
JFP 13 (2): 257–260, March 2003. c© 2003 Cambridge University Press

DOI: 10.1017/S0956796802004549 Printed in the United Kingdom

257

Special issue on
‘Logical frameworks and metalanguages’

GÉRARD HUET

INRIA-Rocquencourt, France

There is both a great unity and a great diversity in presentations of logic. The di-

versity is staggering indeed – propositional logic, first-order logic, higher-order logic

belong to one classification; linear logic, intuitionistic logic, classical logic, modal

and temporal logics belong to another one. Logical deduction may be presented as

a Hilbert style of combinators, as a natural deduction system, as sequent calculus, as

proof nets of one variety or other, etc. Logic, originally a field of philosophy, turned

into algebra with Boole, and more generally into meta-mathematics with Frege and

Heyting. Professional logicians such as Gödel and later Tarski studied mathemati-

cal models, consistency and completeness, computability and complexity issues, set

theory and foundations, etc. Logic became a very technical area of mathematical

research in the last half century, with fine-grained analysis of expressiveness of sub-

theories of arithmetic or set theory, detailed analysis of well-foundedness through

ordinal notations, logical complexity, etc. Meanwhile, computer modelling developed

a need for concrete uses of logic, first for the design of computer circuits, then more

widely for increasing the reliability of sofware through the use of formal specifi-

cations and proofs of correctness of computer programs. This gave rise to more

exotic logics, such as dynamic logic, Hoare-style logic of axiomatic semantics, logics

of partial values (such as Scott’s denotational semantics and Plotkin’s domain the-

ory) or of partial terms (such as Feferman’s free logic), etc. The first actual attempts

at mechanisation of logical reasoning through the resolution principle (automated

theorem proving) had been disappointing, but their shortcomings gave rise to a con-

siderable body of research, developing detailed knowledge about equational reason-

ing through canonical simplification (rewriting theory) and proofs by induction

(following Boyer and Moore successful integration of primitive recursive arithmetic

within the LISP programming language). The special case of Horn clauses gave rise

to a new paradigm of non-deterministic programming, called Logic Programming,

developing later into Constraint Programming, blurring further the scope of logic.

In order to study knowledge acquisition, researchers in artificial intelligence and

computational linguistics studied exotic versions of modal logics such as Montague

intentional logic, epistemic logic, dynamic logic or hybrid logic. Some others tried

to capture common sense, and modeled the revision of beliefs with so-called non-

monotonic logics. For the careful crafstmen of mathematical logic, this was the final

outrage, and Girard gave his anathema to such “montres à moutardes”.

Behind this flurry of varieties of logic, however, lies a common heritage of methods

and structures. Furthermore, the problematics of the formalisation of mathematical

https://doi.org/10.1017/S0956796802004549 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004549


258 G. Huet

objects, and most notably constructive mathematics, gave a unifying point of view in

which the structures of logical reasoning (i.e. proof theory, pioneered by Gentzen and

developed by Kleene, Kreisel, and more recently, Girard) were naturally integrated

within some version of Church’s typed λ-calculus. Dependent product, first studied

by Howard, gave the final link to the correspondance between typed computational

systems and proof structures, now known as the Curry-Howard isomorphism, yield-

ing one of the most productive paradigms of theoretical informatics. A pioneer

of this effort was N. de Bruijn, who worked on a family of formalisms, called

Automath, back in the 1960s. The underlying idea is to exploit this Curry–Howard

correspondance, which models logical propositions as types, and formal proofs as

well-typed terms in some computational algebra. For instance, Church’s simply

typed λ-calculus is isomorphic to natural deduction structures for minimal propo-

sitional logic. Later in the 1970s, Per Martin-Löf started a program of design of

constructive mathematics along similar lines, and a research group from Göteborg’s

University followed his ideas to advocate the use of Type Theory as a Programming

Methodology paradigm. In the USA, Bob Constable at Cornell University set to

adapt this framework to various logics of programming in the systems PRL and

NuPRL, influenced by the LCF effort from Robin Milner’s team in University of

Edinburgh. The convergence of these various trends was apparent in the beginning

of the 1980s, and a crystallisation of these ideas occurred at the Conference on

Types organised in Sophia-Antipolis by Gilles Kahn in 1984. I presented myself at

this meeting a synthesis of Automath with the higher-order λ-calculi F and Fω of

J. Y. Girard within a Calculus of Constructions, a joint work with Thierry Coquand

which was finalised and analysed in his thesis in 1985.

Now a coherent methodology was taking place for using typed λ-calculus as the

common vehicle for meta-mathematical representations. Details of basic sorts and

closure operations were still the object of heated debate (with esoteric discussions on

mysteries surrounding elusive notions such as predicativity), and there were minor

differences of treatment of framework equality (such as postulating or not exten-

sionality principes such as η-conversion). However, such disagreements were really

secondary issues compared to the methodological progress achieved by this type-

theoretic unification, allowing the factorisation of the justifications of meta-theoretic

properties, as well as the sharing of a lot of the implementation burden. A central

issue remained the strength of the meta-theoretic framework; while N. de Bruijn

advocated the use of weak formalisms, with low complexity of decision procedures,

others claimed that stronger frameworks were useful, because they had a superior ab-

straction power, and consequently were amenable to lighter space requirements and

could exhibit stronger modularity constructs. A typical weak formalism, close to the

core of Automath, was proposed as the Edinburgh Logical Framework by Harper,

Honsell and Plotkin at LICS’87. By then the Logical Framework methodology was

recognised as such and the first computer implementations of generic proof systems

were soon to appear, such as Isabelle, designed at Cambridge University by Larry

Paulson. Such a proof assistant could be parameterised by an axiomatic descrip-

tion of the intended specific logic, while all the formula and context management

procedures used generic search, matching and unification modules.

https://doi.org/10.1017/S0956796802004549 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004549


Editorial 259

The year 1989 was a turning point for the constitution of a research community

around this paradigm, grouping proof theorists from mathematical logic with com-

puter scientists both from the denotational semantics and λ-calculus traditions, and

from more applied backgrounds such as interactive structure editors. A dozen of

European research teams joined their expertise to collaborate in a Basic Research

Action funded within the European Esprit program, called “Logical Frameworks”

in the period 1989–1992. Significant conceptual progress was achieved, such as the

notion of Pure Type Systems, which allowed Henk Barendregt and Stefano Berardi

to abstract from peculiarities of Automath, Edinburgh LF, System F, Calculus of

Constructions and Martin Löf’s Constructive Type Theory into a Cube making ex-

plicit the various instances of a generic notion of Pure Type System. In the same way

that pure λ-calculus had been the vehicular language for denotational semantics,

with non-applicative control structures modeled through higher-order continuations

and monads, typed λ-calculus became the vehicular language for proof theory,

even for apparently non-constructive frameworks such as classical logic, as Michel

Parigot showed with his µ-calculus theory. On the practical side, numerous proof

assistants were designed, implemented, and mutually cross-fertilised, such as LEGO

at University of Edinburgh, Alf at Chalmers University in Göteborg, and Coq

at INRIA in Rocquencourt. Isabelle became a European endeavour through the

involvement of Tobias Nipkow from TUM in Munich. Yves Bertot at INRIA

in Sophia-Antipolis adapted the Centaur structure editor to become a proof edi-

tor for Coq in the CtCoq system, and experimented with sophisticated interaction

paradigms such as proof by pointing. In the USA, a notable contribution to this area

was the ELF system designed by Frank Pfenning at Carnegie-Mellon University,

as an adaptation of Dale Miller’s λ-PROLOG to Edinburgh LF. Two books, Log-

ical Frameworks and Logical Environments, which I co-edited with Gordon Plotkin

at Cambridge University Press, published important contributions from this joint

effort. The LF European project was renewed in a second stage Basic Research

Action called “Types” with more teams joining in the period 1992–1995. This ef-

fort is still active as a Research Network. I take this opportunity to thank the

European Commission Research Funding Agency for its continuous support of our

research.

By 1995 the field had matured into a well-understood area generating its own

research problematics. Linear logic proved to be a fundamental tool to investigate

geometrical symetries in proof nets through the Geometry of Interaction, and

J. Y. Girard developed new models such as Coherent Spaces. A fine-grained analysis

of substitution yielded a new theory of explicit substitutions. Researchers moved to

investigate definitional congruences significantly different from simple β-conversion

from λ-calculus, notably with primitive inductive types, which cross-fertilised with

term-rewriting research. Proof assistants started to be applied to significant industrial

applications, such as certification of security in smartcard architectures. In the

International Conference on Logic in Computer Science (LICS) at Santa Barbara

in June 2000, Joëlle Despeyroux and Robert Harper organised a Workshop on

Logical Frameworks and Meta-languages, which brought together researchers in

this area. The current special issue of this journal is a followup to this workshop,

https://doi.org/10.1017/S0956796802004549 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004549


260 G. Huet

and it presents five representative papers giving the state of the art on several of its

aspects.

Gilles Barthe, Venanzio Capretta and Olivier Pons investigate in “Setoids in type

theory” the vexing problem of implementing set theory within type theory, which

lacks general quotients. They consider various possible axiomatisations of types pre-

sented with a congruence (setoids), and study their interaction with various versions

of choice principles, from the points of view of expressiveness and consistency.

A recurring theme of logical frameworks is the formalisation of binding constructs.

The implicit scoping modification induced by binding operations prevents them from

accommodation into the usual apparatus within free algebras (abstract syntax).

Researchers such as Joëlle Deypeyroux have proposed notions of higher-order

abstract syntax for their representation. This raises questions of possible over-

generative power, and the proper status of inductive reasoning in the presence of such

constructions. Christine Röckl et Daniel Hirschkoff tackle these questions in their

paper “A Fully Adequate Shallow Embedding of the π-Calculus in Isabelle/HOL

with Mechanized Syntax Analysis”. They describe a mechanisable proposal for

higher order abstract syntax on a significant case study for π-calculus, an important

distributed process calculus.

Zhaohui Luo presents in “PAL+: a lambda-free logical framework” a proposal

for a weak framework in the spirit of de Bruijn’s PAL, the root formalism of the

Automath family. In PAL one may define combinators, but there is no general

λ-calculus operator like in the richer Automath languages. Luo gives a full meta-

theoretic analysis of PAL+, and he concludes that it provides an attractive alternative

to stronger logical frameworks.

Michael Levin and Benjamin Pierce present “TinkerType: A Language for Playing

with Formal Systems”. In TinkerType, a formal system is presented by the interaction

of clauses with features. This contribution presents the concepts of TinkerType,

its implementation, and give an extensive presentation of axiomatisations in this

framework of various type theories presented in the literature, with a number of

features such as subtypes and computation rules.

Daria Walukiewicz-Chrzaszcz presents in “Termination of rewriting in the Cal-

culus of Constructions” an extension of the Calculus of Constructions with rewrite

rules, preserving the termination of computations in the presence of rewriting steps.

It is a remarkable application to type theory of sophisticated concepts from term

rewriting theory, which opens the possibility of general computation within a proof

system.

These five papers are representative of recent trends in logical frameworks re-

search, showing that this paradigm is still at the center of important developments.

https://doi.org/10.1017/S0956796802004549 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004549

