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Turbulence driven by gyrokinetic instabilities is largely responsible for transport in mag-
netic fusion devices. To estimate this turbulent transport, integrated modelling codes
often use mixing length estimates in conjunction with reduced models of the linearized
gyrokinetic equation. One common method of formulating and solving the linearized
gyrokinetic eigenvalue problem equation uses a Ritz variational principle, particularly in
the local collisionless limit. However, the variational principle as typically stated in the
literature is mathematically incorrect. In this work, we derive a mathematically correct
form of the variational principle that applies to local linear collisionless gyrokinetics in
general geometry with electromagnetic effects. We also explicitly derive a weak form of
the gyrokinetic field equations suitable for numerical applications.

Key words: fusion plasma, plasma instabilities

1. Introduction

Gyrokinetic modelling is the most advanced and first principles-based method for
predicting turbulent transport driven by microinstabilities in magnetic fusion devices
(Brizard & Hahm 2007; Cary & Brizard 2009). Although nonlinear simulations can
accurately predict particle, momentum and heat transport (Bourdelle et al. 2015),
they are often too computationally expensive for integrated modelling purposes. The
cost of any given nonlinear simulation is typically of the order of 104 CPU hours
to 105 CPU hours at a single radial point (Citrin et al. 2017). Integrated modelling
frameworks, meanwhile, require thousands of flux calculations for every second
of a plasma discharge in a large magnetic confinement fusion device. Therefore,
it is computationally advantageous to approximate the turbulent transport from
local linear simulations and make use of a mixing length estimate (Casati et al.
2009; Bourdelle 2015; Staebler et al. 2024). Quasilinear models, such as TGLF
and QuaLiKiz, heavily approximate the linearized gyrokinetic equations to further
reduce the computational cost of any given simulation (Waltz et al. 1997; Staebler,
Kinsey & Waltz 2007; Citrin et al. 2017; Stephens et al. 2021). These models
typically formulate the gyrokinetic equations as an eigenvalue problem instead of
an initial value problem. This approach allows for systematic reductions of the
resulting equations. Moreover, eigenvalue codes are often necessary since accurate
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quasilinear models can require the solutions of multiple eigenmodes rather than just
that of the most dominant instability (Pueschel et al. 2016). In contrast, initial value
codes can only obtain the dominant instability.

One popular way of formulating the gyrokinetic eigenvalue problem is with the use
of a Ritz variational principle, which shares some similarities with the action princi-
ple. In previous work, the variational principle has also been used to analyse other
modes in plasma physics, such as drift-tearing modes and drift waves (Hazeltine &
Ross 1978; Ross & Mahajan 1978; Mahajan et al. 1979). Some example applications
of this principle to gyrokinetics can be found in Garbet et al. (1990), Bourdelle et al.
(2002), Citrin et al. (2017), Hamed et al. (2019), Kotschenreuther et al. (2024) and
Morren et al. (2024). The idea is as follows: suppose we have an eigenvalue prob-
lem of the form L(ω)χ = 0, where ω=ωr + iγ is a complex eigenvalue where ωr

and γ are real, L is an integrodifferential operator and χ is a complex-valued field
that represents the eigenmode. One then left-multiplies by χ ∗ and integrates over
the entire domain with a suitable weighting function to obtain a weak form of the
problem. For gyrokinetics, one usually solves for the distribution function in terms
of the perturbed electromagnetic potentials and fields and then substitutes it into the
gyrokinetic field equations. In practice, χ is either guessed from other methods or
taken from a gyrokinetic simulation, though in principle one can solve for χ self-
consistently with the use of trial functions. The mode is considered unstable if the
growth rate γ is positive; otherwise it is considered stable.

Unfortunately, for the gyrokinetic field equations, the above method is mathemat-
ically incorrect. Although the above specific formulation of the principle was likely
taken either from Ritz methods in quantum mechanics or the action principle in
field theory, a closer examination of nonlinear eigenvalue problems reveals that it is
simply incorrect in gyrokinetics. The fatal flaw is that the gyrokinetic field equations
are a nonlinear eigenvalue problem (Voss 2013), while the above method was formu-
lated for linear Hermitian eigenvalue problems. The gyrokinetic field equations are
not linear in the eigenvalue ω due to the Landau resonance. In addition, gyrokinetic
field equations are not Hermitian because one needs to analytically continue the inte-
gral equations with the use of a Landau contour for damped eigenmodes, i.e. modes
where the eigenvalues have negative imaginary part. (Note that in nonlinear eigen-
value problems, we take ‘Hermitian’ to mean that L̂(ω)† = L̂(ω∗), where † denotes
the conjugate transpose and the asterisk denotes the scalar complex conjugate.)

This work has two key goals. The first is to derive and state a mathematically rigor-
ous variational principle for the collisionless local linear gyrokinetic field equations.
In general, the rigorous principle for nonlinear non-Hermitian eigenvalue matrix
problems requires the use of a left-eigenfunction that solves the adjoint problem
(Voss 2013). Fortunately, although the gyrokinetic field equations are not Hermitian,
they are indeed complex symmetric, meaning that L̂(ω)= L̂T (ω), where T denotes
the ordinary transpose. Remarkably, we can then rescue the above incorrect vari-
ational principle with a slight modification. Instead of left-multiplying by χ ∗, one
merely needs to left-multiply by χ without taking the complex conjugate and then
proceed as usual. We present a heuristic proof of this complex symmetry for the
collisionless gyrokinetic field equations, as well as a brief overview of nonlinear
eigenvalue problems in § 2.

The second goal is to derive the specific equations to be used in the variational
principle. We rigorously prove the complex symmetry by inspection and compactly
represent a weak form for the linearized field equations in general geometry and with
electromagnetic effects in the local collisionless limit. Not only is the variational
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principle now formulated correctly, but it also allows for generic trial functions
with linear and nonlinear undetermined coefficients. One can then use a finite ele-
ment method with adaptive mesh refinement, for example, to solve the gyrokinetic
field equations, although we do not do so here. In deriving the equations, we also
obtain physical insight into the system via the connection between the gyrokinetic
field equations and the use of action angle variables in guiding centre orbit theory
(Stephens, Garbet & Jenko 2020). A weak form of the field equations is rigor-
ously derived in § 4, and we also present a brief analysis of guiding centre orbits in
Appendix A with special attention paid to tokamak and stellarator geometries. Also,
although we include the parallel perturbed magnetic field δB‖ in § 2, for the sake of
brevity we do not include it in § 4. Extending the derived equations to include δB‖ is
straightforward.

We note that the general methods and integral transforms used to derive the equa-
tions are not new. Many of the techniques can be found in Rewoldt, Tang & Chance
(1982) and Garbet et al. (1990). We consider our work an extension of this previous
work. First, we have generalized their approach to account for (periodized) stellara-
tor geometry, when their methods were originally designed for tokamak geometry.
Second, the integral transforms in Rewoldt et al. (1982) have been modified such
that the dispersion relation resembles the form presented in Garbet et al. (1990).
In particular, the drift resonance for passing particles is now present in the res-
onant denominator with a continuum integral, which should be more convenient
for numerical applications. Last, while both Rewoldt et al. (1982) and Garbet et al.
(1990) only allowed for the variation of linear coefficients, our formulation allows for
both linear and nonlinear varying parameters with any suitable set of trial functions.

After we discuss the results in § 5, we also present a similar analysis for the lin-
earized gyrokinetic equation proper in Appendix B using the perturbed distribution
function. The adjoint state method has been recently applied to the linearized gyroki-
netic equations (Acton et al. 2024), where an adjoint equation is derived and a
corresponding adjoint solution is obtained via simulation. We briefly derive a con-
nection between the right eigenfunction and the left eigenfunction for the linearized
gyrokinetic equation; this may be useful when applying adjoint state methods or if
one wishes to use the distribution function to formulate a variational principle.

2. The variational principle for nonlinear eigenvalue problems
2.1. Linear Hermitian eigenvalue problems

To begin, we review the variational principle for linear Hermitian eigenvalue prob-
lems. Since this method is often used in introductory quantum mechanics textbooks,
we shall use it to build intuition (Sakurai & Napolitano 2011; Griffiths & Schroeter
2018).

Let H be an n × n Hermitian matrix (where H † = H ). The linear Hermitian
eigenvalue problem is to find λ such that

H x = λx, (2.1)

has a non-trivial solution x. This problem is linear because it depends only linearly
on λ. The adjoint problem is

y† H = λ y†. (2.2)

A non-trivial solution x̂ of (2.1) is a right eigenvector of H , while a non-trivial
solution ŷ of (2.2) is a left eigenvector of H . We call a solution pair (λ̂, x̂) of (2.1)
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an eigenpair. Meanwhile, if ŷ and x̂ share an eigenvalue λ̂, then ( ŷ, λ̂, x̂) is an
eigentriplet. Because H is Hermitian, we know that the eigenvalues are real and
that the left and right eigenvectors corresponding to the same eigenvalue coincide.
Therefore, it suffices only to consider (2.1).

We now describe the variational method for Hermitian linear eigenvalue problems.
First, we define the Rayleigh–Ritz quotient

R(x)= x† H x
x†x

. (2.3)

The variational theorem tells us that

λmin � R(x)� λmax. (2.4)

Moreover, if (λ̂, x̂) is an eigenpair, then R(x) is stationary at x = x̂.
The variational principle is commonly used in quantum mechanics, where the vari-

ational principle can be extended for infinite-dimensional systems. Assume we are
given a one-dimensional Hamiltonian operator Ĥ and complex-valued trial function
ψ(x; α) that is a function of position x and parameterized by complex numbers α.
We can then estimate the ground state by minimizing

R(α)=
∫∞

−∞ dxψ(x; α)∗ Ĥψ(x; α)∫∞
−∞ dxψ(x; α)∗ψ(x; α) . (2.5)

In this case, if we find a solution α̂ such that

∂R

∂α
= 0, (2.6)

and such that R(α) is minimized, then the estimates for the ground state
eigenfunction ψ0(x) and eigenvalue λ0 are

ψ0(x)≈ψ(x, α̂), (2.7)

λ0(x)≈ R(α̂). (2.8)

Importantly, excited states will also satisfy ∂αR = 0. Therefore, additional eigen-
values and eigenvectors can be obtained by finding other values of α that locally
extremize R. Recalling that α is in general a tuple of complex numbers, one rudi-
mentary way of doing this would be to expand the wavefunction in an orthonormal
basis,

ψ(x; α)=
N∑

n=1

αnφn(x), (2.9)

∫ ∞

−∞
dxφm(x)

∗φn(x)= δmn, (2.10)

where δ is the Kronecker delta. Then, assuming the Hamiltonian is diagonalizable
in this basis, one can obtain n eigenvalues and eigenfunctions by solving ∂αR = 0.
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2.2. Nonlinear eigenvalue problems
We now extend the discussion to nonlinear eigenvalue problems. A more thorough

introduction to the subject can be found in Voss (2013). Let T (λ) be an analytic
n × n matrix function that depends on the complex parameter λ (in general, nonlin-
early). The nonlinear eigenvalue problem is to find a non-trivial eigenpair (λ̂, x̂) that
solves the equation

T (λ)x = 0. (2.11)

Likewise, the adjoint problem is given by

y†T (λ)= 0. (2.12)

We note that the linear Hermitian eigenvalue problem is simply a special case of
the nonlinear eigenvalue problem with T (λ)= H − λI . However, nonlinear eigen-
value problems have several peculiar properties in comparison with linear eigenvalue
problems. In particular:

(i) Eigenvectors corresponding to distinct eigenvalues are not necessarily linearly
independent (they are in linear eigenvalue problems);

(ii) Left and right eigenvectors are not necessarily orthogonal to one another (they
are in linear eigenvalue problems);

(iii) Even in finite dimensions, there may exist an infinite number of distinct
eigenvalues (there exist only a finite number of distinct eigenvalues in
finite-dimensional linear eigenvalue problems).

Moreover, a variational characterization of the nonlinear eigenvalue problem is
more complicated than that of the linear Hermitian problem. Because the eigen-
values are in general complex, a min–max characterization may not exist. We
can, however, still construct a variational principle. Consider the Rayleigh quotient
defined by

R( y, λ, x)= λ− y†T (λ)x
y†T ′(λ)x

, (2.13)

where T ′(λ) is the derivative of T (λ) with respect to λ. If ( ŷ, λ̂, x̂) is an eigentriplet
and ŷ†T ′(λ)x̂ �= 0, then R is stationary at ( ŷ, λ̂, x̂).

Unlike the linear Hermitian eigenvalue problem, the nonlinear eigenvalue problem
uses a Rayleigh quotient that involves both the left and the right eigenvector. This is
because, in general, the left and right eigenvectors no longer coincide. Fortunately,
a simplification is possible for specific matrices. First, we say T (λ) is complex
symmetric if

T (λ)= T (λ)T (2.14)

for every λ in our domain of interest. It then follows that if (λ̂, x̂) is an eigenpair,
then ( ˆ̄x, λ̂, x̂) is an eigentriplet, where x̄ denotes the complex conjugate of x without
taking the transpose. In this case, we can simplify the Rayleigh quotient to

R(λ, x)= λ− xT T (λ)x
xT T ′(λ)x

. (2.15)

Unlike the Hermitian linear problem, we now consider only the transpose of x
and not the conjugate transpose. We are therefore making use of a null product
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since xT x = 0 has non-trivial solutions. We note that this is commonly used in
non-Hermitian quantum mechanics, where it is called the c-product (Moiseyev 2011).

It is important to note that although have formulated a variational principle for
finite-dimensional matrix problems, the gyrokinetic equation is a partial differential
equation and thus infinite-dimensional. Variational characterizations and min–max
theorems of the real eigenvalues of the nonlinear eigenvalue problem for self-adjoint
operators have been rigorously proven in the infinite-dimensional setting (Hadeler
1968; Voss, Werner & Hadeler 1982). However, the present authors are unaware of
a rigorous mathematical proof that the variational principle holds for more general
infinite-dimensional operators. After discretization, though, the nonlinear eigenvalue
problem will be rendered finite-dimensional and the variational principle will then
hold. We therefore extend the principle and the definition of the Rayleigh quotient
to the infinite-dimensional problem without proof.

To treat infinite-dimensional problems on the real line, we first define an inner
product. Given functions f (x) and g(x), we define the inner product 〈g, f 〉 as

〈g, f 〉 =
∫ ∞

−∞
dxw(x)g(x)∗ f (x), (2.16)

where w(x) is a positive definite weighting function. We then say that the operator
T̂ (λ) is complex symmetric if〈

g, T̂ (λ) f
〉= 〈

f ∗, T̂ (λ)g∗〉 (2.17)

for all complex λ in our domain of interest. Rather than computing the full Rayleigh
quotient, the variational principle can be stated more simply. Let ψ(x; α) be a
complex-valued function parameterized by complex numbers α. We define the
functional p as

p(λ, α)= 〈
ψ∗, T̂ (λ)ψ

〉= ∫ ∞

−∞
dxw(x)ψ(x; α)T̂ (λ)ψ(x; α). (2.18)

Note the absence of an explicit complex conjugate inside the integral. We can
obtain estimate right eigenfunctions ψ , left eigenfunctions ψ∗ and eigenvalues λ by
determining values of α and λ that simultaneously satisfy the following equations:

p = 0, (2.19)

∂p

∂α
= 0, (2.20)

∂p

∂λ
�= 0. (2.21)

Multiple eigenmodes can be obtained by finding multiple value of α and λ that satisfy
the above equations. These are the relevant general equations to be solved. We now
seek to prove that the gyrokinetic field equations are indeed complex symmetric.

3. Complex symmetry of the gyrokinetic field equations

When writing down the gyrokinetic equations, we work in the ballooning repre-
sentation where the perturbed fields (δφ, δA‖, δB‖) are functions of the distance l
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along the field line. The fields correspond to the electrostatic potential, the parallel
vector potential and the parallel magnetic field, respectively. The field equations can
be obtained by substituting the perturbed distribution function from the linearized
gyrokinetic equation into the quasineutrality equation and Ampere’s law. We shall
do this explicitly in § 4, but for now, we simply write the result

∑
s

Z 2
s e2n0s

T0s
δφ −

∫
d3v

Z 2
s e2 F0s

T0s
J0s

ω− nω∗s

ω− v‖k‖ − nωds

×
(

J0sδφ − J0sv‖δA‖ + 2J1s

k⊥ρs

μ

Zse
δB‖

)
= 0, (3.1)

k2
⊥
μ0
δA‖ −

∑
s

∫
d3v

Z 2
s e2 F0s

T0s
v‖ J0s

ω− nω∗s

ω− v‖k‖ − nωds

×
(

J0sδφ − J0sv‖δA‖ + 2J1s

k⊥ρs

μ

Zse
δB‖

)
= 0, (3.2)

− δB‖
μ0

−
∑

s

∫
d3v

ZseF0s

T0s

2J1s

k⊥ρs
μ

ω− nω∗s

ω− v‖k‖ − nωds

×
(

J0sδφ − J0sv‖δA‖ + 2J1s

k⊥ρs

μ

Zse
δB‖

)
= 0. (3.3)

All species-specific quantities are labelled with the subscript s. The background quan-
tities are the density n0, the temperature T0, the Maxwellian F and the background
magnetic field B. The constants Z and m represent the charge number and mass of
each species, where e is the elementary charge. Next, v‖ and μ= mv2

⊥/2B are the
velocity parallel to B and the magnetic moment, respectively, where v⊥ is the speed
perpendicular to the magnetic field. The frequencies present are the eigenvalue ω,
the diamagnetic drift frequency ω∗ and the drift frequency ωd ; meanwhile, n is the
toroidal mode number. The wavenumber has been separated into a perpendicular
part k⊥ and a parallel part k‖. The first is simply a function of l in ballooning space,
whereas the second is a differential operator. The Bessel functions J0 and J1 rep-
resent the effect of gyroaveraging and are evaluated at k⊥ρ, where ρ = mv⊥/ZeB
is the gyroradius. Lastly, μ0 is the magnetic constant. It is to be understood that
the inverse of a differential operator is an integral operator; this operator is written
explicitly in § 4.

To simplify notation, represent the three fields with the normalized column vector
χ = (eδφ/Tr , δA‖/ρr Br , δB‖/Br). The fields are subject to the boundary condition
that χ → 0 as |l| → ∞. Here, nr , Tr , ρr , Br are arbitrary reference density, tem-
perature, gyroradius and magnetic field, respectively. It is also useful to define a
reference sound speed cr = √

mr/Tr and plasma beta βr = 2μ0nr Tr/B2
r , where mr is

a reference mass. We define our inner product with the field line integral,

〈
χ 2, χ 1

〉= ∫ ∞

−∞

dl

B

(
e2

T 2
r

δφ∗
2δφ1 + 1

ρ2
r B2

r

δA∗
‖2δA‖1 + 1

B2
r

δB∗
‖2δB‖1

)
. (3.4)

The field equations can then be expressed in a more convenient matrix form,

L̂χ = 0, (3.5)
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where

L̂ =
⎛
⎜⎝

L̂φφ L̂φA L̂φB

L̂ Aφ L̂ AA L̂ AB

L̂ Bφ L̂ B A L̂ B B

⎞
⎟⎠ (3.6)

and

L̂φφ =
∑

s

Z 2
s n0s Tr

nr T0s
−
∫

d3v
Z 2

s F0s Tr

nr T0s
J0s

ω− nω∗s

ω− v‖k‖ − nωds
J0s, (3.7)

L̂φA =
∑

s

∫
d3v

Z 2
s F0s Tr

nr T0s
J0s

ω− nω∗s

ω− v‖k‖ − nωds
J0s
v‖
cr
, (3.8)

L̂φB = −
∑

s

∫
d3v

Zs F0s Tr

nr T0s
J0s

ω− nω∗s

ω− v‖k‖ − nωds

2J1s

k⊥ρs

μBr

Tr
, (3.9)

L̂ Aφ = −
∑

s

∫
d3v

Z 2
s F0s Tr

nr T0s

v‖
cr

J0s
ω− nω∗s

ω− v‖k‖ − nωds
J0s, (3.10)

L̂ AA = 2k2
⊥ρ

2
r

βr
+
∑

s

∫
d3v

Z 2
s F0s Tr

nr T0s

v‖
cr

J0s
ω− nω∗s

ω− v‖k‖ − nωds
J0s
v‖
cr
, (3.11)

L̂ AB = −
∑

s

∫
d3v

Zs F0s Tr

nr T0s

v‖
cr

J0s
ω− nω∗s

ω− v‖k‖ − nωds

2J1s

k⊥ρs

μBr

Tr
, (3.12)

L̂ Bφ = −
∑

s

∫
d3v

Zs F0s Tr

nr T0s

2J1s

k⊥ρs

μBr

Tr

ω− nω∗s

ω− v‖k‖ − nωds
J0s, (3.13)

L̂ B A =
∑

s

∫
d3v

Zs F0s Tr

nr T0s

2J1s

k⊥ρs

μBr

Tr

ω− nω∗s

ω− v‖k‖ − nωds

v‖
cr

J0s, (3.14)

L̂ B B = − 2
βr

−
∑

s

∫
d3v

F0s Tr

nr T0s

2J1s

k⊥ρs

μBr

Tr

ω− nω∗s

ω− v‖k‖ − nωds

2J1s

k⊥ρs

μBr

Tr
. (3.15)

This block matrix form will be convenient for proving the complex symmetry of the
gyrokinetic field equations.

To prove complex symmetry, we must first examine the operator v‖k‖. The oper-
ator k‖ is defined such the energy and magnetic moment are held constant when
taking the partial derivative with respect to the field line variable. Therefore, v‖ and
k‖ do not commute, so the whole operator must be examined together. However,
the operator v‖k‖ is effectively antisymmetric when the integrals over velocity space
and along the field line are taken into account. To see this, first take σ to represent
the sign of v‖ and define the energy ε as

ε= 1
2

mv2
‖ +μB. (3.16)

Recall that

d3v =
∑
σ=±1

2πB

m2
s

∣∣v‖
∣∣dεdμ. (3.17)
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Let f and g be arbitrary functions of (l, ε, μ, σ ) that decay away at infinity. Then,

∑
σ=±1

∫
dl

B

2πB

m2
s

∣∣v‖
∣∣dεdμg∗v‖k‖ f =

∑
σ=±1

∫
dl

2π
m2

s

dεdμg∗σk‖ f

=
∑
σ=±1

∫
dl

2π
m2

s

dεdμ f (−σk‖)g∗

=
∑
σ=±1

∫
dl

B

2πB

m2
s

∣∣v‖
∣∣dεdμ f (−v‖k‖)g∗, (3.18)

where we integrated by parts and set the boundary terms to zero. This proves that
v‖k‖ is antisymmetric. Note that one can bring v‖k‖ under the complex conjugate to
show that it is also Hermitian, as expected.

To show that L̂ is complex symmetric under our inner product, we can take
advantage of the block matrix form,

L̂T =

⎛
⎜⎜⎝

L̂T
φφ L̂T

Aφ L̂T
Bφ

L̂T
φA L̂T

AA L̂T
B A

L̂T
φB L̂T

AB L̂T
B B

⎞
⎟⎟⎠ . (3.19)

We can check this term by term as follows. First, we note that when taking the
transpose, we must reverse the order of all operators,(∫

d3vABC

)T

=
∫

d3vCT BT AT . (3.20)

We also note that any function that is independent l commutes with k‖ and all other
functions independent of l. Next, the transpose of the resonant denominator can
be computed by simply substituting v‖k‖ → −v‖k‖, since this operator is complex
antisymmetric as shown above in (3.19). Lastly, since we are integrating over all of
velocity space, we can also simply substitute v‖ → −v‖ everywhere and the value of
the integrals will not change.

We demonstrate this explicitly with two examples. For L̂φφ , we have

L̂T
φφ =

(∑
s

Z 2
s n0s Tr

nr T0s
−
∫

d3v
Z 2

s F0s Tr

nr T0s
J0s

ω− nω∗s

ω− v‖k‖ − nωds
J0s

)T

=
∑

s

Z 2
s n0s Tr

nr T0s
−
∫

d3v
Z 2

s F0s Tr

nr T0s

(
J0s

ω− nω∗s

ω− v‖k‖ − nωds
J0s

)T

=
∑

s

Z 2
s n0s Tr

nr T0s
−
∫

d3v
Z 2

s F0s Tr

nr T0s
J0s

ω− nω∗s

ω+ v‖k‖ − nωds
J0s

=
∑

s

Z 2
s n0s Tr

nr T0s
−
∫

d3v
Z 2

s F0s Tr

nr T0s
J0s

ω− nω∗s

ω− v‖k‖ − nωds
J0s

= L̂φφ. (3.21)
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For L̂φA, we have

L̂T
φA =

(∑
s

∫
d3v

Z 2
s F0s Tr

nr T0s
J0s

ω− nω∗s

ω− v‖k‖ − nωds
J0s
v‖
cr

)T

=
∑

s

∫
d3v

Z 2
s F0s Tr

nr T0s

(
J0s

ω− nω∗s

ω− v‖k‖ − nωds
J0s
v‖
cr

)T

=
∑

s

∫
d3v

Z 2
s F0s Tr

nr T0s

v‖
cr

J0s
ω− nω∗s

ω+ v‖k‖ − nωds
J0s

= −
∑

s

∫
d3v

Z 2
s F0s Tr

nr T0s

v‖
cr

J0s
ω− nω∗s

ω− v‖k‖ − nωds
J0s

= L̂ Aφ. (3.22)

It should now be clear by inspection that L̂ is indeed complex symmetric by simply
reversing the order of all functions and operators of l and taking v‖ → −v‖.

We now state the variational principle. Let χ be parameterized by complex
numbers α. We define the functional p(ω, α) as

p(ω, α)=
∫ ∞

−∞

dl

B
χ T L̂(ω)χ . (3.23)

We then seek to solve the following equations:

p = 0, (3.24)

∂p

∂α
= 0, (3.25)

∂p

∂ω
�= 0. (3.26)

Doing so will give us the right eigenfunctions χ , the left eigenfunctions χ̄ and the
eigenvalue ω (here, the overbar represents complex conjugation without taking the
transpose).

Note that the only assumptions we have made are (i) the background is
Maxwellian, (ii) there is no rotation or background electric field E, (iii) there are no
collisions and (iv) the ballooning representation correctly describes the local insta-
bility. Impurities, arbitrary geometry and electromagnetic effects are included in
the above general formulation. Including a non-trivial collision operator (e.g. pitch-
angle scattering) would require expanding the distribution function in terms of basis
functions and coupling them together (Hamed et al. 2018). On the other hand,
the inclusion of E × B shear through the frequency γE is problematic. The cor-
rect analysis of the problem requires time-dependent k⊥ or magnetic field strengths
(depending on the specific representation used), so it is no longer a simple eigenvalue
problem (Maeyama et al. 2025). Even in the small γE limit where one just wants an
‘instantaneous’ growth rate, the formulation would still break down because the
extra differential operators proportional to γE break the complex symmetry of the
gyrokinetic field equations.
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Note that we have not explicitly written down the gyrokinetic field equations, but
rather neatly represented them to prove complex symmetry. Actually writing down
the solutions requires some background knowledge in guiding centre dynamics and
a detailed analysis of bounce-transit orbits.

4. A weak form of the gyrokinetic field equations
4.1. Preliminaries

All the guiding centre orbit analysis necessary to write down explicit solutions to
the gyrokinetic equation is presented in Appendix A. The methods used here are
inspired by Tang, Connor & Hastie (1980), Rewoldt et al. (1982), Garbet et al.
(1990) and Chandran & Schekochihin (2024). The background Maxwellian is

F0s = n0s(ψ)

π 3/2v3
Ts

exp(−ε/T0s(ψ)), (4.1)

where vTs = √
2T0s/ms . We also work in non-orthogonal Clebsch coordinates where

the magnetic field B can be written as

B = ∇α× ∇ψ, (4.2)

where α is a field line label and ψ is the poloidal flux normalized by 2π .
We also use a field line following coordinate θ such that all physical quan-
tities obey f (ψ, θ + 2π, α)= f (ψ, θ, α) and B · ∇θ = J −1

ψ > 0, where Jψ is the
Jacobian of the coordinate system. All perturbed fields are subject to the ballooning
transformation,

u(ψ, θ, ϕ)=
∑

p

û(ψ, θ + 2πp)einS(ψ,θ+2πp,ϕ), (4.3)

where û is the slowly varying envelope, S is the eikonal such that B · ∇S = 0 and n
is the toroidal mode number. This guarantees that u is periodic in θ . We will work
exclusively in the ballooning representation, so we shall drop the hat for convenience.
By convention, S is defined such that

∇S = ∇α + θ0q
′∇ψ, (4.4)

where θ0 is the ballooning angle and q ′ is the derivative of the saftey factor q with
respect to ψ . We define the perpendicular wavevector as

k⊥ = n∇S. (4.5)

We also define the pitch angle parameter λ as

λ= μ

ε
. (4.6)

Using the coordinates (θ, ε, λ), which is equivalent to using (θ, ε, μ), the linearized
gyrokinetic equation can then be written as

v‖
Jψ B

∂hs

∂θ
− i (ω− nωds) hs = −i

Zse

T0s
F0s (ω−ω∗s) J0(k⊥ρs)

(
φ − v‖ A‖

)
, (4.7)
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where

Jψ = (∇θ · (∇α× ∇ψ))−1, (4.8)

nωds = k⊥ · vds, (4.9)

nω∗s = nTs

Zse

1
n0s

∂n0s

∂ψ

(
1 + ηs

(
ε

T0s
− 3

2

))
, (4.10)

ηs =
(

1
T0s

∂T0s

∂ψ

)/(
1

n0s

∂n0s

∂ψ

)
, (4.11)

ρs = msv⊥
eZs B

= ms

eZs B

√
2ε
ms

√
λB, (4.12)

where the guiding centre velocity vds is given by

vds = ms

ZseB

v2
‖ +μB/ms

B2
B × ∇B + ms

ZseB

μ0v
2
‖

B3
B × ∇ p, (4.13)

where p is the total plasma pressure. For convenience, we have dropped δ from
any perturbed fields. Note that in this coordinate system, the parallel velocity is a
function defined by

v‖ =
√

2ε
m

√
1 − λB. (4.14)

4.2. Passing particles

4.2.1. Passing solution of the gyrokinetic equation
For the passing solution, we use the boundary condition that hs → 0 as |θ | → ∞.
We write the solution assuming Im(ω) > 0 (otherwise we need to analytically con-
tinue the solution) and assuming Jψ > 0. We also need to consider both signs of v‖
separately. Defining θ− = θ − θ ′, the solution is

hs,p,± = ∓i
ZseF0s

T0s
(ω− nω∗s)

∫ θ

∓∞
dθ ′ Jψ B J0s

(
φ

|v‖| ∓ A‖

)
e±i I θ

θ ′ , (4.15)

where I will be defined shortly. Then,

hs,p,+ + hs,p,− = −i
ZseF0s

T0s
(ω− nω∗s)

∫ ∞

−∞
dθ ′ Jψ B J0s

(
φ

|v‖| − sgn(θ−)A‖

)
eisgn(θ−)I θθ ′ .

(4.16)
Meanwhile,

hs,p,+ − hs,p,− = −i
ZseF0s

T0s
(ω− nω∗s)

∫ ∞

−∞
dθ ′ Jψ B J0s

(
sgn(θ−)

φ

|v‖| − A‖

)
eisgn(θ−)I θθ ′ .

(4.17)
The quantity I is an integral defined as

I b
a =

∫ b

a

dθ
Jψ B

|v‖| (ω− nωds) . (4.18)
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4.2.2. Quasineutrality
For quasineutrality, we will need to integrate

Lφ,s,p = Zse
∫ ∞

−∞
dθ Jψ

∫
d3vφ J0s

(
hs,p,+ + hs,p,−

)
, (4.19)

where

d3v = 2πdεdλ
B

m2
s

ε

|v‖| (4.20)

and the integration limits for passing particles are

0� λ� 1
Bmax

, (4.21)

0� ε�∞. (4.22)

For notational convenience, we have defined d3v such that we only integrate over
half of the velocity space without an explicit sum over the sign of the parallel velocity.
We will sum over both signs of the parallel velocity separately. It is useful to perform
a change of variables using the action angle αt ,

dθ Jψ B

|v‖| = dαt

�t
, (4.23)

where �t is the transit frequency. We also note the following:

I θ0 =
(
ω− n�d

�t

)
αt − n�ds(αt), (4.24)

where �d is the transit averaged drift frequency and �d contains the drift deviations,
defined in (A.57) and (A.60), respectively. We then define the following Fourier
transform pairs:

φ+
s (k)=

∫ ∞

−∞

dαt

2π
J0sφe−ikαt +in�ds (αt ), (4.25)

φ−
s (k)=

∫ ∞

−∞

dαt

2π
J0sφeikαt −in�ds (αt ), (4.26)

A+
s (k)=

∫ ∞

−∞

dαt

2π
J0s|v‖|A‖e−ikαt +in�ds (αt ), (4.27)

A−
s (k)= −

∫ ∞

−∞

dαt

2π
J0s|v‖|A‖eikαt −in�ds (αt ), (4.28)

J0sφein�ds (αt ) =
∫ ∞

−∞
dkeikαtφ+

s (k), (4.29)

J0sφe−in�ds (αt ) =
∫ ∞

−∞
dke−ikαtφ−

s (k), (4.30)

J0s|v‖|A‖ein�ds (αt ) =
∫ ∞

−∞
dkeikαt A+

s (k), (4.31)

J0s|v‖|A‖e−in�ds (αt ) = −
∫ ∞

−∞
dke−ikαt A+

s (k). (4.32)
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We then obtain the following identities:∫ ∞

−∞
dθ

Jψ B

|v‖|
∫ ∞

−∞
dθ ′ J ′

ψ B ′

|v‖|′ J0sφ J ′
0sφ

′eisgn(θ−)I θθ ′

= 4π i

�ts

∫ ∞

−∞
dk

φ+
s (k)φ

−
s (k)

ω− k�ts − n�ds

(4.33)

and ∫ ∞

−∞
dθ

Jψ B

|v‖|
∫ ∞

−∞
dθ ′ J ′

ψ B ′sgn(θ−)J0sφ J ′
0s A′

‖e
isgn(θ−)I θθ ′

= 2π i

�ts

∫ ∞

−∞
dk

A+
s (k)φ

−
s (k)+ A−

s (k)φ
+
s (k)

ω− k�ts − n�ds
.

(4.34)

Substituting this into the passing solution, we find

Lφ,p,s = 2π 2 Z 2
s e2

m2
s T0s

∫ ∞

0
dεεF0s(ω− nω∗s)

∫ 1/Bmax

0

dλ
�ts

∫ ∞

−∞
dk

2φ+
s φ

−
s − A+

s φ
−
s − A−

s φ
+
s

ω− k�ts − n�ds
.

(4.35)

This compactly takes into account both signs of the parallel velocity. As noted in
Garbet et al. (1990), this form is more numerically advantageous than the original
form. In the low ε limit, the exponentials in (4.14) are highly oscillatory due to the
term proportional to ω/|v‖|. We have moved this term into the Landau resonance.
Meanwhile, the remaining eikonals in the Fourier transform pairs are well behaved
as ε→ 0, since ωd/|v‖| ∝ √

ε.

4.2.3. Ampere’s law
For Ampere’s law, we will need to integrate

LA,p,s = Zse
∫ ∞

−∞
dθ Jψ

∫
d3vA‖|v‖|J0s

(
hs,p,+ − hs,p,−

)
. (4.36)

The steps are similar to that of quasineutrality, so we just write the final result,

LA,p,s = 2π 2 Z 2
s e2

m2
s T0s

∫ ∞

0
dεεF0s(ω− nω∗s)

∫ 1/Bmax

0

dλ
�ts

∫ ∞

−∞
dk

2A+
s A−

s − A+
s φ

−
s − A−

s φ
+
s

ω− k�ts − n�ds
.

(4.37)

4.3. Trapped particles

4.3.1. Trapped solution of the gyrokinetic equation
For the trapped solution, we instead need to use the boundary conditions

hs,tr,+(θ1)= hs,tr,−(θ1), (4.38)

hs,tr,+(θ2)= hs,tr,−(θ2), (4.39)
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where θ1 and θ2 are bounce points such that θ1 < θ < θ2. This leads to

hs,tr,+ + hs,tr,−

= 2ZseF0s

T0s

ω− nω∗s

sin
(
I θ2θ1
)
[ ∫ θ

θ1

dθ ′ Jψ B J0s

(
φ

|v‖| cos
(
I θ

′
θ1

)
cos

(
I θ2θ
)

+ i A‖ sin
(
I θ

′
θ1

)
cos

(
I θ2θ
))

+
∫ θ2

θ

dθ ′ Jψ B J0s

(
φ

|v‖| cos
(
I θθ1
)
cos

(
I θ2
θ ′
)− i A‖ cos

(
I θθ1
)
sin
(
I θ2
θ ′
)) ]

, (4.40)

and

hs,tr,+ − hs,tr,−

= 2ZseF0s

T0s

ω− nω∗s

sin
(
I θ2θ1
)
[ ∫ θ

θ1

dθ ′ Jψ B J0s

(
− φ

|v‖| cos
(
I θ

′
θ1

)
sin
(
I θ2θ
)

+ i A‖ sin
(
I θ

′
θ1

)
sin
(
I θ2θ
))

+
∫ θ2

θ

dθ ′ Jψ B J0s

(
φ

|v‖| sin
(
I θθ1
)
cos

(
I θ2
θ ′
)+ i A‖ sin

(
I θ2
θ ′
)
sin
(
I θ1θ
)) ]

. (4.41)

Note that we need to pick θ1, θ2 such that θ1 � θ � θ2.

4.3.2. Quasineutrality
Integrating over the trapped part of velocity space requires much more work than
for passing particles. We define

d3v = 2πdεdλ
B

m2
s

ε

|v‖| . (4.42)

The limits of integration for trapped particles, however, are

1
Bmax

� λ� 1
B(θ)

, (4.43)

0� ε�∞. (4.44)

Thus, the upper limit of the pitch angle parameter depends on the current position
along the field line. We can, however, use a trick to make the integration limits more
manageable. Let θmin � θ1 � θ2 � θmax, where θmin and θmax correspond to the extent
of the bounce well. Then,∫ θmax

θmin

dθ
∫ 1/B(θ)

1/Bmax

dλ=
∫ 1/Bmin

1/Bmax

dλ
∫ θ2

θ1

dθ. (4.45)
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We also note the following identity:∫ θ2

θ1

dθ
Jψ B

|v‖| J0sφ

∫ θ

θ1

dθ ′ J ′
ψ B ′

|v‖|′ J ′
0sφ

′ cos
(
I θ

′
θ1

)
cos

(
I θ2θ
)

+
∫ θ2

θ1

dθ
Jψ B

|v‖| J0sφ

∫ θ2

θ

dθ ′ J ′
ψ B ′

|v‖|′ J ′
0sφ

′ cos
(
I θθ1
)
cos

(
I θ2
θ ′
)

= π sin
(
I θ2θ1
)

�bs

∞∑
n2=−∞

(
φn2

s

)2
ω− n2�bs − n�ds

, (4.46)

where φn2
s is defined as

φn2
s = 〈J0sφ cos(nw̃ds − n2αb)〉b . (4.47)

Here, �d and w̃d are the bounce averaged drift frequency and drift deviations,
defined in (A.96)–(A.97). We are essentially computing the bounce harmonics of
the electrostatic potential modulated by finite Larmor radius effects via the Bessel
function and also finite banana width effects via w̃ds . Dropping the s subscript
momentarily, one can prove this by writing

J0φ cos(nw̃d)= φc
0 +

∞∑
n2=1

2φc
n2

cos(n2αb), (4.48)

J0φ sin(nw̃d)=
∞∑

n2=1

2φs
n2

sin(n2αb), (4.49)

as well as

φn2 = φc
n2

+ φs
n2
, (4.50)

φ−n2 = φc
n2

− φs
n2
, (4.51)

and computing the integrals manually. Meanwhile, we define a similar bounce
average for the electromagnetic piece,

An2
s = 〈

i J0sv‖ A‖ sin(nw̃ds − n2αb)
〉
b
. (4.52)

(Note the factor of i .) One can then write (again dropping the s subscript for clarity)

i J0|v‖|A‖ sin(nw̃d)= Ac
0 +

∞∑
n2=1

2Ac
n2

cos(n2αb), (4.53)

i J0|v‖|A‖ cos(nw̃d)=
∞∑

n2=1

2As
n2

sin(n2αb), (4.54)

as well as

An2 = Ac
n2

− As
n2
, (4.55)

A−n2 = Ac
n2

+ As
n2
. (4.56)
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This leads to the following identity:∫ θ2

θ1

dθ
Jψ B

|v‖| J0sφ

∫ θ

θ1

dθ ′ J ′
ψ B ′ J ′

0si A′
‖ sin

(
I θ

′
θ1

)
cos

(
I θ2θ
)

−
∫ θ2

θ1

dθ
Jψ B

|v‖| J0sφ

∫ θ2

θ

dθ ′ J ′
ψ B ′ J ′

0si A′
‖ cos

(
I θθ1
)
sin
(
I θ2
θ ′
)

= −π sin
(
I θ2θ1
)

�bs

∞∑
n2=−∞

φn2
s An2

s

ω− n2�bs − n�ds
. (4.57)

We can finally write down the trapped part of the integral we need to compute.
First, define

Lφ,tr,s = Zse
∫ ∞

−∞
dθ Jψ

∫
d3vφ J0s

(
hs,tr,+ + hs,p,−

)
. (4.58)

Then, we find

Lφ,tr,s =
∑

p

∑
n2

4π 2 Z 2
s e2

m2
s T0s

∫ ∞

0
dεεF0s(ω− nω∗s)

∫ 1/Bmin

1/Bmax

dλ
�bs

φn2
s (φ

n2
s − An2

s )

ω− n2�bs − n�ds
,

(4.59)

where the sum over p denotes a sum over all bounce wells along the field line. For
stellarator geometry, this includes trapped particles that traverse multiple bounce
wells before bouncing back. The sum over p for stellarators, then, is effectively a
sum over all possible pairs of local magnetic field strength minima and maxima that
lead to a trapped particle orbit. Note that we are also summing over all bounce
harmonics via n2. As in the passing case, the exponentials (4.39)–(4.40) are highly
oscillatory due to the term proportional to ω/|v‖|. We have moved this term into
the Landau resonance. Meanwhile, the remaining eikonals in the Fourier transform
pairs are well behaved as ε→ 0, since ωd/|v‖| ∝ √

ε.

4.3.3. Ampere’s law
The process for calculating

LA,tr,s = Zse
∫ ∞

−∞
dθ Jψ

∫
d3v|v‖|A‖ J0s

(
hs,tr,+ − hs,tr,−

)
(4.60)

is similar, so we quote the final result,

LA,tr,s =
∑

p

∑
n2

4π 2 Z 2
s e2

m2
s T0s

∫ ∞

0
dεεF0s(ω− nω∗s)

∫ 1/Bmin

1/Bmax

dλ
�bs

An2
s

(
An2

s − φn2
s

)
ω− n2�bs − n�ds

.

(4.61)

4.4. Full solution and weak form
The quasineutrality equation and parallel Ampere’s law read∑

s

n2
0s Z 2

s e2

T0s
φ −

∑
s

Zse
∫

d3v J0s(hs,+ + hs,−)= 0, (4.62)

k2
⊥
μ0

A‖ −
∑

s

Zse
∫

d3v J0s|v‖|(hs,+ − hs,−)= 0. (4.63)
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The proper variational principle is to define the integral

L=
∫ ∞

−∞
dθ Jψφ

(∑
s

n2
0s Z 2

s e2

T0s
φ −

∑
s

Zse
∫

d3v J0s(hs,+ + hs,−)

)

+
∫ ∞

−∞
dθ Jψ A‖

(
k2

⊥
μ0

A‖ −
∑

s

Zse
∫

d3v J0s|v‖|(hs,+ − hs,−)

)
.

(4.64)

We have already computed the resonant components. We define the non-resonant
pieces as

L0 =
∑

s

n2
0s Z 2

s e2

T0s

∫ ∞

−∞
dθ Jψφ

2 +
∫ ∞

−∞
dθ Jψ

k2
⊥
μ0

A2
‖. (4.65)

Then we simply write
L=L0 −

∑
s

(Lp,s +Ltr,s

)
, (4.66)

where

Lp,s =Lφ,p,s +LA,p,s

= 4π 2 Z 2
s e2

m2
s T0s

∫ ∞

0
dεεF0s

∫ 1/Bmax

0

dλ
�ts

∫ ∞

−∞
dk
(ω− nω∗s)

(
φ+

s − A+
s

) (
φ−

s − A−
s

)
ω− k�ts − n�ds

(4.67)

and

Ltr,s =Lφ,tr,s +LA,tr,s

=
∑

p

∑
n2

4π 2 Z 2
s e2

m2
s T0s

∫ ∞

0
dεεF0s

∫ 1/Bmin

1/Bmax

dλ
�bs

(ω− nω∗s)
(
φn2

s − An2
s

)2
ω− n2�bs − n�ds

.
(4.68)

In effect, we are just computing transit and bounce averages of the potentials along
the field line, taking into account finite Larmor radius effects and drift deviations.
The form for passing particles and trapped particles is essentially the same, except
that for trapped particles we discretely sum over all bounce harmonics and bounce
wells. In contrast, for passing particles we must compute a continuum integral in
Fourier space.

If we parameterize (φ, A‖) with tuples of complex numbers α, then the variational
principle is

L(ω, α)= 0, (4.69)

∂L
∂a
(ω, α)= 0. (4.70)

If we assume local analyticity of ω in terms of α, this essentially implies the following
stationary principle:

∂ω

∂α
= 0. (4.71)

One can see this and naively assume a min–max principle applies as in quan-
tum mechanics. For example, one could think that the growth rate γ might be
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maximized at the solution. However, we note that by the maximum modulus prin-
ciple, the appropriate solution will generally correspond to γ (α) being a saddle
point. Essentially, because the eigenvalues are complex and we have a non-Hermitian
system, we cannot guarantee a min–max principle for the growth rate.

Finally, we point out that we can extend the analysis to include δB‖ by considering
the parallel part of Ampere’s law and including the appropriate terms as seen in § 2.

5. Conclusions

In this work, we have corrected the variational principle for local linear colli-
sionless gyrokinetics. In doing so, we have also derived a rigorous weak form for
the field equations in general geometry and with electromagnetic effects with no
other approximations. While the methods in Rewoldt et al. (1982) and Garbet et al.
(1990) were originally designed for tokamak geometry, we have extended them to
account for (periodized) stellarator geometry. Moreover, we have modified the meth-
ods and integral transforms in the preceding works to produce more convenient
expressions for passing particles and also allow for the variation of nonlinear coef-
ficients for any set of suitable trial functions. For example, rather than setting a
constant Gaussian width as in Rewoldt et al. (1982), one can now directly vary the
width itself per the variational principle (as one often does in introductory quantum
mechanics).

The equations as written can be further reduced and modified with various approx-
imations, as done in QuaLiKiz (Stephens et al. 2021). Moreover, there exist two
obvious theoretical extensions. The first would be to include a non-trivial collision
operator, such as pitch angle scattering. Such a method would require that the dis-
tribution function be expanded in terms of basis functions, such as eigenfunctions of
the collision operator. One would then obtain coupled linear differential equations
for components of the distribution function. Then, one would either need to prove
complex symmetry of the resulting field equations or else derive another variational
principle. The second extension would be to relax the local assumption and examine
global eigenmodes with a finite radial width. It would be interesting to determine if
a similar variational principle exists for global eigenmodes.

The derived equations can also be used to develop codes to solve the eigenvalue
problem with fewer assumptions. For example, QuaLiKiz assumes a shifted circu-
lar geometry and does not include electromagnetic effects. A variational code that
included both electromagnetic effects and general geometry would prove advan-
tageous in simulating microinstabilities in stellarator geometries. Moreover, the
variational approach allows for a self-consistent determination of eigenvalues and
eigenfunctions without requiring a completely predetermined trial function.

Lastly, one could also develop codes that utilize state-of-the-art finite element
techniques to obtain fast but highly accurate eigenvalues and eigenmodes. A con-
ventional approach to solving the eigenvalue equation (such as in the gyrokinetic
code GENE (Jenko et al. 2000)) is to employ a fixed finite difference discretiza-
tion in phase space (including velocity space). In contrast, the above variational
approach discretizes velocity space via numerical integration, which generically can
be adaptive. Moreover, when discretizing the field line following coordinate via
a polynomial finite element method, one can adaptively refine the mesh with a
combination of h-refinement (subdividing the elements) and p-refinement (using
higher-order polynomials), called hp refinement (Szabó & Babuška 2021). Moreover,
since we only need to consider finite elements along a single dimension (the field
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line following coordinate), the number of refinement candidates would be relatively
modest.
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Appendix A. Guiding centre orbit analysis

A.1. Preliminaries
To write down an explicit solution to the gyrokinetic equation in variational form,

it is most convenient to take advantage of various integral transforms. These inte-
gral transforms require solving the guiding centre equations to zeroth and first
order. These ordinary differential equations can be solved ahead of time for a given
geometry with a numerical integrator, and their solutions define the integral trans-
forms used in § 4. Using the Clebsch coordinates defined in § 4, the guiding centre
equations of motion are then

dψ
dt

= vd · ∇ψ, (A.1)

dα
dt

= vd · ∇α, (A.2)

dθ
dt

= v‖ b̂ · ∇θ + vd · ∇θ, (A.3)

dv‖
dt

= −μ
m

b̂ · ∇B, (A.4)

where t represents time. The magnetic drift velocity vd is given by

vd = m

ZeB

v2
‖ +μB/m

B2
B × ∇B + m

ZeB

μ0v
2
‖

B3
B × ∇ p. (A.5)

Both the energy ε and the magnetic moment μ are constants of motion. We note
that ψ and α only change due to the drift motion, whereas θ changes both due to
the parallel motion and the drift motion. The parallel velocity in turn changes due
to the mirror force. Also, note that

b̂ · ∇ f = 1
Jψ B

∂ f

∂θ
. (A.6)
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It will be convenient to define the pitch angle parameter,

λ= μ

ε
, (A.7)

which is also a constant of motion. This allows us to write the parallel velocity as

v2
‖ = 2ε

m
(1 − λB) . (A.8)

Rather than solve these equations of motion self-consistently, it is advantageous to
separate the system into fast time scales and slow time scales. This is much like how
the fast cyclotron motion was averaged out to obtain the guiding centre equations of
motion. Therefore, we solve the equations perturbatively: the fast field-line motion
is determined by

dψ
dt

= 0, (A.9)

dα
dt

= 0, (A.10)

dθ
dt

= v‖ b̂ · ∇θ, (A.11)

dv‖
dt

= −μ
m

b̂ · ∇B. (A.12)

These are the zeroth-order guiding centre equations of motion. The first two equa-
tions can be trivially integrated out as ψ =ψ0 and α = α0, which determine the
reference flux surface and the reference field line. To lowest order, the particle is
bound to the field line according to the mirror force. All magnetic field quantities
are evaluated at ψ0, α0, meaning that they are purely functions of θ. This reduced
system is integrable and Hamiltonian, where the Hamiltonian H is

H = p2
θ

2m J 2
ψ B2

+μB. (A.13)

Notice that the kinetic term depends on θ . This Hamiltonian can also be put into
a separable form (meaning H = T (p)+ V (q)), which is convenient for certain ordi-
nary differential equation integrators. Define the arclength l along the field line as

l(θ)=
∫ θ

0
dθ ′ Jψ B, (A.14)

meaning b̂ · ∇l = 1 and v‖ = l̇. The Hamiltonian can then be rewritten as

H ′ = p2

2m
+μB, (A.15)

where B is now a function of l. The Hamiltonian is now separable.
When analysing the field-line motion, there are two types of particles: trapped par-

ticles and passing (circulating) particles. A trapped particle is trapped in a magnetic
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well and thus periodically bounces between two mirror points, akin to a pendulum;
this is termed a bounce orbit. At these mirror points, v‖ = 0 and changes sign. A
passing particle, instead, has just the right pitch angle that |v‖|> 0 always, meaning it
never changes direction; this is termed a transit orbit. It is similar to giving a pendu-
lum enough kinetic energy such that it goes round and round over the top. Therefore,
it is convenient to analyse trapped particles and passing particles separately.

To first order, we calculate the magnetic drift velocity and evaluate it at
(ψ0, θ(t), α0). We then solve

dψ̃
dt

= vd · ∇ψ
∣∣∣
ψ0,θ(t),α0

, (A.16)

dα̃
dt

= vd · ∇α
∣∣∣
ψ0,θ(t),α0

. (A.17)

Here, ψ̃ and α̃ are the deviations from the flux surface and field line, respectively.
These are first-order equations of motion where the right-hand side is purely a func-
tion of t , so they can be directly integrated. For omnigenous fields, the radial
deviations will tend to average to zero over short time scales (Helander 2014),
whereas the field line deviations will not. This means that the particle will slowly
precess around the flux surface. Over very long time scales, the particle may end
up on a different field line on the flux surface, in turn affecting the bounce-transit
dynamics. So, we expect this analysis to only hold on time scales shorter than the
drift time. Moreover, it only holds if ρ∗ � 1, where ρ∗ is the gyroradius divided by
some macroscopic length scale, such as the machine size; this is because v‖/vd ∼ ρ∗.

For certain geometries, the solutions to ψ̃ and α̃ will consist of a secular piece and
a periodic piece. We will denote the periodic piece of each as ψ̂ and α̂, respectively,
when appropriate.

A.2. Passing particle orbits

A.2.1. Zeroth-order transit motion
Passing particles have to be treated slightly differently in stellarators versus toka-
maks; the periodicity of the magnetic field in a tokamak makes the motion along
the file line essentially periodic (modulo poloidal turns), which is not the case for
a general stellarator geometry. Therefore, certain details apply only to tokamak
geometries.

A passing particle has non-vanishing parallel velocity, meaning that along the field
v‖ never changes sign,

v‖ = ±
√

2ε
m

√
1 − λB. (A.18)

Let Bmax denote the maximum magnetic field strength along the field line. The
particle is then passing if

0� λ� 1
Bmax

. (A.19)

Thus, λ= 0 corresponds to a deeply passing particle that does not feel the mirror
force whatsoever, and λ= 1/Bmax corresponds to a barely passing particle that rests
in unstable equilibrium at the top of the global magnetic field well.
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Because the magnetic field is periodic in a tokamak, the transit motion is
essentially periodic. The transit period is defined as

τt =
∮

dθ
(

dθ
dt

)−1

=
√

m

2ε

∫ π

−π

Jψ Bdθ√
1 − λB

. (A.20)

Since all quantities in the integrand are 2π periodic, the limits of the integral do not
matter as long as the upper limit is 2π greater than the lower limit. This is analogous
to finding the period of a pendulum where the bob can swing through the top. It is
convenient to define a dimensionless transit time,

τ̂t = 1
q R0

∫ π

−π

Jψ Bdθ√
1 − λB

. (A.21)

The transit frequencies (both with and without dimensions) are defined as

�t = 2π
τt
, (A.22)

�̂t = 2π
τ̂t
. (A.23)

Solving for the transit motion as a function of time introduces redundancies. If
one varies the energy without varying λ, then one obtains the same motion, just
on a different time scale. (This is similar to adjusting the length of a pendulum and
adjusting the kinetic energy to compensate.) We therefore introduce the action angle
variable αt , defined as

dαt

dt
=�t = 1

q R0

√
2ε
m
�̂t . (A.24)

We can then rewrite the second-order equation of motion as

d
dαt

(
Jψ B

q R0

dθ
dαt

)
= − q R0

Jψ B

λ

2�̂2
t

∂B

∂θ
. (A.25)

The modified Hamiltonian is then

Ĥ(θ, p̂θ )= 1
2

(
p̂θq R0

Jψ B

)2

+ λB

2�̂2
2

. (A.26)

Then, θ(αt) will be
θ(αt)= αt + θ̃ (αt), (A.27)

where θ̃ is 2π periodic. So the solution is the sum of a linear secular term and
a periodic term. At this point, we can solve for αt via any ordinary differential
equation integrator. Note that if we wish to make the Hamiltonian separable, that is
of the form

H(l, pl)= p2
l

2
+ f (l)

2
, (A.28)

we can transform to the normalized arclength l via

l(θ)= 1
q R0

∫ θ

0
dθ ′ Jψ B, (A.29)
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in which case

Ĥ = p2
l

2
+ λB

2�̂2
2

. (A.30)

The initial conditions turn out to be arbitrary. For simplicity, we set

θ(αt = 0)= 0, (A.31)

dθ
dαt

(αt = 0)=
(

q R0

Jψ B

√
1 − λB

�̂t

) ∣∣∣∣∣
θ=0

. (A.32)

The second initial condition can be obtained by considering we want

dθ
dt
(t = 0)=

(√
2ε
m

√
1 − λB

Jψ B

) ∣∣∣∣∣
θ=0

. (A.33)

Essentially, we are setting v‖ at θ = 0 to be consistent with our choice in ε and λ.
Due to time reversibility and periodicity in tokamak geometry, we do not need to
separately consider passing particles travelling backwards.

Passing particle orbits in stellarators are complicated by the fact that the mag-
netic field will in general not be periodic. For a stellarator, we in principle need
to calculate the orbit along the entire field line in the domain under consideration.
Stellarators also allow for one-sided bounce orbits, which are analogous to hyperbolic
orbits in celestial mechanics; we do not consider those here.

For stellarators, it still can pay to normalize the energy out of the problem and
consider characteristic length and time scales. We define the characteristic transit
time as

τt = 1
2N + 1

√
m

2ε

∫ (2N+1)π

−(2N+1)π

Jψ Bdθ√
1 − λB

, (A.34)

where N is a non-negative integer. This is the amount of time it takes to traverse a
full poloidal turn averaged over 2N + 1 turns. We can also define a characteristic
length as

L = 1
2N + 1

∫ (2N+1)π

−(2N+1)π
Jψ Bdθ. (A.35)

The normalized transit time is then

τ̂t = 1
(2N + 1)L

∫ (2N+1)π

−(2N+1)π

Jψ Bdθ√
1 − λB

. (A.36)

The transit frequency can then be defined similarly as in the tokamak case. We then
rescale the time coordinate such that

dαt

dt
=�t = 1

L

√
2ε
m
�̂t . (A.37)

Then, one solves the equations of motion as in the tokamak case with one’s preferred
integrator. Note that, unlike in the tokamak case, one also needs to consider both
signs of the parallel velocity separately. One can then obtain θ(αt).
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A.2.2. First-order precession motion
We now examine the first-order precession motion. The first-order guiding centre
equations of motion satisfy

dψ̃
dt

= vd · ∇ψ, (A.38)

dα̃
dt

= vd · ∇α. (A.39)

Although these equations can be simply integrated over time, some physical intuition
is in order. As above, periodicity arguments can be exploited in tokamak geometry.

When analysing the drift motion, it is useful to consider how it varies over the
transit time. In tokamaks, we thus define the transit average: for any function of θ ,
we define the transit average as

〈 f (θ)〉t = 1
τt

∫ 2π

0

dθ Jψ B

|v‖| f (θ). (A.40)

Equivalently, if we instead know f as a function of αt , then

〈 f (αt)〉t =
∫ 2π

0

dαt

2π
f (αt). (A.41)

First, we note that in tokamaks

�dψ = 〈vd · ∇ψ〉t = 0, (A.42)

meaning that to first order, the particle does not drift away from the flux surface.
As for trapped particles, this would be exactly zero if we integrated the guiding
centre equations exactly in a tokamak. This means that ψ̃ is a periodic function of
αt . In stellarators, this is only true if the geometry is omnigenous, but we can still
split ψ̃ into a secular and periodic component regardless. For simplicity, we just set
ψ̃(αt = 0)= 0 as an initial condition. The solution can be written as

ψ̃(αt)= �dψ

�t
αt + ψ̂(αt), (A.43)

where ψ̂ is a periodic function of αt and can be computed as

ψ̂(αt)=
∫ αt

0

dα′
t

�t

(
vd · ∇ψ −�dψ

)
. (A.44)

Meanwhile, the transit average of vd · ∇α will generally not be zero. Moreover,
this quantity is actually not particularly useful to use in tokamaks due to the secular
term present in the definition of α. We define a different drift frequency as

�dα = 〈
vd · ∇α + q ′�tψ̂ + q ′αtvd · ∇ψ 〉

t
. (A.45)

Then, one can show

α̃ =
(
�dα

�t
− q ′ψ̂(αt)− q ′�dψ

2�t
αt

)
αt + α̂(αt), (A.46)
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where α̂ is 2π periodic. Using the initial condition that α̃(αt = 0)= α̂(αt = 0), we
can write the solution as

α̂(αt)=
∫ αt

0

dα′
t

�t

(
vd · ∇α + q ′�tψ̂ + q ′αtvd · ∇ψ −�dα

)
. (A.47)

To prove that this is indeed the solution, we need to explicitly write α = ϕ − q(θ + λ),
where λ is a periodic function that makes χ = θ + λ straight. Then,

vd · ∇α = vd · ∇ϕ − qvd · ∇(θ + λ)− q ′(θ̃ + λ)vd · ∇ψ − q ′αtvd · ∇ψ, (A.48)

where the last term on the right-hand side is the secular piece and everything else is
periodic. We note that

αt

�t
vd · ∇ψ = αt

�t
�dψ + d

dαt
(αtψ̂)− ψ̂. (A.49)

Therefore, we can integrate by parts and find∫ αt

0

dα′
t

�t
vd · ∇α= −q ′α2

t

�dψ

�t
− q ′αtψ̂(αt)

+
∫ αt

0

dα′
t

�t
(vd · ∇α + q ′�tψ̂ + q ′αtvd · ∇ψ). (A.50)

The terms under the integral on the right-hand side are all periodic, so we can split
it up into a monotonically increasing piece and a periodic piece, which is precisely
what we did above,∫ αt

0

dα′
t

�t

(
vd · ∇α + q ′�tψ̂ + q ′αtvd · ∇ψ)= �dα

�t
αt + α̂(αt). (A.51)

This completes the proof.
In stellarators, there is strictly speaking no periodic motion to exploit for pass-

ing particle trajectories. However, the entire field line is not typically simulated in
flux-tube simulations. Instead, one includes only a finite number of poloidal turns
(Sánchez et al. 2021). In the ballooning representation, one can take advantage of
this by periodizing the magnetic field after some number of poloidal turns. Since
the magnetic field is then periodic along the field line, the analysis presented in
the tokamak-focused sections can be extended to stellarator geometry. In general, it
is also necessary to consider a transit average of the radial drift frequency �dψ in
stellarator geometries.

A.2.3. Useful integral identities
Now that we better understand transit dynamics, we briefly derive some useful
expressions. For stellarator geometries, we assume that the geometry has been peri-
odized. We encounter two types of integrals in the main text when integrating over
the field line. The first is∫ θ

0

dθ ′ Jψ B

|v‖| f (θ ′)= τt

∫ αt

0

dα′
t

2π
f
(
θ(α′

t)
)
. (A.52)
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The second type directly involves the magnetic drift resonance,∫ θ

0

dθ ′ Jψ B

|v‖| (ω− nωd) , (A.53)

where ω is the mode frequency, n is the toroidal mode number and ωd is defined as

ωd = vd · (∇α + θ0q
′∇ψ) , (A.54)

where θ0 is the ballooning angle. This can be rewritten as∫ θ

0

dθ ′ Jψ B

|v‖| (ω− nωd)= ω

�t
αt − nα̃(αt)− nθ0q

′ψ̃(αt). (A.55)

This simplifies to∫ θ

0

dθ ′ Jψ B

|v‖| (ω− nωd)= αt

�t

(
ω− n�d + 1

2
nq ′�dψαt + nq ′�tψ̂(αt)

)
− nw̃d,

(A.56)
where

�d =�dα − θ0q
′�dψ, (A.57)

w̃d = α̂(αt)+ θ0q
′ψ̂(αt). (A.58)

Using action angle variables, we have successfully split these integrals into a secular
term and a periodic term. In the main text, it is useful to write∫ θ

0

dθ ′ Jψ B

|v‖| (ω− nωd)= αt

�t
(ω− n�d)− n�d, (A.59)

where �d contains all drift deviation terms,

�d = w̃d − q ′�dψ

2�t
α2

t − q ′ψ̂αt . (A.60)

A.3. Trapped particle orbits

A.3.1. Zeroth-order bounce motion
A trapped particle has parallel velocity equal to zero at two distinct bounce points
and to lowest order undergoes periodic motion between those bounce points. The
parallel velocity is

v‖ = ±
√

2ε
m

√
1 − λB. (A.61)

For a given λ, one can determine the bounce points by solving

1 − λB = 0, (A.62)

where B is purely a function of the field line following coordinate θ .
Note that in tokamak geometry, we only need to calculate two bounce points;

since the magnetic field is periodic, all other pairs of bounce points are equal modulo
the period. In a stellarator, the magnetic field is no longer periodic and there will
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be multiple distinct magnetic wells. Moreover, a trapped particle can traverse over
multiple bounce wells along an orbit.

It is often useful to use the trapped parameter κ instead of λ. One common
definition is

κ2 = 1 − λBmin

2εB
(A.63)

where

2εB = 1 − Bmin

Bmax
. (A.64)

Here, Bmin and Bmax are, respectively, the minimum and maximum of the magnetic
well under consideration; this could be a large ‘well’ that is composed of smaller local
bounce wells, thus accounting for trapped particles that traverse multiple bounce
wells along an orbit. Let θmin be the location of the minimum and θmax the location
of the smallest nearest maximum. (For a tokamak, θmax always comes in pairs that
correspond to the same maximum. For a stellarator, there can be two distinct nearest
maxima; we pick the smaller one.) The above definition then guarantees that

v‖(θ = θmin)= 0 ⇐⇒ κ = 0, (A.65)

v‖(θ = θmax)= 0 ⇐⇒ κ = 1. (A.66)

Therefore, at κ = 0 the particle is deeply trapped and confined to the bottom of the
well. At κ = 1, the particle is barely trapped in unstable equilibrium at the top of the
local well. Moreover,

v2
‖ = 2ε

m

(
1 − (

1 − 2εBκ
2
) B

Bmin

)
, (A.67)

v2
⊥ = 2ε

m

(
1 − 2εBκ

2
) B

Bmin
. (A.68)

Therefore, all trapped particles satisfy

0� κ � 1. (A.69)

The zeroth-order bounce motion is periodic, with a bounce period equal to

τb =
∮

dθ
(

dθ
dt

)−1

= 2

√
m

2ε

∫ θ2

θ1

Jψ Bdθ√
1 − λB

, (A.70)

where θ1 < θmin < θ2 are the two bounce points. Since we are considering the full for-
ward and then backwards motion, a factor of 2 is included. For tokamaks especially,
it is convenient to define a dimensionless bounce time,

τ̂b = 2
q R0

∫ θ2

θ1

Jψ Bdθ√
1 − λB

. (A.71)

The bounce frequencies (both with and without dimensions) are defined as

�b = 2π
τb
, (A.72)

�̂b = 2π
τ̂b
. (A.73)
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Solving for the bounce motion as a function of time introduces redundancies. If
one varies the energy without varying λ, then one obtains the same motion, just
on a different time scale. (This is similar to adjusting the length of a pendulum
but keeping the bounce angles the same.) We therefore introduce the action angle
variable αb, defined as

dαb

dt
=�b = 1

q R0

√
2ε
m
�̂b. (A.74)

We can then rewrite the second-order equation of motion as

d
dαb

(
Jψ B

q R0

dθ
dαb

)
= − q R0

Jψ B

λ

2�̂2
b

∂B

∂θ
. (A.75)

The modified Hamiltonian is then

Ĥ(θ, p̂θ )= 1
2

(
p̂θq R0

Jψ B

)2

+ λB

2�̂2
b

. (A.76)

Then, θ(αb) is 2π periodic. At this point, we can solve for αb via any ordinary differ-
ential equation integrator. Note that if we wish to make the Hamiltonian separable,
that is of the form

H(l, pl)= p2
l

2
+ f (l)

2
, (A.77)

we can transform to the normalized arclength l via

l(θ)= 1
q R0

∫ θ

0
dθ ′ Jψ B, (A.78)

in which case

Ĥ = p2
l

2
+ λB

2�̂2
b

. (A.79)

In terms of initial conditions, it is useful to start at the first bounce point,

θ(αb = 0)= θ1, (A.80)

dθ
dαb

(αb = 0)= 0. (A.81)

This guarantees θ(αb = π)= θ2. Due to time-reversibility, θ is also an even function
of α2. (In fact, θ(nπ + αb)= θ(nπ − αb) for all integers n.)

A.3.2. First-order drift motion
The first-order guiding centre equations of motion satisfy

dψ̃
dt

= vd · ∇ψ, (A.82)

dα̃
dt

= vd · ∇α, (A.83)
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where the magnetic drift velocity vd and the quantities ∇θ,∇ψ and ∇α are all eval-
uated at θ(t), ψ0, α0. Although the second set of equations can be simply integrated
over time, some physical intuition is in order.

When analysing the drift motion, it is useful to consider how it varies over the
bounce time. We thus define the bounce average: for any function of θ , we define
the bounce average as

〈 f (θ)〉b = 1
τb

∮
dθ Jψ B

|v‖| f (θ), (A.84)

where the closed integral signifies we need to consider forwards and backwards
motion. (So for example,

〈
v‖
〉
b
= 0). Equivalently, if we instead know the function as

a function of αb, then

〈 f (αb)〉b =
∫ 2π

0

dαb

2π
f (αb). (A.85)

In tokamaks and omnigenous stellarators, we expect

�dψ = 〈vd · ∇ψ〉b = 0, (A.86)

meaning that to first order, the particle does not drift away from the flux surface
(Helander 2014). Note that if we solved the full guiding centre equations of motion
in a tokamak or a quasisymmetric stellarator, this would be exact due to the existence
of a third invariant (in a tokamak, this would be the canonical toroidal momentum).

If we set the initial condition to be ψ̃(αb = 0)= 0, then

ψ̃(αb)= �dψ

�b
αb + ψ̂(αb), (A.87)

where, ψ̂ is 2π periodic and an odd function of αb. (In fact, ψ̂(nπ + αb)= −ψ̂(nπ −
αb) for all integers n.) The solution can be written as

ψ̂(αb)=
∫ αb

0

dα′
b

�b

(
vd · ∇ψ −�dψ

)
. (A.88)

When calculating α̃, we cannot guarantee that the bounce average of vd · ∇α
will be zero. This quantity is defined as the bounce-averaged drift frequency and
characterizes the drift from field line to field line,

�dα = 〈vd · ∇α〉b . (A.89)

Therefore, the appropriate solution is

α̃(αb)= �dα

�b
αb + α̂(αb), (A.90)

where

α̂(αb)=
∫ αb

0

dα′
b

�b
(vd · ∇α −�dα) . (A.91)

As before, we have chosen α̃(αb = 0) as our initial condition, and α̂ is a periodic odd
function of αb such that α̂(nπ + αb)= −α̂(nπ − αb) for all integers n.
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A.3.3. Useful integral identities
Now that we better understand bounce dynamics, we briefly derive some useful
expressions. We encounter two types of integrals in the main text when integrating
over the field line. The first is

2
∫ θ2

θ1

dθ Jψ B

|v‖| f (θ)= τb 〈 f (θ)〉b = τb

∫ 2π

0

dαb

2π
f (θ(αb)) . (A.92)

The second type directly involves the magnetic drift resonance,∫ θ

θ1

dθ ′ Jψ B

|v‖| (ω− nωd) , (A.93)

where ω is the mode frequency, n is the toroidal mode number and ωd is
defined as

ωd = vd · (∇α + θ0q
′∇ψ) , (A.94)

where θ0 is the ballooning angle. This integral can be rewritten as∫ θ

θ1

dθ ′ Jψ B

|v‖| (ω− nωd)= αb

�b
(ω− n�d)− nw̃d, (A.95)

where

�d =�dα − θ0q
′�dψ, (A.96)

w̃d =
∫ αb

0
dα′

b

ωd −�dα + θ0q ′�dψ

�b
= α̂(αb)+ θ0q

′ψ̂(αb). (A.97)

Therefore, when computing the resonant contribution to the gyrokinetic field equa-
tions, we are essentially computing the bounce averaged drift frequency as well as
the drift deviations along the guiding centre orbit. Notice that the equations greatly
simplify when working in αb instead of θ ; it pays to use action angle variables!

Lastly, we note a useful duplication formula for tokamak geometry. Because all
bounce wells are identical and spaced 2π apart along the field line, we can handle
all bounce wells simultaneously. Denote the orbits in the well 2πp away from the
reference centre well with the subscript p, where p is any integer. Quantities without
a p subscript correspond to the orbits of the reference centre well. Then

�b,p =�b, (A.98)

�dψ,p = 0, (A.99)

�dα,p =�dα, (A.100)

θp(αb)= 2πp + θ(αb), (A.101)

ψ̃p(αb)= ψ̂(αb), (A.102)

α̃p(αb)= �dα

�b
αb + α̂(αb)− 2πpq ′ψ̂(αb). (A.103)
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This is because

(v‖)p = v‖, (A.104)

(b̂ · ∇B)p = b̂ · ∇B, (A.105)

(vd · ∇ψ)p = vd · ∇ψ, (A.106)

(vd · ∇α)p = vd · ∇α− 2πpq ′vd · ∇ψ. (A.107)

Therefore, we only need to compute the orbits for the p = 0 bounce well in tokamak
geometry.

Appendix B. Left eigenvector for the gyrokinetic equation
The electrostatic gyrokinetic equation for each species reads

(
ω− v‖k‖ − nωds

)
hs − (ω− nω∗s)

ZseF0s

T0s
J0sφ = 0. (B.1)

For quasineutrality, we have

∑
s

Z 2
s e2n0s

T0s
φ −

∫
d3vZseJ0shs = 0. (B.2)

For simplicity, we work with two species, ions and electrons. We also set Zi = 1,
n0 = n0i = n0e, T0 = T0i = T0e, and normalize all quantities. Let χ be the normalized
column vector (hi , he, φ)

T . We define our inner product as

〈χ 2, χ 1〉 =
∫ ∞

−∞

dl

B

(∫
d3v

h∗
i2hi1

n0 F0i
+ h∗

e2he1

n0 F0e

)
+
∫

dl

B

e2

T 2
0

φ∗
2φ1. (B.3)

The division by the Maxwellian for the distribution functions ensures that the
product converges. The above equations can then be written in block form,

L̂χ =
⎛
⎜⎝

L̂ ii L̂ ie L̂ iφ

L̂ei L̂ee L̂eφ

L̂φi L̂φe L̂φφ

⎞
⎟⎠
⎛
⎜⎝

hi

he

φ

⎞
⎟⎠= 0. (B.4)

Here

L̂ ii =ω− v‖k‖ − nωdi , (B.5)

L̂ ie = 0, (B.6)

L̂ iφ = −(ω− nω∗i)F0i J0i , (B.7)

L̂ei = 0, (B.8)

L̂ee =ω− v‖k‖ − nωde, (B.9)

L̂eφ = (ω− nω∗e)F0e J0e, (B.10)
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L̂φi = −
∫

d3v J0i , (B.11)

L̂φe =
∫

d3v J0e, (B.12)

L̂φφ = 2. (B.13)

The transpose is

L̂T
ii =ω+ v‖k‖ − nωdi , (B.14)

L̂T
ie = 0, (B.15)

L̂T
iφ = −

∫
d3v(ω− nω∗i)J0i , (B.16)

L̂T
ei = 0, (B.17)

L̂T
ee =ω+ v‖k‖ − nωde, (B.18)

L̂T
eφ =

∫
d3v(ω− nω∗e)J0e, (B.19)

L̂T
φi = −J0i F0i , (B.20)

L̂T
φe = J0e F0e, (B.21)

L̂T
φφ = 2. (B.22)

Note the sign change in v‖. Using adjoint fields (gi , ge, ψ), the transposed equation
is then (

ω+ v‖k‖ − nωdi

)
gi − J0i F0iψ = 0, (B.23)(

ω+ v‖k‖ − nωde

)
ge − J0e F0eψ = 0, (B.24)

2ψ −
∫

d3v (ω− nω∗i) J0i gi +
∫

d3v (ω− nω∗e) J0ege = 0. (B.25)

Notice that the equations are markedly different, so the full system is not symmetric.
We can, however, make a connection between the old system and the new system.
Assume that the fields (hi , he, φ) solve the old system, and let

gi(l, v‖, μ)= 1
ω− nω∗i

hi(l,−v‖, μ), (B.26)

ge(l, v‖, μ)= 1
ω− nω∗e

he(l,−v‖, μ), (B.27)

ψ(l)= φ(l). (B.28)
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Plugging these in (and taking v‖ → −v‖), we obtain

(
ω+ v‖k‖ − nωdi

)
gi − J0i F0iψ → (

ω− v‖k‖ − nωdi

) hi

ω− nω∗i
− J0i F0iφ, (B.29)

(
ω+ v‖k‖ − nωde

)
ge − J0e F0eψ → (

ω− v‖k‖ − nωde

) he

ω− nω∗e
− J0e F0eφ (B.30)

and

2ψ −
∫

d3v (ω− nω∗i) J0i gi +
∫

d3v (ω− nω∗e) J0ege → 2φ

−
∫

d3v J0i hi +
∫

d3v J0ehe. (B.31)

Note that k‖ commutes with ω− nω∗. Given that (gi , ge, φ) solve the old system,
each of the above equations is zero. (The quasineutrality equation is obvious, for
the other two just multiply by ω− nω∗s .) Therefore, the above guess solves the
transposed equations and thus corresponds to the left eigenvector of the system.
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