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Abstract. In this paper, we apply the general theory of Arnold (1965, 1966) and Moffatt
et al. (1997). We search sufficient conditions for the linear stability of steady three-dimensional
incompressible gravitating flows in ideal magnetohydrodynamics (MHD). The results suggest
that the solar and the stellar convection zones must be sensitive to the density stratification.
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1. Introduction
We consider the stability of steady three-dimensional incompressible gravitating flows

in MHD, neglecting the resistivity. The stability of such steady states is considered by
an appropriate generalization of the Arnold energy techniques. We consider an incom-
pressible, inhomogeneous (with density ρ), perfectly conducting MHD flow contained in
a domain D with fixed boundary ∂D. We shall in general suppose that D is bounded,
but the theory may be easily modified to deal with the case of an unbounded domain.
Let u(r, t) be the velocity field, h(r, t) the magnetic field (in Alfvén velocity units), p(r, t)
the gas pressure, J = ∇ × h the current density in the fluid, ω = ∇ × u the vorticity
field, and the mass force field F (r, t) with a potential Φ(r, t) such that F = −∇Φ. For
self-gravitation we have ∆Φ = 4πGρ. Then the governing equations in a Boussinesq-like
approximation are (Vladimirov (1986), Phillips (1980) and Chandrasekhar (1987)).

ut = u × ω + j × h −∇(p +
1
2
u2) − ρ∇Φ (1.1)

Lh =
∂h

∂t
−∇× (u × h) = 0, Dρ = 0, ∇ · u = ∇ · h = 0, (1.2)

Here L is a form of Lie derivative.

2. Sufficient conditions to three-dimensional gravitating flows
stability.

Let us now consider in more details the expression for δ2E.

δ2E =
1
2

∫
D

{h2 + h · (J ∧ ζ) + (AΦ
′′
(A) + 2Φ

′
(A)ρ2)}dV, (2.1)
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i) Parallel flow and field
Let Ω be an infinite cylinder of arbitrary cross-section with axis parallel to Oz, and

suppose that
H = H0(x, y)ez. (2.2)

After some algebra, (2.1) reduces to

δ2E =
1
2

∫
D

{H2
0 ((ez · ∇)ζ)2 + (AΦ

′′
(A) + 2Φ

′
(A))ρ2}dV. (2.3)

Proposition 2.1 The state (2.2) is linearly stable to isomagnetovortical (imv)
perturbations provided

AΦ
′′
(A) + 2Φ

′
(A) � 0 in D. (2.4)

ii) Annular basic state
Let D be an annular region between two cylinders C1, C2 of arbitrary cross-sections,

and let
H = −ez ∧∇B, (2.5)

where B(x, y) is the flux-function of H. We shall suppose that |∇B| �= 0 in D, i.e H has
no neutral points in D.

The expression for δ2E may be reduced to the form

δ2E =
1
2

∫
D

[((h + (ζ · ν)(J ∧ ν))2 + ∇2B(−∇2B +
∇B · ∇(H2)

2H2
))(ζ · ν)2

+ (AΦ
′′
(A) + 2Φ

′
(A))ρ2]dV.

(2.6)

Proposition 2.2 The state (2.5) is linearly stable to imv perturbations provided

∇2B � 0 , −∇2B +
∇B · ∇(H2)

2H2
� 0 , AΦ

′′
(A) + 2Φ

′
(A) � 0. (2.7)

or

∇2B � 0 , −∇2B +
∇B · ∇(H2)

2H2
� 0 , AΦ

′′
(A) + 2Φ

′
(A) � 0. (2.8)

3. Conclusion
In this paper, we have given sufficient conditions for linear stability of steady three-

dimensional gravitating flows in ideal MHD. These stability conditions are obtained by
an appropriate generalization of the (Arnold) energy techniques.
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