that
Ox =8 < 0(x) < Ox +6 and Ks — 8 < K(x) < K +36, (22)
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for all |x| > R. Then, for all t > 0,

2
By ) = i) + 5 [ 1000 = 0 + Sl
R»

p+1
+

[Koo + 8 — K()]lur(x)1"dx
P + l Rn

[2
)+ 5 [ 1000~ O+ Bl
B(0,%)

lP-‘rl

+
p+1

/ (Koo + 8 — KCO ()P dx,
B0, %)

where

1 lu(x + z) — u(x)|?
L) =3 dxd o Su(o)d
ot 2 (f g /B(O Loy lzImt rax /I;%”(Q e x)

/ (Koo + 8)|u(x)[P ' dx.

p p+1
In the sequel, we fix 75 > 0 satisfying

NCTARyeta)

QOO _83 KOO +8)7

where

p(é x)

o — 08, Ko +8)= inf supl’ (tv
-0 ) veH*(R")\{0) ,>§ ool 1V).

(
Since Q(x) — O + 38, Koo + 8 — K(x) are continuous in B(0, §), then there exists
positive constants Cgp, C, such that

2

PN O 5, Ko +8)+ %’/ [0(x) — Ono + 8]lus(x) 2dx
B(0,%)

Coe =

«(

p+1

+ k
p+1
p(€x)

f (Koo + 6 — KOOllu(0)Pdx
B(0, %)

> C(

t/fCQ 2
, Ooo — 8, Koo +8) + 1 (x)]
2 Jpo.x

1
P+ CK

p+1

[ ot
B(0, %)

Then by (21), taking the limit as kK — oo, and after § — 0, we find

(6 x)

C, > (

s 0o Keo), (23)
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where C(@, O, K) designates the mountain pass level of the functional

1 _ 2
0=+ / / lu(x + 2) — u(x)| dzdx+/ Oulu2dx ) —
’ 2 \Jre JB0. L plexy) | 2|42 "

KoolulP*'dx.

P + 1 Rn
Now note that

1 t — tu(x)|?
L (tu) = Joo(t) — = / f [fulx + 2) _ LEY
’ 2 Jre JrB0. L pex) |z

for ¢t > 0, and we estimate the second term on the right. First, we see that for any € > 0
and 7, there exists R > 0 such that

t —t 2
f f |tu(x + z) : uP e 29
(0, %) JBe(0, 1 p(ex)) |z |

for all ¢ € [0, 7]. In fact, by our assumption, for any M > 0, exists R > 0 such that, for
|x] > § we have that p(ex) > M. From here, using Fubini’s theorem we have

tu(x + z) — tu(x 2
/ / |u( )+2 ()] ded
(0. 2) J Be(0. ! pex)) |z|ree
tu(x + z) — tu(x)|?
S/ / [ Z+2a )l dxdz
(0,2 J Be(0, &) |z

t — tu(x))?
Cf [ oD ol
"(0,%) i |Z|n o

2718, ~
_aM—zaIIulle(W)e ,

from were we conclude (24) choosing R > 0 large enough. From now on we fix R > 0
large enough. Next, we prove that

. t — tu(x)|?
Jim f / e+ 2) — Iy, (25)
=0 J B0, 2) J B0, L p(ex)) |z|nt2e
forall z € [0, 7]. In fact, by (H) there exists o9 > 0 such that p(ex) > p, for all x € R",
so that
t — tu(x)[?
/ / [tu(x + z) . u(x)| dsdx
BO.%) J B0, L plex) |zmr=e 26)
ltu(x + z) — tu(x)|? 27|18 o
<[ ) IR vz < 20 i, e
(0,2 J B0, %) || apy .
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and we obtain (25) by (26). Thus, by (24) and (26)

t — tu(x)|?
10 (tu) > Joo(tu) — € — f / |fu(x + 2) 5 u()| dzdx.
’ BO.2) JB(0. p(ex) |z

Now let # € H*(R") such that Igoo(ﬂ) = C(@, O, K), then, if we choose ¢ = *
such that Joo(#*#1) = max,so J(?i1) then we see that

p(ex)
pa

&

QOOv KOO) 2 C(OO) — €,

then

1imi(1)1f C(M, O, Koo) = C(00).
€e—> €

Therefore, if there is sequence €, — 0 such that the (PS)c, ~sequence has weak limit
equal to zero, we must have

IO(EI‘IX)

n

Cp., = C(

, O, Kso), VneN,

leading to
liminf G, = C(c0),

which contradicts Lemma 3.1. This proves that the weak limit is non-trivial for € > 0
small enough and standard arguments show that its energy is equal to C, , showing
the desired result. ]

4. Concentration of the solutions ..

LEMMA 4.1. If u, is the ground state solution of (P') obtained in the last section, then
there exists a_family {y.} C R" and positive constants R and B such that

lim inf luc|>dx > B > 0. 27
e—071 B(ye,R)

Proof. First of all, by (H;) and (H>),

1 [u(x + 2) — v(x)I?
I, (v) > L(v) = 5 (/n /B(O . 2 dzdx + /Rn a|v)?dx

1
P+ 1 Jp

ar|ulP'dx, Vv e HYR").

Since there exists unique 7. > 0 such that
teue € N, = {v e H*(R")\ {0} : L(v)v =0},
it follows that

0 < C(po, ar, a) = ir}\l? L(v) < L(teue) < I, (teue) < I, (uc) = C,.. (28)
veN,
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Now, arguing by contradiction, if (27) does not hold, it would exist a sequence u, = u,
such that

lim sup/ lug|>dx = 0.
B(y.R)

k— o0 yeRn

By [6, Lemma 2.1], vy — 0in LY(R") for any 2 < ¢ < 2. However, this is impossible,
because by (28)

1
0 < C(po, ar, ax) < Cp. =1, (ve) — EI//)G(UE)UE

p—1 1
= K |Ptd
2(p+1)/w (ex)|ve| b
< P~ ! @ v P ldx — 0, as k — oo.
“2p+1) Jpn
O
From now on, we set
We(X) = e (X + Ye). (29)
Then, by (27),
liminf |we|*dx > g1 > 0. (30)

=0 Jpo,R)
To continue, we consider the rescaled scope function p, defined by
) = olex+exo).
Using this function, it follows that w, is a solution of the equation

(= A)5, we(x) + O(ex + ey we(x) = K(ex + ep)[we ()" we(x), in R".  (31)

LEMMA 4.2. The sequence {€yc} is bounded. Moreover, if €,,y., — £*, then

CE") = Jof, C(&).

Proof. Suppose by contradiction that |e,,y, | — oo and consider the function w,,,
given in (29), which satisfies (31). Since {C,, } is bounded, the sequence {w,,} is also
bounded in H*(R"). Then, w,, =~ w in H*(R"), and w # 0 by Lemma 4.1. Now, by
(31), we have the equality

[Win(x + 2) — wp(V)][w(x + 2) — w(x)]
dzdx
v JBO, L p(enr-tenyan)

|Z|n+2a

+ Olemx + Emye,,,)me)dx = K(epnx + emJ/ém)|wm|p_lwrnU)dxo
Rn R’l
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This equality combines with Fatou’s Lemma to give

_ 2
/ / et D Z WO g+ [ uiwPdx < [ KelwlHdx.  (2)
u n Rn

|Z|n+2a R
Let & > 0 such that

Joo(Bw) = m%x Joo(tw).
>

From (32), 6 € (0, 1]. Thus,

1 1 1
C(OO) < Joo(‘glU) - EJ:)O(QU))QU) = (5 — m) 91)4—1 /R Koo|w(x)|p+ldx

1 1
<(z—— ) [ Kowrtda
_(2 p+1)/w WP dx

1 1
< (— - —) timinf [ Kenx + enye wn ()P dx
2 p+1) mooo Jgu

=liminf C, < C(o0),
m—00

which is a contradiction, showing that {ey.} is bounded. Hence, there exists a
subsequence of {€y.} such that €,y., — &*.
Repeating the above arguments for the function

Win(X) = Ve, (X + Ye,) = Ue,, (€mX + €me,,),

we have that this function satisfies the equation (31), and again {w,,} is bounded in
H*(R"). Then, w,, = w in H*(R") and w satisfies the equation below

(0w + Q¢ ) w = KE)wl™'w, xeR, (33)

in the weak sense. Furthermore, associated with (33), we have the energy functional

1 z) — 2
sew =5 ([ [ T e [ o)

_ 1 * —+1
7 [ K ueoriax

Using w as a test function in (31) and taking the limit of m — 400, we get

lw(x + z) — w(x)]? . )
JoJ. 22 dZdH/Rn O@E )l dx < /R K(E) i dx,
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which implies that there exists 6 € (0, 1] such that Jg-(fw) = maxs¢ Je-(tw). So, by

Lemma 3.1,
C(E*) < Jo-(Ow) = (1 - #) o+t [ K@ ueopiax
=t 2 P 4+ 1 R~
1 1
< <— - —) liminf [ K(enx + €nye, ) wn(x)Pdx
2 P =+ 1 m—0o R
= liminf[, (ve,)—1 ;, (ve, e, ]
=liminf C, <limsupC, < Ein{{ C(§),
m—00 M= 00 cRn
showing that C(£*) = gian C(&). I
E n

Now we prove the convergence of w, as € — 0.

LEMMA 4.3. For every sequence {€,,} there is a subsequence, we keep calling the same,
so that we,, = w,, = w in H*(R").

Proof. Since w is a solution of (33), from Lemma 3.1,
. . 1,
inf C(&) = CE") < Je-(w) = Je-(w) — 5} (whw
EcRn 2
= (1 - #) K(E")|w|"* dx
2 p + 1 R
1 1
< (— — —) liminf | K(eux + €pye,)|wml’ ™ dx

2 D + 1 m—>00  Jpn
1 1 . +1
<|=z———)limsup K(emx + €nye,) | wnl’ ™ dx
2 P +1 m—00 R
1 1
=|-—-——1 K g
(2 p+1> im sup . (€mX) | vn " dx
1
<limsup (7, (vy,)———1I (v,)vm
< mwp(pf,,x )= o) )
=limsup C;, < inf C(§).
m—>00 " EeRr

The above inequalities lead to

lim | K(enx + enye,)wn " dx = / K@)l dx.
Rn

m—>00 Jpn
Consequently,
_ 2 _ 2
@ fim [ [ D e [l
m—>00 Jpn Jpn |Z|n+2a n SR |Z|n+2a

) lim [ Oemx + emve,) wm()2dx = / 0(E") w()dx.
m— 00 R” RII
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From (b), given § > 0 there exists R > 0 such that

O(emx + 6myem)|wm(x)|2dx <34.
[x|>R

This together with (H>) gives

8
/ () Pdx < - (34)
Ix|=R ap
On the other hand,
lim [w(x)>dx = f lw(x)|*dx. (35)
M= Jix|<R Ix|<R

From (34) and (35), w,, — w in L*(R"). From this, given § > 0 there are €y, R > 0 such
that

f |u€m|2dx <e,8 and |u€m|2 dx > €, C, Ve, <€,
B¢(x*,€mR) B(x*,emR)

where C is a constant independent of § and m, showing the concentration of the
solutions {u,}. O

ACKNOWLEDGEMENT. The authors thank the referce for his/her comments that
were very important to improve the paper. C.O. Alves was partially supported by
CNPq/Brazil 304804/2017-7 and C.E. Torres Ledesma was partially supported by
INC Matematica 88887.136371/2017.

REFERENCES

1. M. Cheng, Bound state for the fractional Schrodinger equation with unbounded
potential, J. Math. Phys. 53 (2012), 043507.

2. G. Chen and Y. Zheng, Concentration phenomenon for fractional nonlinear
Schrodinger equations, Comm. Pure Appl. Anal. 13(6) (2014), 2359-2376.

3. J. Davila, M. Del Pino and J. Wei, Concentrating standing waves for the fractional
nonlinear Schrédinger equation, J. Differ. Equ. 256 (2014), 858-892.

4. S. Dipierro, G. Palatucci and E. Valdinoci Valdinoci, Existence and symmetry results
for a Schrodinger type problem involving the fractional Laplacian, Matematiche 68 (2013),
201-216.

5. P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrédinger equation
with the fractional laplacian, Proc. Edinburgh: Sect. A Math. 142(6) (2012), 1237-1262.

6. P. Felmer and C. Torres, Non-linear Schrodinger equation with non-local regional
diffusion, Calc. Var. Partial Diff. Equ. 54 (2015), 75-98.

7. P. Felmer and C. Torres, Radial symmetry of ground states for a regional fractional
nonlinear Schrodinger equation, Comm. Pure Appl. Anal. 13 (2014), 2395-2406.

8. Q.-Y. Guan, Integration by parts formula for regional fractional Laplacian, Commun.
Math. Phys. 266 (2006), 289-329.

9. Q.-Y. Guan and Z. M. Ma, The reflected a-symmetric stable processes and regional
fractional Laplacian. Probab. Theory Relat. Fields 134 (2006), 649—694.

10. H. Ishiiand G. Nakamura, A class of integral equations and approximation of p-Laplace
equations, Calc. Var. 37 (2010), 485-522.
11. S. Secchi, Ground state solutions for nonlinear fractional Schrodinger equations in R”,

J. Math. Phys. 54 (2013), 031501.

https://doi.org/10.1017/50017089518000289 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089518000289

460 CLAUDIANOR O. ALVES AND CESAR E. TORRES LEDESMA

12. X. Shang and J. Zhang, Concentrating solutions of nonlinear fractional Schrédinger
equation with potentials, J. Differ. Equ. 258 (2015), 1106-1128.

13. X. Shang and J. Zhang, Existence and multiplicity solutions of fractional Schrodinger
equation with competing potential functions, Complex Variables Elliptic Equ. 61 (2016), 1435—
1463.

14. C. Torres, Symmetric ground state solution for a non-linear Schrodinger equation
with non-local regional diffusion, Complex Variables Elliptic Equ., http://dx.doi.org/10.1080/
17476933.2016.1178730 (2016)

15. C. Torres, Multiplicity and symmetry results for a nonlinear Schrodinger equation with
non-local regional diffusion, Math. Meth. Appl. Sci. 39 (2016), 2808-2820.

16. C. Torres, Nonlinear Dirichlet problem with non local regional diffusion, Fract. Cal.
Appl. Anal. 19(2) (2016), 379-393.

17. M. Willem, Minimax theorems (Birkhéduser, Boston, Basel, Berlin, 1996).

https://doi.org/10.1017/50017089518000289 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089518000289

