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DESCRIPTIONS OF THE CHARACTERISTIC SEQUENCE 
OF AN IRRATIONAL 

TOM C. BROWN 

ABSTRACT. Let a be a positive irrational real number. (Without loss of generality 
assume 0 < a < 1.) The characteristic sequence of a is 

/ («) =/i/2 • ' •. where/„ = [(n + \)a] - [na]. 

We make some observations on the various descriptions of the characteristic sequence 
of a which have appeared in the literature. We then refine one of these descriptions 
in order to obtain a very simple derivation of an arithmetic expression for [net] which 
appears in A. S. Fraenkel, J. Levitt, and M. Shimshoni [17]. Some concluding remarks 
give conditions on n which are equivalent to/„ = 1. 

1. Introduction. Let a be an irrational real number, 0 < a < 1. The characteristic 
sequence associated with a is the sequence 

/ ( a ) =f\f2'-, where/„ = [(n + l)a] - [na], n>\. 

(This terminology is due to E. B. Christoffel [10].) 
Note that/(a) is a sequence of 0's and l's, and that [ka] =f\ +f2 + • • • +/*_i, k>2. 

(If desired, one can allow a > 1 by setting/„ = [(n + l)a] — [na] — [a]. In this case, 
[ka] = / i +/2 + • • • +/*-i + k[a].) 

Facts 1,2,3 below are explicit descriptions, which have already appeared in the lit
erature, of the sequence / (a ) , and each can be used to generate arbitrarily long initial 
segments of f(a). Fact 2 is undoubtedly the easiest of the three to use for this purpose. 
Fact 4 is concerned with the sequence/(a) when a is a quadratic irrational. 

2. Statements of Facts 1-4. 

DEFINITION 1. Let a be an irrational real number with 0 < a < 1. Let [0, a \, ai,... ] 
be the simple continued fraction for a, that is, 

1 
a — [ O , a i , 0 2 , . . . ] = 

1 
a\ + a2 + • • -

Let 
— = [O , t f i , 02 , . . . , 0 / i ] , n>l, 
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and let 

X « = / i / 2 • • • /* , n>\. 

Thus Xn is the initial segment of f(a) of length qn. 

It is standard to define p-\ — 1, po = 0, g_i = 0, (70 = 1, so that 

Pn = anPn-\ +Pn-2, Çn = «n^n-1 + qh-2, n>\. 

This fact will be used throughout the remainder of the paper. 

DEFINITION 2. For each n > 1, define the irrational number an by a = [0, a\, «2. • • •, 
a„ + a„]. 

DEFINITION 3. Let G be the free group generated by the symbols 0, 1. Thus the ele
ments of G are blocks or words in the symbols 0,1 (and their inverses), and the identity el
ement of G is the empty word. We define, for each t > 1, homomorphisms kt and ht from 
G into G by setting it,(0) = 0 r" l l , kt(l) = O'l and ht(0) = 0 r_1l, ht(l) = 0r_110. Thus 
A:r(vviW2 • • • wn) — kt(w\)kt(w2) • • • &f(wn), and similarly for ht. Furthermore, we extend 
kt and ht to act on infinite binary sequences by setting kt(w\W2 • • •) = &r(wi)fcf(w2) 
and similarly for ht. 

FACT 1. For each m > 1, define 

where o denotes composition. Then for each n > 1, 

f(a) =(c\c2'"cn)(kax oka2°--okan(f(an))j. 

FACT 2. For each n > 2, 

Xn — XJ^Xn-2, 

where X0 = 0 andXi = O ^ l . (He reX^ denotes Xn-\Xn-i - • Xn_i, with an repeti
tions. If a\ — l,thenXi = 1.) 

FACT 3. For each n > 1, 

f(a) = hai o /îa2 o • • • o han(f(an)). 

FACT 4. Let /i be the homomorphism from G to G defined by h(0) ~ Xm, h(\) = 
XmXm-1, and extend h to act also on infinite binary sequences. Then if a is purely periodic 
with period ra, that is, a — [0,a\, • • •, am, fli, • • •, am, a\,..., a m , . . . ] , then h(f(a)^j = 
f(a). (As pointed out by J. Shallit [34], this can be deduced quickly from Fact 2 by 
showing by induction on n that h(Xn) = Xm+n for all n > 0.) 
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3. Historical remarks. D. H. Fowler has argued persuasively ([11], [12], [13]) that 
sequences essentially equivalent to the sequence f(a) were studied in ancient times, in 
fact prior to the development of the Eudoxan theory of proportions. (Fowler notes that 
the sequence of occurrences of two periodic events is closely related to/(a), where a is 
the ratio of the periods of the two events.) (See also C. Series [32], R. C. Riddell [30] 
andW. R. Knorr[21].) 

The earliest known explicit reference to characteristic sequences seems to be in the 
1772 work of the astronomer J. Bernoulli [2], where he gave without proof a description 
of the sequence g(a) = g\g2 • • •, where gn = [(n + \)a+1/2] — [na+1 /2]. (A recipe for 
transforming f(a) into g(a) is given in Venkov [37].) In 1875 E. B. Christoffel [10] as
serted without proof (essentially) Fact 1 above, which was proved by A. A. Markov [24] 
in 1882. In the meantime, H. J. S. Smith [35] in 1876 proved Fact 2 above. 

Papers by M. Morse and G. Hedlund [26], G. Hedlund [19], H. Cohn [7], and 
F. Mignosi [25] deal with other aspects of characteristic sequences. (In most of these pa
pers the adjective "Sturmian" is used rather than "characteristic") For example, Morse 
and Hedlund show that for each n, the sequence/(a) contains exactly n+1 distinct blocks 
of length n, and they calculate exactly the minimum length m(n) such that every block of 
length m(n) inf(a) contains all of the distinct blocks of length n. Mignosi shows that f (a) 
contains k identical consecutive blocks for arbitrarily large &, if and only if the simple 
continued fraction for a has unbounded partial quotients. 

K. B. Stolarsky [36], A. S. Fraenkel, M. Mushkin, and U. Tassa [18], J. Rosenblatt 
[31], and J. Shallit [34] gave new proofs of Fact 2. (Fact 2 appears implicitly in the first 
three of these four papers, explicitly in the fourth.) 

S. Ito and S. Yasutomi [20], and K. Nishioka, I. Shiokawa, and J. Tamura [27], gave 
extensive results dealing with generalized characteristic sequences h(a,f3) = h\h^ • • •, 
where hn = [(n + l )a + (3] — [na + /3], including Fact 2 and Fact 4. 

Fact 3 appears in Brown [5]. 
Finally, we mention that Fact 4 was proved by no fewer than six independent par

ties: H. Cohn [7, 1974] (implicitly), S. Ito and S. Yasutomi [20, 1990], F. Laubie [22, 
1991], J. Shallit [34, 1991], K. Nishioka, I. Shiokawa, and J. Tamura [27, 1992], and 
T. Brown [5, 1991]. 

Extensive lists of references can be found in [18], [29], and [36]. 

4. Relations among Facts 1-3, and an extension of Fact 2. Facts 1-3 are related 
to each other by Theorem 1 below. It will be seen during the proof of Theorem 1 that 
each of Facts 1 and 3 implies Fact 2. 

LEMMA 1. Define words Y0,YU... by Y0 = 0, Yx = 0a*~l 1, Yn = Y%_xYn-2, n>2. 
Also define words Z$, Z\,... by 2® = 0, Z\ — 0ai~l 1, Zn = Z^~1

1ZAI_2^n-b n > 2. Then 
for each n>2, 

Zn = (Yn-l---Y]y
lYn(Yn^---Yl)-

PROOF. Induction on n. 
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THEOREM 1. For each n > 1, 

c\c2- "Cn = XnXn-\ • • -Xi, 

hax °ha2O.-.ohan(0) = X„, 

PROOF. From Lemma 1, it follows that Z1Z2 • • • Z„ = FnFn-i • • • Y\ for n > 1. Next, 

by induction on m, cm — Zm for m > 1, so we now have c\C2 — -cn = YnYn-\ • • • Y\. By 

Fact 1, C1C2 • • -cn is an initial segment o f / ( a ) , so that Fn is an initial segment of f(a). 

Finally, by induction on n, Yn has length qn, therefore Yn = Xn, and finally c\C2 • • • cn = 

XnXn-\ • • -Xi, n > 1. 

(Also, note that since Yn = Xn, it follows from the definition of Yn thatX„ = Xa
n

n_ xXn-2, 

n > 2, so that Fact 1 implies Fact 2.) 

Next, with Yn defined as above, it follows by induction that ha] o hai o • • • o /ian(0) = Yn 

<mdhaioha2o. • - o^ n ( l ) = YnYn-Un> 1. Using yn = X„ givesK xoha 2o- • -o/iflfi(0) = X„ 

and/ia, oha2o • - • o/ia n(l) = X„Xn_i, n > 1. 

(Also, note that from Fact 3 and ha]oha2o- • -o/ian(0) = Yn,haio- • -o/ifln(l) = ynFn_i, 

one can conclude that Yn is an initial segment off (a). Therefore (since Yn has length qn) 

Yn = Xn, and by the definition of Yn, Xn = 
X%_xXn-2, n>2. Thus Fact 3 implies Fact 2.) 

COROLLARY. Fart 1 implies Fact 2, and Fact 3 implies Fact 2. 

Now we extend Fact 2 by using the "Zeckendorff number system". (See A. Ostrowski 

[28, 1922], C. G. Lekkerkerker [23, 1952], A. M. Yaglom and I. M. Yaglom [38, 1967], 

A. S. Fraenkel, J. Levitt, and M. Shimshoni [17, 1972], and E. Zeckendorff [39, 1972]. 

These systems of numeration have been generalized by A. S. Fraenkel and I. Borosh [16, 

1973], A. S. Fraenkel [14, 1985], J. Shallit [33, 1988], and A. S. Fraenkel [15, 1989].) 

Our extension (Theorem 2 below) enables one to give an exact formula for ££L j [ka], 

for arbitrary m. This has been done in [6]. 

The next Lemma is well-known. (See for example A. S. Fraenkel [14, p. 111].) Recall 

that a is irrational, a = [Q,a\,a2,...], ^ = [0,ai,fl2,. • • ,«„], n > 1, q^\ = 0, qo — 1, 

and qn = anqn-\ + qn^2, n>\. 

LEMMA 2. Let t > 1. Then every m, 0 < m < qt — 1, has a unique representation 

in the form m — Ztqt-i + • • • + Z2<?i + ̂ 1̂ 0» where 

(1) 0 < Z ! < f l i - l , 

(2) 0<zt< a(, 2<i<t, 

(3) Zi = ai^Zi-\ - 0 , 2<i<t. 

We then write m = (zt, • • •, Z2» 1̂ )a» and we call this the Zeckendorff representation ofm. 

THEOREM 2. Let m > 1 be given, and let m = (z f , . . . ,Z2,z\)a- Then the initial 

segment off (a) of length m is 

M-"/m =*?_ , • • •« 
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(Note that for any i, X® is the empty word.) 

PROOF. We use induction on m. For 1 < m < q\ — 1 = a\ — 1 (if a\ > 1), m = mqo 

and/!. . ./w = (T = XJ. 
Suppose the result is true for all m < qt for some fixed t > 1, and now let qt < m < 

qt+i, say m — zt+\qt + r, where 1 < zt+\ < at+\ and 0 < r < qt. 
If r = 0, then since m = Zt+iqt and X '̂+%__i = Xr+i is an initial segment of/(a), it 

follows that/i •••/„,= Xf+1. 
If 1 < r < qu then by hypothesis we have r = fe,...,Z2>Zi)a and/i • • -/r = 

A r - 1 A l A 0 • 

Now there are two cases, depending on whether zt+\ — at+i or zt+\ <at+\. 
If Zt+i — at+\, then since m = at+\qt + r < qt+\ — at+\qt + qt-u we have r < qt-\, 

so that/i • • -fr is an initial segment of Xt-\ (and z, = 0). Then since X^t+xXt^\ = Xt+\ 
is an initial segment of/(a), we have/i • • -fm = X?'+1/i •••/,- = X?+I JÇ_, • • -Zf ZJ, and 
m = (z r+i,...,z2 ,zi)a . 

The remaining case is m = Zt+iqt + r, where 1 < zt+\ < at+\ and 1 < r < qt. Then 
f\ • • -/m is an initial segment of Xz

t
t+xXt, which is an initial segment of X?'+l (which is an 

initial segment off (a)). Thus again f • • -fm = Xf+1/Ï • • -/r = *?+I Af_j • • -Xf J^1, and 
m = fo+l,...,Z2^l)a-

This finishes the induction step and the proof of Theorem 2. 

5. A simple arithmetic expression for [ma]. Recall once again thatX„ is the initial 
segment off (a) of length qn, where &• = [0, a\,..., an]. 

LEMMA 3. For each n>0, the number ofl 's in Xn is pn. 

PROOF. This is a simple induction on n, using Fact 2 and/?n = anpn-\ +pn-i> 

The following theorem appears, in a somewhat more complex form, in A. S. Fraenkel, 
J. Levitt, and M. Shimshoni [17]. The proof given here is simpler. 

THEOREM 3. For m > 1, let m — 1 = (zt,. • • ,Z2,z\)a- Then [ma] = ztpt-\ + • • • + 
zip\ + z\po. 

PROOF. We have [ma] = /i +/2 + • • • +fm-\, and/ï +/2 + • • • +/m-i equals the number 
of 1 's in Wm_i, the initial segment of/(a) of length m — 1. Since Wm_i = A _̂j • • • XfX^, 
and the number of 1 's in each X; is/?;, the number of 1 's in W^-i is Z//?r-i +• • -+Z2/?i +Zi/?o-

6. Remarks and questions. An interesting algorithm (which exploits the comple
mentarity of the sequences [n(l + a)] and [n(l + 1 /a)]) for calculating the terms of the 
sequence [n(l + a)] is given I. G. Connell [8]. 

J. Rosenblatt [31] obtained a recursive property of the "hit sequence" h(a) = 
hoh\h2 • •, where for k > 0, hk is the number of non-negative integers m such that 
[ma] = k. His property is similar to Fact 2 above. The connection between h(a) and 
f(a) is the following. If a — \/{a\ + ai) < 1, then h(a)(m) = f{a\)(m) + a\,m > 1, 
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where h(a)(m),f(a\)(m) denote the m-th terms of the sequences h(a),f(a \) respectively. 
If a > 1, then h(a)(m) = / ( 1 / a)(m), m > 1. 

D. Crisp, W. Moran, A. Pollington, and P. Shiue [9] have found a necessary and suf
ficient condition on a for/(a) to be invariant under a substitution of the type 0 —> B\, 
1 —• B2, thus answering the natural question concerning the converse of the statement 
of Fact 2. 

Perhaps there is a simple way to show that Fact 1 implies Fact 3 and vice versa. If 
not, perhaps the two can be put together in an interesting way. 

Peter G. Anderson [1] has observed that if un denotes the least significant digit in the 
Zeckendorff representation of AÏ, ïi ^ 0, and if Yn — UQU[ • • •Uqn—\, n ^ 0, then the 
sequence F„, n > 2, satisfies the same recurrence as does the sequence Xn — f\fi • • -fqn, 
n > 2. It follows easily that if a = [0, a\, a^...] with a\ > 1, then/n = 1 if and only 
if un-\ — a\ — 1, n > 1. If a — [0,1, #2, . . . , ] it follows in the same way that/n = 0 if 
and only if vn_i = a2, where vn_i is the second least significant digit in the Zeckendorff 
representation of n — 1. 

Finally, we remark that fn = 1 if and only if the Zeckendorff representation of n 
terminates in an odd number of zeros. This follows from the fact that/„ = 1 if and only 
if n = [k/a] for some k (see the last paragraph of [18] or Lemma 1 of [5]), together with 
the characterization of the values of [k/a], k > 1, given in [17]. (See also Property 1 in 
[15, 1989].) One can also deduce this result directly, using Anderson's observation. 

The author is grateful to Jeffrey Shallit for references [7], [9], [10], [20], [22], [25], 
[27], [28], and [35], and to the referee for references [9], [10], [15], [20], [23], [35], for 
an exact reference to [2], and for several helpful remarks. 
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