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Abstract
This work investigates the online machine learning problem of prediction with expert advice in an adversarial
setting through numerical analysis of, and experiments with, a related partial differential equation. The problem
is a repeated two-person game involving decision-making at each step informed by n experts in an adversarial
environment. The continuum limit of this game over a large number of steps is a degenerate elliptic equation whose
solution encodes the optimal strategies for both players. We develop numerical methods for approximating the
solution of this equation in relatively high dimensions (n ≤ 10) by exploiting symmetries in the equation and the
solution to drastically reduce the size of the computational domain. Based on our numerical results we make a
number of conjectures about the optimality of various adversarial strategies, in particular about the non-optimality
of the COMB strategy.

1. Introduction

This paper is focused on the classical online learning problem of prediction with expert advice. Given
the advice of n experts who each make predictions in real time about an unknown time-varying quantity
(e.g., the price of a stock or option at some time in the future), a player must decide which expert’s advice
to follow. The problem is often formulated in an online setting, whereby at each step of the game, the
player has knowledge of the historical performance of each expert and may use this information to decide
which expert to follow at that step. The overall goal is to perform as well as the best-performing expert,
or as close to this as possible. We are particularly interested in the adversarial setting, where the perfor-
mance of the experts is controlled by an adversary, whose goal is to minimize the gains of the player.

A simple and common way to formulate the game is to assume each expert’s prediction is either
correct or incorrect at each time step. Given n experts, this can be described by a binary vector v ∈Bn,
B := {0, 1}, where vi = 1 if expert i is correct, and vi = 0 otherwise. The player gains 1 if the expert
they chose made a correct prediction, and gains nothing otherwise; thus the player gains vi if they follow
expert i. The performance of the player is often measured with the notion of regret with respect to
each expert, which is the difference between a given expert’s gains and the player’s gains. We let x =
(x1, . . . , xn) ∈R

n denote the regret vector with respect to all n experts, so xi is the regret to the ith expert,
or rather, the number of times the ith expert was correct minus the number of times the player was correct.
After T steps, the gain of the player and any given expert is at most T , and the worst-case regret with
respect to any given expert is at most T . The goal of the player is to minimize their regret with respect
to the best-performing expert; thus, the player would like to minimize max{x1, . . . , xn} at the end of the
game. The goal of mathematical and numerical analysis is to compute or approximate the optimal player
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strategies (i.e., determine which expert the player should follow). There are two standard approaches for
how long the game is played; the finite horizon setting, where the game is played for a fixed number
of steps T , and the geometric horizon setting, where the game ends with probability δ > 0 at each step.
In the geometric horizon setting, the number of steps of the game is a random variable following the
geometric distribution with parameter δ. In this work, we focus on the geometric horizon problem, but
we expect our techniques to work in the finite horizon setting as well.

In order to proceed further, we need to make a modelling assumption on the experts. In this paper, we
follow the convention of a worst-case analysis where we assume the experts are controlled by an adver-
sary whose goal is to maximize the player’s regret at the end of the game. The adversarial setting yields
a two-player zero sum game and introduces another mathematical problem of determining the optimal
strategies for the adversary. We also focus on the more general setting of mixed strategies where the
player and adversary both employ randomized strategies. At each step, the player chooses a probability
distribution α over the experts {1, . . . , n}, and the expert followed by the player is drawn independently
(from other steps and the adversary’s choices) from the distribution α. Likewise, the adversary chooses
a probability distribution β over the binary sequences v ∈Bn, and the experts are advanced by drawing
a sample v ∈Bn from the distribution β. The problem of determining optimal strategies then boils down
to deciding how the player and market should set their probability distributions α and β at each time
step, given the current regret vector x ∈R

n. The goal of the player is to minimize their expected regret,
while the adversary’s goal is to maximize the expected regret.

It is a difficult problem to determine the optimal strategies for the player and the adversary for a
general number of experts n and a large number of steps T in the game. Initial results were established in
Cover’s original paper [18] for n = 2 experts, and more recently in [27] for n = 3 experts. A breakthrough
occurred in a series of papers by Drenska and Kohn [20, 22, 23], who took the perspective that the
prediction from expert advice problem is a discrete analogue of two-player differential games [26]. They
formulated a value function for the game and showed that as the number of steps T of the game tends
to infinity, the rescaled value function converges to the viscosity solution u ∈ C(Rn) of the degenerate
elliptic partial differential equation (PDE)

u(x) − 1

2
max
v∈Bn

vT∇2u(x) v = max{x1, . . . , xn} for x ∈R
n. (1.1)

The state variable x ∈R
n of the PDE (1.1) is the regret vector at the start of the game, and the solution

of the PDE u(x) is the worst-case regret over all the experts at the end of the game, provided each
player plays optimally (and in the limit as T → ∞). Thus, the long-time behaviour of the adversarial
prediction with expert advice problem, and the corresponding asymptotically optimal strategies for the
player and adversary, can be determined by solving a PDE! It turns out that the optimal player strategy
is to choose the probability distribution α(x) = ∇u(x), while the optimal adversarial strategy involves
the binary vectors v saturating the maximum over v ∈Bn in (1.1) (we give more detail in Section 1.1).

In this paper, we develop numerical methods for approximating the viscosity solution of (1.1), so
that we may shed light on the optimal strategies for the player and adversary. There are two challenging
aspects of solving (1.1). First, the PDE is posed on all of Rn and does not have any kind of natural
restriction to a compact computational domain with boundary conditions. To address this, we prove a
localization result for (1.1) showing that the domain may be restricted to a box �T = [− T , T]n and that
errors in the Dirichlet boundary condition u|∂�T do not propagate far into the interior of �, allowing
us to obtain an accurate solution sufficiently interior to �T (precise results are given later). The second
challenge is that the theory is fairly complete for the n = 2, 3, 4 expert problems, so the interesting cases
to study are in the fairly high dimensional setting of n ≥ 5 experts, where it is generally difficult to solve
PDEs on regular grids or meshes, due to the curse of dimensionality. To overcome this issue, we exploit
symmetries in the equation (1.1)–in particular, permutation invariance of the coordinates x1, . . . , xn – in
order to restrict the computational domain to the sector in R

n−1 where T ≥ x1 ≥ x2 ≥ · · · xn−1 ≥ xn = 0.
We develop a numerical method that allows us to restrict all computations to this sector, which has
vanishingly small measure compared to the whole box �T . This allows us to numerically solve the

https://doi.org/10.1017/S0956792525000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000075


European Journal of Applied Mathematics 3

PDE (1.1) on reasonably fine grids up to dimension n = 10. Based on our numerical results, we make a
number of conjectures about optimality of various strategies. We summarize these results in Section 1.2
after giving a more thorough description of the background material.

1.1 Background

Online prediction with expert advice is an example of a sequential decision-making problem and has
applications in algorithm boosting [25], stock price prediction and portfolio optimization [25], self-
driving car software [2], and many other problems. The prediction with expert advice problem originated
in the works of Cover [18] and Hannan [29], who provided optimal strategies for the two expert prob-
lems. In the intervening years, much attention has been focused on heuristic algorithms that give good
performance, but may not be optimal. A commonly used algorithm is the multiplicative weights algo-
rithm, in which the player maintains a set of positive weights w1, . . . , wn for each expert that are used to
form a weighted average of the expert advice, and the weights are updated in real time based on the per-
formance of each expert. For the finite horizon problem, it has been shown [16] that the multiplicative
weights algorithm is optimal in an asymptotic sense, as the number of experts n and number of steps of
the game T both tend to infinity, but fails to be optimal when the numbers of experts are fixed and finite,
as is the case in practice. Optimal algorithms for the geometric horizon and finite horizon problems for
n ≤ 3 experts were developed and studied in Gravin et al. [27] and Abbasi et al. [1]. Additionally, lower
bounds for regrets in a broader class than multiplicative weights have been shown [28]. Further work on
algorithms for both the finite and geometric horizon problems is contained in [1, 15, 16, 30, 36, 42].

Recently, attention has shifted back to the problem of optimal strategies for a finite number of experts
[5–8, 12, 20–23, 27]. The focus of this paper is on the problem with mixed strategies (i.e., random
strategies) against an adversarial environment that was briefly described in the previous section. We
now describe this setting in more detail. We have n experts making predictions, a player who chooses
at each step which expert to follow, and an adversarial environment that decides which experts gain or
lose at each step of the game. The strategies are mixed, so both the player and the adversary choose
probability distributions over their possible plays, and their actual plays are random variables drawn
from those distributions. At the kth step of the game, the player chooses a probability distribution αk over
the experts An := {1, 2, . . . , n} and the adversary chooses a probability distribution βk over the binary
sequences Bn = {0, 1}n. Random variables from these distributions ik ∼ αk and vk ∼ βk are drawn, and
the player chooses to follow expert ik and the market advances the experts corresponding to the positions
of the ones in the binary vector vk.

The performance of the player is measured by their regret to each expert, which is the difference
between the expert’s gains and those of the player. We let x = (x1, . . . , xn) ∈R

n denote the regret vec-
tor, so xi is the current regret with respect to expert i. Let us write the coordinates of vk as vk =
(vk,1, vk,2, . . . , vk,n). Then on the kth step the player accumulates regret of vk,j − vk,ik with respect to expert
j. If the regret vector started at x ∈R

n on the first step of the game, then the regret after T steps is

RT := x +
T∑

k=1

(vk − vk,ik1).

At the end of the game, the regret RT is evaluated with a payoff function g:Rn →R. The player’s goal
is to minimize g(RT) while the adversary’s goal is to maximize g(RT). The most commonly used payoff
is the maximum regret g(x) = max{x1, x2, . . . , xn}, which simply reports the regret of the player with
respect to the best-performing expert. The game can be played in the finite horizon setting where T is
fixed, or the geometric horizon setting where the game ends with probability δ > 0 at each step, so T is
a random variable.

We focus on the geometric horizon problem. In this case, the value function Uδ:R
n →R is defined

by

Uδ(x) = inf
α

sup
β

E

[
g

(
x +

T∑
k=1

(vk − vk,ik1)

)]
, (1.2)
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where α= (α1, α2, . . . ), β = (β1, β2, . . . ), and T is the time at which the game stops, which is a geometric
random variable with parameter δ. The value function Uδ(x) is the expected value of the payoff at the end
of the game given that the regret vector starts at x ∈R

n on the first step and both players play optimally.
The inf and the sup are over strategies for the players, which enforce that αk and βk depend only on
the current value of the regret and the past choices of both players. The value function is unchanged by
swapping the inf and sup in (1.2).

It was shown in [20, 22] that the rescaled value functions

uδ(x) := √
δ Uδ

(x

δ

)
converge locally uniformly, as δ→ 0, to the viscosity solution of the degenerate elliptic PDE

u − 1

2
max
v∈Bn

vT∇2u v = g on R
n, (1.3)

which is the same as (1.1) except with a general payoff g. The PDE (1.3) contains all of the informa-
tion about the prediction problem in the asymptotic regime where the number of steps T tends to ∞,
which is equivalent to sending the geometric stopping probability δ→ 0. It was shown in [22] that the
asymptotically optimal player strategy is to use the probability distribution1

αk = ∇u(x), (1.4)

where x ∈R
n is the current regret on the kth step of the game, and the optimal adversary strategy is to

choose

vk ∈ argmaxv∈Bn{vT∇2u(x)v}, (1.5)

and then advance the experts in vk with probability 1
2

and those in 1− vk with probability 1
2
. Notice that

the adversarial strategy v is equivalent to 1− v.
Determining the adversary’s optimal strategies in the max-regret setting, where we take g(x) =

max{x1, . . . , xn}, is an open problem for a general number of experts n. It was conjectured in [27] that
the COMB strategy of ordering the experts by regret and using the alternating zeros and ones vector
v = (0, 1, 0, 1, . . . ), which resembles the teeth of a comb, is asymptotically optimal as T → ∞ for all
n, though this was proven in [27] only for n = 2 and n = 3 experts. The idea behind the COMB strategy
is to group the experts into as equally matched groups as possible and advance one group or the other
with equal probability, which makes it difficult for the player to gain any advantage. However, since the
experts are ordered by regret x1 ≥ x2 ≥ · · · ≥ xn, they are essentially ordered by performance, and so the
even-numbered experts are slightly worse on average compared to the odd-numbered experts. Hence,
there is reason to believe that COMB can be improved upon for larger numbers of experts by modifying
the COMB vector slightly.

The PDE perspective developed in [20] can help shed light on the optimal adversarial strategy, since
it turns out we can derive explicit solutions for the PDE (1.1) for n ≤ 4 experts. Below, we present the
solutions in the sector

Sn = {x ∈R
n : x1 ≥ x2 ≥ · · · ≥ xn}.

Since the PDE is unchanged under permutations of the coordinates, this completely determines the
solution. It was shown in [20] that for n = 2 experts the solution of (1.1) is given in the sector S2 by

u(x) = x1 + 1

2
√

2
e

√
2(x2−x1), (1.6)

and for n = 3, the solution is given in S3 by

u(x) = x1 + 1

2
√

2
e

√
2(x2−x1) + 1

6
√

2
e

√
2(2x3−x2−x1). (1.7)

1As we will see later in the paper, the solution u of (1.3) satisfies ∇u ·1= 1, and is monotonically increasing, so αk is a
probability vector.
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Since we have explicit solutions, we can check the optimal adversarial strategies via (1.5) within the
sector Sn. For n = 2 both v = (1, 0) and w = (0, 1) are globally optimal for all x ∈ Sn, which are both the
same COMB strategy since v = 1− w. For n = 3, both (1, 0, 0) and (0, 1, 0) are globally optimal (as
well as a their equivalent strategies (0, 1, 1) and (1, 0, 1), which we will omit from now on). The second
strategy (0, 1, 0) is the COMB strategy, while the first (1, 0, 0) is not.

For n = 4 experts, it was shown in [7] that the solution of (1.1) is given by

u(x) = x1 −
√

2

4
sinh(

√
2(x1 − x2))

+
√

2

2
arctan

(
e

x4+x3−x2−x1√
2

)
·

cosh
(

x4 − x3 + x2 − x1√
2

)
cosh

(−x4 + x3 + x2 − x1√
2

)
cosh

(−x4 − x3 + x2 + x1√
2

)

+
√

2

2
arctanh

(
e

x4+x3−x2−x1√
2

)
·

sinh
(

x4 − x3 + x2 − x1√
2

)
sinh

(−x4 + x3 + x2 − x1√
2

)
sinh

(−x4 − x3 + x2 + x1√
2

)
,

(1.8)

from which it is possible to prove [7] that the COMB strategy (1, 0, 1, 0) is optimal, as well as the non-
COMB strategy (0, 1, 1, 0). For n ≥ 5 experts, an explicit solution is unknown, and the question of the
optimality of the COMB strategy is open.

It is worthwhile mentioning that it is remarkable that explicit solutions have been obtained for the
degenerate elliptic PDE (1.1) for n ≤ 4 dimension. Usually, explicit solutions for nonlinear PDE are not
available. Furthermore, the solutions given in (1.6), (1.7) and (1.8) are all twice continuously differen-
tiable with Lipschitz second partial derivatives, i.e., they are classical C2,1(Rn) solutions. This is also
remarkable, since one would only expect this for uniformly elliptic equations (since the right-hand side
is Lipschitz continuous) and not for degenerate elliptic equations. As far as we are aware, there is no
general regularity theory that can explain this.

In fact, the existence of classical solutions of (1.1) is closely tied to the existence of a globally optimal
strategy. As a simple example, for n = 2 experts the strategy v = (1, 0) is optimal in S2, and so the PDE
(1.1) reduces to the one-dimensional linear equation

u − 1

2
ux1x1 = x1 in S2.

We can integrate this, keeping only the exponentially decaying solution, to obtain

u(x) = x1 + f (x2)e
−√

2x1 on S2.

Using the symmetry u(x1, x2) = u(x2, x1) we obtain ux1 = ux2 on ∂S2 = {x ∈R
2 : x1 = x2}. This yields

1 − √
2f (x)e−√

2x = ux1 (x, x) = ux2 (x, x) = f ′(x)e−√
2x,

and so

f (x) = Ce−√
2x + 1

2
√

2
e

√
2x.

Since ux1 (0) = ux2 (0) = 1
2

we have f (0) = 1
2
√

2
and so C = 0. Substituting this above yields the two expert

solutions u given by (1.6). Roughly the same procedure can be carried out for n = 3 and n = 4 experts,
though the n = 4 case is particularly tedious (see [7]).

The question of whether the COMB strategy is asymptotically optimal for n ≥ 5 experts is an open
problem. Some recent work [17] gives experimental numerical evidence that COMB is not optimal for
n = 5 experts. The numerical experiments in [17] simulated the two-player game and compared the
COMB strategy against the strategy (1, 0, 1, 0, 0), the latter appearing to be strictly better. It was shown
in [31, 32] that COMB is at least as powerful as the setting of randomly choosing which half of the
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experts to advance (the so-called Bernoulli strategy). This motivates our work of numerically solving
the PDE (1.1) in order to shed light on the optimality of COMB and other strategies for n ≥ 5 experts.

We mention that an analogous parabolic PDE exists for the finite-horizon setting of this problem [20],
motivating a similar treatment in terms of numerics for the parabolic equation as well. Some progress in
the parabolic case can be found in [5]. Further, related settings such as prediction against a limited adver-
sary [6] (rather than the optimal adversary being studied in this work) and malicious experts [8] have
been studied as well. A related PDE where v is chosen just from the standard basis vectors {e1, . . . , en}
has been studied and has a closed-form solution for a general number n of experts [31, 32]. Additionally,
some PDE approaches to online learning problems and neural network-based problems can be found in
[43]. We also mention that repeated two-player games also appear in the PDE literature in multiple other
settings [3, 4, 9, 11, 13, 14, 24, 33–35, 37, 39, 40].

1.2 Main results and conjectures

In Section 4, we present the results of numerical experiments solving the prediction with expert advice
PDE (1.1) for n ≤ 10 experts. We summarize the main results we obtain from the numerical experiments
here.

1. We have strong numerical evidence that the COMB strategy is not globally optimal for 5 ≤ n ≤ 10.
This validates the numerical evidence from [17] for n = 5 experts.

2. For n = 5 experts, we have strong numerical evidence that the non-COMB adversarial strategy
(0, 1, 0, 1, 1), equivalent to (1, 0, 1, 0, 0), is the only globally optimal strategy. This is the same
strategy that was numerically shown to be better than COMB in [17].

3. For 6 ≤ n ≤ 10 experts, we have strong numerical evidence that there are no globally optimal
adversary strategies.

From these numerical results, we state a number of conjectures that we leave for future work.

Conjecture 1.1. The COMB strategy is globally asymptotically optimal (i.e., on the sector Sn) only for
n ≤ 4 experts.

Conjecture 1.2. The non-COMB strategy (1, 0, 1, 0, 0) is the only globally asymptotically optimal
strategy for n = 5 experts.

Conjecture 1.3. There is no globally asymptotically optimal adversary strategy that is constant on the
sector Sn for n ≥ 6 experts.

Recalling our discussion in Section 1.1 about the connection between explicit solutions of the PDE
(1.1) and the existence of optimal strategies, if Conjecture 1.2 is true, then we expect there to exist a
classical explicit solution of the n = 5 expert PDE, similar to the solutions given in (1.6), (1.7), and (1.8)
for the n = 2, 3, 4 expert problems.

1.2.1 Open problem
Determine an analytic expression for the solution of the PDE (1.1) for n = 5.

An explicit solution for n = 5 experts would allow one to check the validity of Conjecture 1.2, as
was done for n = 4 experts in [7]. If Conjecture 1.3 is true, then this strongly suggests that it will be
impossible to find an explicit solution of the PDE for n ≥ 6 experts and that the solution may fail to be
a classical solution in C2,1(Rn) when n ≥ 6. If there is no globally optimal strategy, then there will be
regions of Sn corresponding to different optimal strategies v ∈Bn, and the solution may fail to be twice
continuously differentiable across these interfaces.

Remark 1.4. It is important to point out that there are certainly some limitations to our numerical
results. In particular, we cannot solve the PDE (1.1) numerically on the full space Rn and must restrict
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our attention to a compact subset. Our numerical results are obtained over the box [/! − 1, 1]n. We can-
not rule out, for example, that Conjecture 1.2 fails somewhere outside of the box [/! − 1, 1]n. However,
we do find that for n = 2, 3, 4 experts, the optimality observed on the box matches perfectly with the
global theory. The negative results of Conjectures 1.1 and 1.3 do not suffer the same limitations, since
non-optimality need only be observed at a single point. Finally, our numerical convergence rates rely
on classical regularity of the viscosity solution, which is only known for n ≤ 4 experts.

Remark 1.5. We also remark that it may be possible to use our techniques for reducing the computa-
tional grid to the sector Sn in combination with the dynamic programming approaches of [17, 27]. We
leave this interesting direction to future work.

1.3 Outline

The rest of the paper is organized as follows. In Sections 2 and 3, we present and analyse our numerical
scheme for solving the prediction PDE (1.1). The first part in Section 2 is written for a more general class
of degenerate elliptic PDEs, while the second part Section 3 contains results that require the specific
form of our prediction with expert advice equation. Finally in Section 4, we present the results of our
numerical experiments that provide the evidence for the conjectures given in Section 1.2.

2 Analysis of a general numerical scheme

We study here a finite difference scheme for the PDE (1.3) consisting of replacing the pure second
derivatives vT∇2uv with finite difference approximations. We work on the grid Z

n
h, where Zh = hZ and

h> 0 is the grid spacing. For a function u:Zn
h →R, we define the discrete gradient as the mapping

∇h:Zn
h ×Z

n →R defined by

∇hu(x, v) := u(x + hv) − u(x)

h
. (2.1)

The discrete Hessian is defined as the mapping ∇2
h u:Zn

h ×Z
n →R given by

∇2
h u(x, v) := u(x + hv) − 2u(x) + u(x − hv)

h2
. (2.2)

We note that

∇2
h u(x, v) = ∇hu(x, v) + ∇hu(x, −v)

h
. (2.3)

Also, the definition of the discrete Hessian leads immediately to the discrete Taylor-type expansions

1

2
(u(x + hv) + u(x − hv)) = u(x) + h2

2
∇2

h u(x, v), (2.4)

and

u(x + hv) = u(x) − h∇h(u, −v) + h2∇2
h u(x, v). (2.5)

Define Hn = {X:Zn →R}. We will use the notation ∇hu(x) ∈Hn and ∇2
h u(x) ∈Hn for the mappings

v �→ ∇hu(x, v) and v �→ ∇2uh(x, v), respectively. For u ∈ Ck,1(Rn) with k = 2 or k = 3 and any v ∈Z
n we

have via Taylor expansion that

∇2
h u(x, v) = vT∇2u(x)v +O(|v|k+1hk−1).

Our discrete approximation of (1.3) is given by

u(x) − 1

2
max
v∈Bn

∇2
h u(x, v) = g(x) for x ∈Z

n
h.
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Since our methods are not specific to this equation, we will study a more general class of equations
of the form

u − F(∇2
h u) = g on Z

n
h, (2.6)

where F : Hn →R. The PDE (1.3) is obtained by setting

F(X) = 1

2
max
v∈Bn

X(v). (2.7)

We need to place a monotonicity assumption on F.

Definition 2.1. We say that F:Hn →R is monotone if for all X, Y ∈Hn with X ≤ Y we have F(X) ≤ F(Y).

We note that X, Y:Hn →R are real-valued functions, so X ≤ Y means that X(v) ≤ Y(v) for all v ∈Zn.
The class of monotone equations of the form (2.6) is closely related to the wide stencil finite difference
schemes introduced and studied by Oberman [38]. The main difference in this section is that we are
focused on the unbounded domain Z

n
h, and we are interested in properties of the solution u, such as

Lipschitzness, convexity, permutation invariance, etc., that hold under certain structure conditions and
the source term g.

For X ∈Hn we define

‖X‖N,∞ = max
v∈Zn

|v|∞≤N

|X(v)|, (2.8)

where |v|∞ = max1≤i≤n |vi|. We need to place a condition on the width of the stencil F.

Definition 2.2. We say F:Hn →R has width N if there exists C> 0 such that for all X, Y ∈Hn we have

|F(X) − F(Y)| ≤ C‖X − Y‖N,∞.

The smallest such constant C> 0 is called the Lipschitz constant of F and denoted LipN(F).

The choice of F given in (2.7) is monotone and has width N = 1, with Lip1(F) = 1
2
.

2.1 Existence and uniqueness

We first establish a comparison principle.

Theorem 2.3. Assume F is monotone and has width N. Let u, v:Zn
h →R satisfy

u − F(∇2
h u) ≤ v − F(∇2

h v) on Z
n
h, (2.9)

and

lim
|x|→∞

u(x) − v(x)

|x|2
= 0. (2.10)

Then u ≤ v on Z
n
h.

Proof. For ε > 0 we define

uε(x) = u(x) − ε

2
|x|2 − εN2 − ε.

We claim that uε ≤ v for all ε > 0, from which the result follows. Fix ε > 0 and assume by way of
contradiction that sup

Z
n
h

(uε − v)> 0. By (2.10), there exists R> 0, depending on ε > 0, such that
uε(x)< v(x) for |x|> R. Thus, uε − v attains its maximum over Zn

h at some x0 ∈Z
n
h, and uε(x0)> v(x0).

Since uε(x) − v(x) ≤ uε(x0) − v(x0) for all x ∈Z
n
h we have

uε(x) − uε(x0) ≤ v(x) − v(x0).
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It follows that

∇2
h uε(x0, v) = 1

h2
(uε(x0 + hv) − u(x0) + uε(x0 − hv) − u(x0))

≤ 1

h2
(v(x0 + hv) − v(x0) + v(x0 − hv) − v(x0)) = ∇2

h v(x0, v)

for all directions v ∈Z
n. Since F is monotone we have

F(∇2
h uε(x0)) ≤ F(∇2

h v(x0)). (2.11)

We now compute

∇2
h uε(x, v) = ∇2

h u(x, v) − ε|v|2,

from which it follows that

uε(x0) − F(∇2
h uε(x0)) = u(x0) − ε

2
|x0|2 − εN2 − ε− F(∇2

h u(x0) − ε|v|2)

≤ u(x0) − F(∇2
h u(x0)) − ε

2
|x0|2 − ε

< v(x0) − F(∇2
h v(x0))

≤ v(x0) − F(∇2
h uε(x0)),

where the last line follows from (2.11). Therefore uε(x0) ≤ v(x0), which is a contradiction. �
Existence of a solution follows from the comparison principle and the Perron method.

Theorem 2.4. Assume F is monotone, has width N, and F(0) = 0. Suppose there exists Cg > 0 so that

|g(x)| ≤ Cg(1 + |x|) for all x ∈Z
n
h. (2.12)

Then there exists a unique solution u:Zn
h →R of (2.6) satisfying lim|x|→∞

u(x)
|x|2 = 0. Furthermore, we have

|u(x)| ≤ CCg(LipN(F)N3 + 1 + |x|) for all x ∈Z
n
h, (2.13)

where C depends only on n.

Proof. We define

ψ(x) =√
1 + |x|2,

and note that ψ is a smooth function with linear growth satisfying
1√
2

(1 + |x|) ≤ψ(x) ≤ 1 + |x| for all x ∈R
n. (2.14)

For any v ∈Z
n and x ∈Z

n
h, we have

|∇2
hψ(x, v)| ≤ |∇2

hψ(x, v) − vT∇2ψ(x)v| + C|v|2

≤ |∇2
hψ(x, v) − vT∇2ψ(x)v| + C|v|2

≤ C
(|v|3h + |v|2

)≤ C|v|3,

where we used a Taylor series expansion of ∇2
hψ(x, v) in the last line, along with h ≤ 1 and |v| ≥ 1.

Since F(0) = 0 we have

|F(∇2
hψ)| = |F(∇2

hψ) − F(0)| ≤ LipN(F)‖∇2
hψ‖N,∞ ≤ CLipN(F)N3 = :ξ . (2.15)

We now define

w = Cg(ξ + √
2ψ).

Then by (2.14) and (2.15), we have

w − F(∇2
h w) = Cgξ + √

2Cgψ − F(Cg∇2
hψ) ≥ √

2Cgψ ≥ Cg(1 + |x|) ≥ g.
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A similar argument shows that v = −w satisfies v − F(∇2
h v) ≤ g.

Define

F= {
v:Zn

h →R : v − F(∇2
h v) ≤ g and v ≤ w

}
(2.16)

and

u(x) = sup{v(x) : v ∈F}. (2.17)

Since v = −w belongs to F, the set F is nonempty and we have −w ≤ u ≤ w. Hence, u satisfies (2.13).
We now claim that

u − F(∇2
h u) ≤ g on Zh.

To see this, fix x0 ∈Z
n
h and let vk ∈F such that limk→∞ vk(x0) = u(x0). By passing to a subsequence, if

necessary, we can assume that limk→∞ vk(x) exists for all x ∈Z
n
h. Let us denote v(x) := limk→∞ vk(x),

noting that v(x0) = u(x0). By continuity we have v − F(∇2
h v) ≤ g and v ≤ w, thus v ∈F and v ≤ u. Since

v(x0) = u(x0), we have that v − u attains its maximum at x0. As in the proof of Theorem 2.3 we have
∇2

h v(x0, v) ≤ ∇2
h u(x0, v) for all v, and so by the monotonicity of F we have F(∇2

h v(x0)) ≤ F(∇2
h u(x0)),

which when combined with u(x0) = v(x0) and v − F(∇2
h v) ≤ g, establishes the claim.

To complete the proof, we show that

u − F(∇2
h u) ≥ g on Z

n
h.

Assume to the contrary that there is some x0 ∈Z
n
h such that

u(x0) − F(∇2
h u(x0))< g(x0).

Define

v(x) =
{

u(x0) + ε, if x = x0

u(x), otherwise.

By continuity, we can choose ε > 0 small enough so that

v(x0) − F(∇2
h v(x0)) ≤ g(x0).

For x �= x0, we already have

v(x) − F(∇2
h v(x)) ≤ g(x),

and the definition of v and the monotonicity of F imply that ∇2v(x, v) ≥ ∇2
h u(x, v) for all x �= x0 and

v ∈Z
n. This completes the proof. �

2.2 Properties of solutions

We recall that a function u:Zn
h →R is Lipschitz continuous if there exists C> 0 such that

|u(x) − u(y)| ≤ C‖x − y‖
holds for all x, y ∈Z

n
h. The Lipschitz constant of u, denoted Lip(u), is the smallest such constant, given

by

Lip(u) = sup
x,y∈Zn

h
x �=y

|u(x) − u(y)|
‖x − y‖ .

Lemma 2.5 (Basic properties). Assume F is monotone, has width N, and satisfies F(0) = 0. Assume g
satisfies (2.12) and let u:Zn

h →R be the unique solution of (2.6). The following hold.

(i) If g is Lipschitz then so is u, and Lip(u) ≤ Lip(g).
(ii) If F ≥ 0 then u ≥ g on Z

n
h.

https://doi.org/10.1017/S0956792525000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000075


European Journal of Applied Mathematics 11

(iii) There exists a constant C> 0 such that

‖u − g‖∞ ≤ CLip(g)
(

N
√

LipN(F) + h
)

. (2.18)

Proof. (i) Let z ∈Z
n
h and define w(x) = u(x + z) − Lip(g)‖z‖. Then we have

w(x) − F(∇2
h w(x)) = u(x + z) − Lip(g)‖z‖ − F(∇2

h u(x + z)) = g(x + z) − Lip(g) ≤ g(x).

By the comparison principle, Theorem 2.3, we have w ≤ u, and so

u(x + z) − u(x) ≤ Lip(g)‖z‖.

Since this holds for all x, z ∈Z
n
h, the proof of (i) is complete.

(ii) If F ≥ 0 then u(x) = g(x) + F(∇2
h u(x)) ≥ g(x).

(iii) Let g:Rn →R be the piecewise constant extension of g to a function on R
n, defined so that

g(y) = g(x) for all y ∈ x + [0, h)n and any x ∈ Zh. While the extension is discontinuous, it satisfies

|∇hg(y, v)| =
∣∣∣∣g(x + hv) − g(x)

h

∣∣∣∣≤ Lip(g)|v|
provided v ∈Z

n, where x ∈Z
n
h satisfies y ∈ x + [0, h)n. Let ε > 0 and define the standard mollification

gε := ηε ∗ g, where ηε(x) = 1
εd η

(
x
ε

)
, and ηε is compactly supported in B(0, ε). Note that

∇hgε(x, v) =
∫
R

n
ηε(y)∇hg(x − y, v) dy =

∫
R

n
ηε(x − z)∇hg(z, v) dz,

where we used the change of variables z = x − y above. We also have

∇hgε(x, −v) =
∫
R

n
ηε(y)∇hg(x − y, −v) dy = −

∫
R

n
ηε(x − z − hv)∇hg(z, v) dz,

where we now use the change of variables z = x − y − hv. Therefore

∇2
h gε(x, v) = 1

h
(∇hgε(x, v) + ∇hgε(x, −v))

= −
∫
R

n
∇hηε(x − z, −v)∇hg(z, v) dz.

Therefore,

|∇2
h gε(x, v)| ≤

∫
B(x,ε)∪B(x−hv,ε)

|∇hηε(x − z, −v)||∇hg(z, v)| dz ≤ C

ε
Lip(g)|v|2.

Since F has width N, it follows that

|F(∇2
h gε(x))| = |F(∇2

h gε(x)) − F(0)| ≤ LipN(F)‖∇2
h gε‖N,ε ≤ C

ε
LipN(F)Lip(g)N2. (2.19)

We also have that |g(y) − g(x)| ≤ |y − x| + √
dh, and so

|gε(x) − g(x)| =
∣∣∣∣
∫

B(x,ε)

ηε(x − y)(g(y) − g(x)) dy

∣∣∣∣
≤
∫

B(x,ε)

ηε(x − y)|g(y) − g(x)| dy

≤ Lip(g)(ε+ √
dh).

Combining this with (2.19) we have

|gε(x) + F(∇2gε(x)) − g(x)| ≤ Lip(g)(ε+ √
dh) + C

ε
LipN(F)Lip(g)N2.

Choosing ε= N
√

LipN(F) yields

|gε(x) + F(∇2gε(x)) − g(x)| ≤ CLip(g)
(

N
√

LipN(F) + h
)

.
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By the comparison principle, Theorem 2.3, we have

gε − CLip(g)
(

N
√

LipN(F) + h
)

≤ u ≤ gε + CLip(g)
(

N
√

LipN(F) + h
)

,

which completes the proof. �
To study further properties of u, we need some additional definitions.

Definition 2.6. We say that F:Hn →R is convex if for all X, Y ∈Hn and λ ∈ [0, 1] we have

F(λX + (1 − λ)Y) ≤ λF(X) + (1 − λ)F(Y).

Definition 2.7. We say that u:Zn
h →R is convex if ∇2

h u(x) ≥ 0 for all x ∈Z
n
h.

We note that by (2.4), the convexity of u is equivalent to the inequality

u(x) ≤ 1

2
(u(x + hv) + u(x − hv))

holding for all x ∈Z
n
h and v ∈Z

n. We also note that the choice of F given in (2.7) is convex.
We also consider a permutation invariance property.

Definition 2.8. We say u:Zn
h →R is permutation invariant if u ◦ σ = u for all permutations σ on

{1, . . . , n}.
Definition 2.9. We say F:Hn →R is permutation invariant if F(X ◦ σ ) = F(X) for all X ∈Hn and all
permutations σ on {1, . . . , n}.
We note that F given in (2.7) is permutation invariant.

Finally, we also study translation properties.

Definition 2.10. For v ∈Z
n, we say u:Zn

h →R satisfies the v-translation property if there exists a
constant cv such that

u(x + sv) = u(x) + cvs (2.20)

for all x ∈Z
n
h and s ∈R such that sv ∈Z

n
h.

The next lemma shows that these properties for u are inherited from F and g.

Lemma 2.11. Assume F is monotone, has width N, and satisfies F(0) = 0. Assume g satisfies (2.12) and
let u:Zn

h →R denote the unique solution of (2.6). The following hold:

(i) If F and g are convex, then u is convex.
(ii) If F and g are permutation invariant, then u is permutation invariant.
(iii) If g satisfies the v-translation property with constant cv, then u does as well.

Proof. (i) Let v ∈Z
n and define

w(x) = 1

2
(u(x + hv) + u(x − hv)).
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Then for x ∈Z
n
h we compute, using the convexity of F, that

w(x) − F(∇2
h w(x)) = 1

2
u(x + hv) + 1

2
u(x − hv) − F

(
1

2
∇2

h u(x + hv) + 1

2
∇2

h u(x − hv)

)

≥ 1

2
u(x + hv) + 1

2
u(x − hv) − 1

2
F(∇2

h u(x + hv)) − 1

2
F(∇2

h u(x − hv))

= 1

2
g(x + hv) + 1

2
g(x − hv)

= h2

2
∇2

h g(x, v) + g(x)

≥ g(x),

where the last line follows from the convexity of g. By Theorem 2.3 we have w ≥ u, and so

∇2
h u(x, v) = 2

h2
(w(x) − u(x)) ≥ 0

for all x ∈Z
n
h. Since v ∈Z

n is arbitrary, we have ∇2
h u(x) ≥ 0 for all x ∈Z

n, hence u is convex.
(ii) Let σ be a permutation and set w = u ◦ σ . Then we have

w(x) − F(∇2
h w(x)) = u(σ (x)) − F(∇2

h (u ◦ σ )(x)).

We note that for any v ∈Z
n we have ∇2

h (u ◦ σ )(x, v) = ∇2
h u(σ (x), σ (v)). Therefore ∇2

h (u ◦ σ )(x) =
∇2

h u(σ (x)) ◦ σ . Since F is permutation invariant we have

F(∇2
h (u ◦ σ )(x)) = F(∇2

h u(σ (x)) ◦ σ ) = F(∇2
h u(σ (x))).

Therefore,

w(x) − F(∇2
h w(x)) = u(σ (x)) − F(∇2

h u(σ (x))) = 0.

By uniqueness of the solution u of (2.6), we have w = u, which completes the proof.
(iii) Let s ∈R such that sv ∈Z

n
h, and define w(x) = u(x + sv) − cvs. Then,

w(x) − F(∇2
h w(x)) = u(x + sv) − cvs − F(∇2

h u(x + sv)) = g(x + sv) − cvs = g(x).

Since the solution of (2.6) is unique, we have w = u, which completes the proof. �

2.3 Convergence rates

In this section, we prove convergence of the numerical scheme (2.6) towards the viscosity solution of
the second-order degenerate elliptic equation

u − F(∇2u) = g on R
n. (2.21)

As before, we assume F:Hn →R, and we interpret F(X) for an n × n symmetric matrix X as

F(X) := F(v �→ vTXv).

We recall the definitions of viscosity solutions in Appendix A. Throughout this section, we will use the
notation USC(O) (resp. LSC(O)) for the set of functions that are upper (resp. lower) semicontinuous
at all points in O⊂R

n. For more details on the theory of viscosity solutions, we refer the reader to the
user’s guide [19] and [10].

Existence and uniqueness of a linear growth viscosity solution to (2.21) is standard material for
viscosity solutions, and proofs can be found in [10, 19]. For use later on, we recall the comparison
principle for (2.21) in Lemma 2.12 below. The proof of this result is standard in viscosity solution
theory; a self-contained proof can be found in [10, Lemma 12.17].

Lemma 2.12. Assume F is uniformly continuous, monotone, has width N, and satisfies F(0) =
0. Let u ∈ USC(Rn) be a viscosity subsolution of (2.21) and let v ∈ LSC(Rn) be a viscosity
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supersolution of (2.21). If

lim
|x|→∞

u(x) − v(x)

|x|2
= 0 (2.22)

then u ≤ v on R
n.

Using this comparison principle and the Perron method, we can prove existence of a linear growth
solution (Theorem 2.13 below). The application of the Perron method is standard and a self-contained
proof can be found in [10, Theorem 12.18].2

Theorem 2.13. Assume F is monotone, has width N, and satisfies F(0) = 0. Assume g is Lipschitz
continuous and there exists Cg > 0 such that

|g(x)| ≤ Cg(1 + |x|). (2.23)

Then there exists a unique viscosity solution u ∈ C(Rn) of (2.21) satisfying

lim
|x|→∞

u(x)

|x|2
= 0.

Furthermore, there exists C> 0 such that

|u(x)| ≤ C(1 + |x|). (2.24)

Convergence of the discrete scheme (2.6) to the PDE (2.21) is a standard result in viscosity solution
theory. We state the theorem in the following result and briefly sketch the proof.

Theorem 2.14. Assume F is monotone, has width N, and satisfies F(0) = 0. Assume g:Rn →R is
Lipschitz continuous and satisfies (2.23). Let uh be the solution of (2.6) and let u be the viscosity solution
of (2.21). Then uh converges to u locally uniformly as h → 0, that is for all R> 0 we have

lim
h→0

max
x∈Zn

h|x|≤R

|uh(x) − u(x)| = 0. (2.25)

Proof. By Lemma 2.5 (i), we have Lip(uh) ≤ Lip(g). By the Arzelá-Ascoli Theorem there exists a
Lipschitz continuous function u:Rn →R such that, upon passing to a subsequence uhk , we have

lim
k→∞

max
x∈Zn

hk|x|≤R

|uhk (x) − u(x)| = 0

for all R> 0. The proof will be completed by showing that u is a viscosity solution of (2.21). By
uniqueness of viscosity solutions of (2.21), the whole sequence uh converges locally uniformly to u.

We verify the subsolution property for u; the supersolution property is similar. Let x0 ∈R
n and ϕ ∈

C∞(Rn) such that u − ϕ has a local maximum at x0. Without loss of generality, we can assume x0 is a
strict global maximum of u − ϕ. It follows that there exists xk → x0 such that uhk − ϕ attains its maximum
over Zn

hk
at xk. Therefore ∇2

h uhk (xk, v) ≤ ∇2
hϕ(xk), and since F is monotone we have

u(xk) − F(∇2
hk
ϕ(xk)) ≤ ϕ(xk) − F(∇2

h uhk (xk)) = u(xk) − uhk (xk) − g(xk).

Sending k → ∞ we obtain

u(x0) − F(∇2ϕ(x0)) ≤ g(x0),

which completes the proof. �
If we have additional regularity for the solution u of (2.21), we can prove convergence rates. We recall

the Ck,1 seminorm of u:Rn →R is defined by

[u]Ck,1(Rn) =
∑

1≤|α|≤k

Lip(Dαu).

2In fact, the proofs do not require Lipschitzness; uniform continuity is sufficient.
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Theorem 2.15. Assume F is monotone, has width N, and satisfies F(0) = 0. Assume g:Rn →R is
Lipschitz continuous and satisfies (2.23). Let uh be the solution of (2.6) and let u be the viscosity solution
of (2.6). If [u]Ck,1(Rn) <∞ for k = 2 or k = 3, then we have

‖u − uh‖∞ ≤ CLipN(F)[u]Ck,1(Rn)N
k+1hk−1 (2.26)

Proof. By Taylor expansion, we have

|∇2
h u(x, v) − vT∇2u(x)v| ≤ C[u]Ck,1(Rn)|v|k+1hk−1.

Therefore,

|F(∇2
h u(x)) − F(∇2u(x))| ≤ CLipN(F)[u]Ck,1(Rn)N

k+1hk−1 = :ε.

It follows that

u(x) − F(∇2
h u(x)) ≤ u(x) − F(∇2u(x)) + ε= g(x) + ε for x ∈Z

n
h.

By Theorem 2.3, we have u ≤ uh + ε on Z
n
h. The opposite inequality is obtained similarly. �

From the convergence results in Theorems 2.14 and 2.15, we immediately obtain that all the
properties of the discrete solutions proved in Section 2.2 extend to the viscosity solution u.

Proposition 2.16. Assume F is monotone, has width N, and satisfies F(0) = 0. Assume g:Rn →R is
Lipschitz continuous and satisfies (2.23). Let u be the viscosity solution of (2.6). Then the following
hold.

(i) u is Lipschitz continuous and Lip(u) ≤ Lip(g).
(ii) If F ≥ 0 then u ≥ g on R

n.
(iii) There exists a constant C> 0 such that

‖u − g‖∞ ≤ CNLip(g)
√

LipN(F). (2.27)

(iv) If F and g are convex, then u is convex.
(v) If F and g are permutation invariant, then u is permutation invariant.
(vi) If g satisfies the v-translation property with constant cv, then u does as well.

We note that in (iv), the notion of convexity for F is the same as in Definition 2.6, while for u it is the
usual one for functions on R

n, that is

u(λx + (1 − λ)y) ≤ λu(x) + (1 − λ)u(y).

In (v), the definition of permutation invariance for u:Rn →R is identical to Definition 2.8; namely u =
u ◦ σ . The translation property is defined similarly, but is slightly different so we give the definition
below for functions on R

n.

Definition 2.17. For v ∈R
n, we say u:Rn →R satisfies the v-translation property if there exists a

constant cv such that (2.20) holds for all x ∈R
n and s ∈R.

The proof of Proposition 2.16 follows from Lemmas 2.5 and 2.11, and the convergence result in
Theorem 2.14.

2.4 Restricting the domain

In order to compute the solution of the discrete scheme (2.6) on an unbounded domain Z
n
h, it is necessary

to restrict the domain to a compact set. In this section, we study restrictions of (1.3) to computational
domains of the form�T ,h := [− T , T]n ∩Z

n
h. In this section, we always assume T = mh for some integer

m ≥ 1. We define the width N boundary as

∂N�T ,h = {x ∈Z
n
h \�T ,h : there exists y ∈�T ,h with |x − y|∞ ≤ N}. (2.28)
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We set a Dirichlet boundary condition on ∂N�T ,h and show that this condition affects the solution only
near the boundary, and the solution remains accurate in the interior of �T ,h.

In this section, we study the equation

u − F(∇2
h u) = g on �T ,h, (2.29)

which is the restriction of (2.6) to the computational domains �T ,h. We first recall the comparison
principle for (2.29).

Lemma 2.18. Assume F is monotone, has width N, and satisfies F(0) = 0. Let u, v:Zn
h →R satisfy

u − F(∇2
h u) ≤ v − F(∇2

h v) on �T ,h (2.30)

and u ≤ v on ∂N�T ,h. Then u ≤ v on �T ,h.

Proof. Let x0 ∈�T ,h ∪ ∂N�T ,h be a point where u − v attains its maximum value over �T ,h ∪ ∂N�T ,h. If
x0 ∈ ∂N�T ,h then u ≤ v, so we may assume x0 ∈�T ,h. In this case we have ∇2

h u(x0, v) ≤ ∇2
h v(x0, v), and

since F is monotone, we obtain

u(x0) − v(x0) ≤ F(∇2
h u(x0)) − F(∇2

h v(x0)) ≤ 0.

This completes the proof. �
We now establish localization of solutions of (2.29).

Theorem 2.19. Assume F is monotone, has width N, and satisfies F(0) = 0. Let u, v:Zn
h →R satisfy

(2.30). Then for any α ∈ (0, 1) we have

max
�αT ,h

(u − v) ≤ CLipN(F)N2

(1 − α)2T2

(
log

(
T2

LipN(F)N2

)2

+ 1

)
max
∂N�T ,h

(u − v). (2.31)

Remark 2.20. The estimate (2.31) in Theorem 2.19 shows that the Dirichlet boundary conditions on
∂N�T ,h have a limited domain of influence on the solution in �T ,h when T > 0 is large. Indeed, if we fix,
say, α = 1

2
, and if u, v:Zn

h →R are solutions of (2.29), then u and v satisfy (2.30) with equality, and so
it follows from two applications of Theorem 2.19, applied to u − v and v − u, that

max
�T/2,h

|u − v| ≤ C log (T)2

T2
max
∂N�T ,h

|u − v|, (2.32)

holds, where C depends on LipN(F) and N, and T ≥ 3. This shows that errors in the Dirichlet condition
on ∂N�T ,h can be tolerated numerically, provided T > 0 is large enough. For example, by Lemma 2.5
(iii), we can set u = g on ∂N�T ,h and obtain an O( log (T)2/T2) approximation of the solution of (2.21)
on the interior domain �T/2,h. We show how to obtain even more accurate solutions with better choices
of boundary conditions in Section 3.1.

Proof. Let μ= max∂N�T ,h (u − v) and define

w(x) = v(x) + γ +μ

n∑
i=1

(
eλ(

xi
T −1) + e−λ( xi

T +1)
)

(2.33)

for parameters λ, γ > 0 to be determined. For x ∈ ∂N�T ,h, there exists i such that xi ≥ T or xi ≤ −T , and
so w(x) ≥ v(x) +μ≥ u(x). Note that we have

|F(∇2
h w) − F(∇2

h v)| ≤ LipN(F)‖∇2
h w − ∇2

h v‖N,∞ ≤ CLipN(F)
μλ2N2

T2
.

Choosing γ = CLipN(F)μλ2N2T−2 we find that

w(x) − F(∇2
h w(x)) ≥ v(x) + γ − F(∇2

h v(x)) − CLipN(F)μλ2N2T−2 ≥ 0.
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By Lemma 2.18 we have w ≥ u on �T ,h, and so

u(x) − v(x) ≤ γ +μ

n∑
i=1

(
eλ(

xi
T −1) + e−λ( xi

T +1)
)

for all x ∈�T ,h. For x ∈�αT ,h with α ∈ (0, 1) we have

u(x) − v(x) ≤ γ + 2nμe−λ(1−α).

Choosing λ so that (1 − α)λ= log
(

T2

LipN (F)N2

)
completes the proof. �

3. Numerical analysis of the prediction PDE

This section is concerned with numerical analysis specific to the prediction from expert advice numerical
scheme

u(x) − 1

2
max
v∈Bn

∇2
h u(x, v) = g(x) for x ∈Z

n
h. (3.1)

In particular, we show in Section 3.1 how to use the translation property (2.20) to reduce the dimension
by one, and in Section 3.2, we show how to reduce the computational domain to a sector where the
coordinates are ordered.

3.1 Reducing the dimension

We show here how to reduce the problem from n dimensional to n − 1 dimensional. This requires the
translation property (2.20) and is based on the following lemma.

Lemma 3.1. Suppose u satisfies the translation property (2.20) with v = 1 and cv = 1. Then for all
v ∈Bn we have

∇2
h u(x, v) = ∇2

h u(x, 1− v). (3.2)

Proof. By assumption we have

u(x + s1) = u(x) + s (3.3)

for all s ∈Zh and x ∈Z
n
h. We now compute, using (3.3), that

h2∇2
h u(x, v) = u(x + hv) − 2u(x) + u(x − hv)

= u(x + hv − h1) + h − 2u(x) + u(x − hv + h1) − h

= u(x − h(1− v)) − 2u(x) + u(x + h(1− v))

= h2∇2
h u(x, 1− v),

which completes the proof. �
For x ∈R

n−1 and a ∈R we define (x, a) ∈R
n by

(x, a) = (x1, x2, . . . , xn−1, a).

The next lemma shows how we can use the translation property (2.20) to reduce (3.1) to a similar
equation in one less variable.

Lemma 3.2. Let u be the solution of (3.1) and suppose u satisfies the translation property (2.20) with
v = 1 and cv = 1. Define w, f :Zn−1

h →R by w(x) := u(x, 0) and f (x) = g(x, 0). The following hold.

(i) The function w satisfies

w(x) − 1

2
max

v∈Bn−1
∇2

h w(x, v) = f (x) for all x ∈Z
n−1
h . (3.4)
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(ii) If g is permutation invariant, then so is w, and furthermore w satisfies

w(x) = w (x − xi(1+ ei))+ xi for all x ∈Z
n−1
h and i = 1, . . . , n − 1. (3.5)

Proof. By Lemma 3.1, for any x ∈Z
n−1
h we have

max
v∈Bn

∇2
h u((x, 0), v) = max

v∈Bn−1
∇2

h u((x, 0), (v, 0)) = max
v∈Bn−1

∇2
h w(x, v).

Since u satisfies (3.1) we have

w(x) − 1

2
max

v∈Bn−1
∇2

h w(x, v) = g(x, 0) = f (x),

which completes the proof.
(ii) Since g is permutation invariant, so is u (by Lemma 2.11) and hence w. Let σij denote the per-

mutation swapping coordinates i and j. Let x ∈R
n−1 and let y = (x, 0). For any 1 ≤ i ≤ n − 1 we use the

translation property and permutation invariance to obtain

w(x) = u( (x, 0) ) = u ((x, 0) − xi1)+ xi

= u ((x − xi1, −xi))+ xi

= u
(
σi,n (x − xi1, −xi)

)+ xi

= u (x − xi1− xiei, 0)+ xi

= w (x − xi1− xiei)+ xi,

which completes the proof. �
By Lemma 3.2 and Remark 2.20, we may instead solve the equation⎧⎨

⎩w(x) − 1

2
max

v∈Bn−1
∇2

h w(x, v) = g(x, 0), if x ∈�T ,h

w(x) = g(x, 0), if x ∈ ∂1�T ,h

(3.6)

in dimension n − 1, where we take T = mh to be a multiple of the grid resolution. Provided we restrict
our attention to the localized interior set �αT ,h for some α ∈ (0, 1), then as per Remark 2.20 we incur an
O(1/T2) error term, up to logarithmic factors.

3.2 Reducing the domain to a sector

It turns out that in addition to reducing the dimension of the equation from n to n − 1, we can also
drastically reduce the size of the computational grid by restricting our attention to the sector

Dn = {x ∈Z
n
h : x1 ≥ x2 ≥ · · · ≥ xn}, (3.7)

and the positive sector

D
+
n = {x ∈Dn : xn ≥ 0}. (3.8)

Whenever g is permutation invariant, e.g., the max-regret g(x) = max{x1, . . . , xn}, the solution u of (3.1)
and the reduced solution w(x) = u(x, 0) are also permutation invariant. As we show in this section, this,
combined with the translation property, or (3.5), allows us to reduce the domain of the discrete PDE
(3.1) to D

+
n , which is drastically smaller than the full computational grid �T ,h.

In order to do this in a computational setting, for x ∈D
+
n−1 and v ∈Bn−1, we need to be able to evaluate

w(x + v) and w(x − v) in terms of only the values of w within the positive sector D+
n−1. This will allow us

to evaluate the discrete second derivative ∇2
h w(x, v) without reference to the values of u outside of Dn−1

+ .
To do this, we need to define two operations. First, let πn:Rn →R

n be the sorting function that sorts the
coordinates of an n-dimensional vectors. Thus, πn(Zn

h) =Dn. We also define the function ξ :Dn →R
n by

https://doi.org/10.1017/S0956792525000075 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000075


European Journal of Applied Mathematics 19

ξn(x) =
{

x, if x ∈D
+
n ,

x + h(1+ ei), where x1, . . . , xi−1 ≥ 0> xi ≥ · · · ≥ xn.
(3.9)

To indicate the cases above, we write

1ξn (x) =
{

0, if ξn(x) = x

1, otherwise.

The following lemma shows how to evaluate w(x ± v) within the positive sector D+
n−1.

Lemma 3.3. Suppose w:Zn−1
h →R is permutation invariant and satisfies (3.5). Let T > 0, x ∈D

+
n−1 ∩

[0, T − h]n−1 and v ∈Bn−1. Then the following hold.

(i) For y := πn−1(x + hv) we have y ∈D
+
n−1 ∩ [0, T]n−1 and w(x + hv) = w(y).

(ii) For y := πn−1(x − hv) we have ξn−1(y) ∈D
+
n−1 ∩ [0, T]n−1 and

w(x − hv) = w(ξn−1(y)) − h1ξn−1 (y).

Proof. Part (i) follows directly from the permutation invariance of w and that v is a binary vector.
For part (ii), let y = πn−1(x − hv) ∈Dn−1. If y ∈D

+
n−1, then ξn−1(y) = y, 1ξn−1 (y) = 0, and the result

follows from the permutation invariance of w, as in part (i). If y �∈D
+
n−1, then ξn−1(y) �= y and 1ξn−1 (y) = 1.

Since x ∈D
+
n−1 we must have

y1 ≥ · · · ≥ yi−1 ≥ 0>−h = yi = · · · = yn−1,

for some 1 ≤ i ≤ n − 1. Therefore

ξn−1(y) = y + h(1+ ei) = y − yi(1+ ei),

and so by (3.5) and the permutation invariance of w we have

w(x − hv) = w(y) = w(ξn−1(y)) + yi = w(ξn−1(πn−1(x − hv))) − h,

which completes the proof. �
Lemma 3.3 allows us to restrict the reduced n − 1 dimensional equation for w to the sector D+

n−1,
yielding the equation⎧⎨

⎩w(x) − 1

2
max

v∈Bn−1
∇2

h w(x, v) = g(x, 0), if x ∈D
+
n−1 ∩ {x1 ≤ T − h}

w(x) = g(x, 0), if x ∈D
+
n−1 ∩ {x1 = T},

(3.10)

where T = mh is a multiple of the grid resolution. By Lemma 3.3 we can compute the derivative
∇2

h w(x, v) for x ∈D
+
n−1 ∩ {x1 ≤ T − h} via

∇2
h w(x, v) = w(y+) + w(ξn−1(y−)) − h1ξn−1 (y−) − 2w(x)

h2
, (3.11)

where y+ = πn−1(x + hv) and y− = πn−1(x − hv). By Lemma 3.3 the expression on the right-hand side of
(3.11) involves evaluating w only at points in the sector D+

n−1 ∩ {x1 ≤ T}. This is essentially equivalent
to setting boundary conditions on the sector D+

n−1, though the explicit identification of those boundary
conditions is a complicated task that we do not undertake here.

Now, the number of grid points in the full computational grid [− T , T]n ∩Z
n
h grows exponentially in

the dimension n as O((2Th−1)n), which is known as the curse of dimensionality. However, the number
of grid points in the sector D+

n−1 ∩ {x1 ≤ T} grows much slower in n, as the following lemma shows.

Lemma 3.4. Let Gn,T denote the number of grid points in the sector D+
n ∩ {x1 ≤ T}, where T = mh with

m a positive integer. Then Gn,T ≤ 1
n! (Th−1 + n)n.
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Proof. Let T = mh and define

am,n =
m∑

i1=0

i1∑
i2=0

· · ·
in−2∑

in−1=0

in−1∑
in=0

1. (3.12)

Note that Gn,T = am,n. Hence, the proof boils down to showing that am,n ≤ 1
n! (m + n)n. We will prove this

with induction on n, using the recursive identity

am,n =
m∑

i=0

ai,n−1,

which follows directly from (3.12). For the base step of n = 1, we have am,1 = m + 1 by direct computa-
tion. For the inductive step, assume that for some n ≥ 1 and all m we have am,n ≤ 1

n! (m + n)n. Then we
compute

am,n+1 =
m∑

i=0

ai,n ≤
m∑

i=0

1

n! (i + n)n ≤
∫ m+1

0

1

n! (x + n)n dx = 1

(n + 1)! (m + n + 1)n+1,

which completes the inductive step and hence the proof. �
If we choose h small enough so that n ≤ Th−1, then the bound in Lemma 3.4 implies

Gn,T ≤ (2Th−1)n

n! .

This is a factor of n! smaller than the number of grid points on the full computational domain [− T , T]n ∩
Z

n
h, which reflects the exponentially small size of the sector D+

n . In order to understand better how Gn,T

scales with n in Lemma 3.4, we use a version of Stirling’s formula n! ≥ √
2πn(n/e)n [41] to obtain

Gn,T ≤ 1

n! (Th−1 + n)n ≤ en

√
2πn

(1 + Th−1n−1)n ≤ en+Th−1

√
2πn

.

While this complexity is still exponential in n and h−1, these two quantities do not directly interact. For
example, with the full grid [− T , T]n ∩Z

n
h, increasing from n to n + 1 dimensions requires a factor of

O(h−1) more grid points, while for the sector D+
n ∩ {x1 ≤ T} we require at most e times as many grid

points, which is independent of the grid resolution h. However, it is important to point out that the curse
of dimensionality is not overcome. It is rather more accurate to say that we have postponed the curse to
larger values of n. For example, in Section 4, we conduct experiments with up to n = 7 experts, using
the reduced computational grid in dimension n − 1 = 6, with a grid resolution of h = 0.1. Using the full
computational grid we are only able to compute solutions of the n = 4 expert problem, on the reduced
n − 1 = 3 dimensional grid.

Remark 3.5. It is important to point out that the computational costs are more expensive than the
memory required to store the grid, since we must compute the maximum over v ∈Bn in the operator,
which is a maximum over 2n directions. Thus, the computational cost admits an additional 2n factor
over the memory costs.

4 Numerical results

In this section, we present numerical results for n = 2 up to n = 10 experts. In all cases, we solve the
reduced equation (3.4) for w(x) = u(x, 0), which is a problem in n − 1 dimensions. In Section 4.1 we
present experiments on the full computational grid, while in Section 4.2 we present results on the smaller
and more efficient sector grid. In each case, to solve the equation w − F(∇2

h w) = g, we iterate the fixed
point scheme

wk+1 = (1 − dt)wk + dt(F(∇2
h wk) + g) (4.1)
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(a)

(b)

Figure 1. Plots of the numerical solution w versus the true solutions for n = 2 and n = 3 experts.

until

|w − F(∇2
h w) − g| ≤ h2

100
.

In this section, we use F defined in (2.7). In all cases, we use T = 5 and restrict the
solutions to the unit box [0, 1]n−1. The code for all experiments is available on GitHub:
https://github.com/jwcalder/PredictionPDE.

4.1 Full computational grid

We first present results on the full computational grid, so we solve the equation (3.6). Due to the curse
of dimensionality, we can only solve the equation for n = 2, 3, 4 experts. The finest grid we used was
h = 0.01 for n ≤ 3 and h = 0.025 for n = 4. In Figure 1 we show plots of the numerical solutions versus
the true solutions for n = 2, 3 experts. Since we solve the reduced d = n − 1 dimensional equation, these
are PDEs in d = 1 and d = 2 dimensions. The n = 2 expert solution is accurate on the full domain [− 5, 5]
since the boundary condition u( ± 5) = max{5, 0} is exponentially accurate; see (1.6). For n = 3 experts,
the solution loses accuracy away from the restricted domain [− 1, 1]2.

In Figure 2 (a) we show a convergence analysis for varying grid resolution h for n = 2, 3, 4 experts,
where the exact solutions of the PDEs are known. In all cases, we observe second-order O(h2) conver-
gence rates. Figure 2 also shows the optimality of each adversarial strategy. We define the optimality of
strategy v ∈Bn−1 at a grid point x by the ratio

opt(x, v) = ∇2
h w(x, v)

maxp∈Bn−1 ∇2
h w(x, p)

= ∇2
h w(x, v)

2(u(x) − g(x, 0))
.
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(a) (b)

(c) (d)

Figure 2. Convergence rates and optimal strategies for n = 2, 3, 4 experts, computed from the numerical
solutions. The dashed red line indicates the COMB strategy, which is numerically observed to be optimal
for n = 2, 3, 4 experts, as the theory predicts.

An optimality value of opt(x, v) = 1 indicates that strategy v is optimal at grid point x. In order to measure
the optimality of all the competing strategies, we plot the minimum, maximum, and average optimality
values over the intersection of the computational grid with the positive sector D+

n−1. Since the solution
is permutation invariant, the scores are the same in all other sectors. If the minimum score is 1, up to the
numerical precision O(h2), then that strategy is globally optimal over the unit box [− 1, 1]n−1. In Figure 2
we denote the strategies, which are binary vectors, by the decimal number that strategy corresponds to,
and we indicate the COMB strategy with a dashed red line. Since v and 1− v are equivalent strategies,
we only show the optimality scores for the first half of the strategies; the plot for the second half is a
mirror image of the plots shown.

In Figure 2 (b), we see that strategies 1 = (0, 1) and 2 = (1, 0) are optimal, both of which correspond to
the COMB strategy. In Figure 2 (c), we see that for n = 3 experts, the COMB strategy 2 = (0, 1, 0) is opti-
mal, as well as the non-COMB strategy 3 = (0, 1, 1). In this case, we recall that the complement strategies
(1, 0, 1) and (1, 0, 0) are equivalent, and hence also optimal, but are not depicted. For n = 4 experts in
Figure 2 (d), we see that the COMB strategy 5 = (0, 1, 0, 1) is optimal, as well as the non-COMB strat-
egy 6 = (0, 1, 1, 0). All of these results have already been established theoretically in previous work; see
Section 1.1. We presented these results to verify that the numerical solvers are working properly and
give results that agree with previous work.

We are unable to solve the PDE (3.6) for w on a full computational grid for the n = 5 expert problem,
so for this we must resort to the sparse grid method that restricts attention to the positive sector.
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(a)

(b)

Figure 3. Numerical computation of strategy optimality for the n = 5, 6 expert problems.

4.2 Sparse grids

We now turn to computations on the positive sector D+
n−1 ∩ [0, T]n−1, which is far smaller than the full

grid and allows us to run experiments for n = 5, 6, 7, 8, 9, 10 experts. In this case, we are solving equation
(3.10) using the methods described in Section 3.2. To facilitate computations, we flatten the sectorD+

n−1 ∩
[0, T]n−1 to a one-dimensional array, and store the solution w as a one-dimensional array with linear
indexing. We pre-computed and stored the stencils for second derivatives in all directions v ∈Bn−1 using
the methods outlined in Section 3.2 prior to the running the iteration (4.1) to solve the equation. All code
is written in Python using the Numpy package and fully vectorized operations.

We used grid resolutions of h = 0.025 for n = 5, h = 0.05 for n = 6 and h = 0.1 for n = 7, h = 0.2
for n = 8, h = 0.25 for n = 9, and h = 0.35 for n = 10 experts. Table 1 shows the number of grid points
used in each dimension, compared to the number of grid points that would be required on the full grid.
The simulations required between 25 GB and 75 GB of memory and each took less than one day to run
on a single processor. Figures 3, 4, and 5 show the numerically computed optimality of the adversary’s
strategies for n = 5, 6, 7, 8, 9, 10 experts. In all cases, we have strong numerical evidence to indicate that
the COMB strategy is not globally optimal. This corroborates numerical evidence from [17] for n = 5.

We have strong numerical evidence in Figure 3 that the strategy 11 = (0, 1, 0, 1, 1) is optimal for the
n = 5 expert problem over the box [− 1, 1]5. Furthermore, the numerical evidence points to this being the
only optimal strategy, over the unit box, for n = 5 experts. The minimum optimality score for strategy 11
is 0.9999999999991459, which is far more accurate than the second-order O(h2) accuracy for h = 0.05
would suggest. The second best competing strategy is 13 = (0, 1, 1, 0, 1) with a minimum optimality
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Table 1. Number of grid points in the sector computational domain D
+
d ∩ [0, 5]d

compared to the full grid Z
d
h ∩ [− 5, 5]d. We use fewer grid points as the dimension

increases since evaluating the PDE involves computing derivatives in 2d directions, so
the computational time and memory storage increase exponentially with d

Dimension (d = n − 1) Grid resolution h Sector D+
d ∩ [0, 5]d Full grid Z

d
h ∩ [− 5, 5]d

4 0.025 7 × 107 3 × 1010

5 0.050 1 × 108 3 × 1011

6 0.100 3 × 107 1 × 1012

7 0.200 3 × 106 8 × 1011

8 0.250 3 × 106 7 × 1012

9 0.350 8 × 105 1 × 1013

(a)

(b)

Figure 4. Numerical computation of strategy optimality for the n = 7, 8 expert problems.

score of 0.966, which is well outside the range of numerical precision, suggesting that strategy 13 is not
globally optimal.

The remaining plots in Figures 3, 4, and 5 provide very strong numerical evidence that there are no
globally optimal adversarial strategies for n = 6, 7, 8, 9, 10 experts. The highest minimum optimality
scores are well outside of numerical precision. The one exception is the n = 10 expert problem, where
there are strategies with minimum optimality scores above 0.98, while the grid resolution of h = 0.35
yields h2 = 0.1225. However, we expect this is an artefact from using a very coarse grid. We observed a
similar phenomenon with n = 9 experts, where some strategies appeared more optimal on a coarse grid.
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(a)

(b)

Figure 5. Numerical computation of strategy optimality for the n = 9, 10 expert problems.

5 Conclusion and future work

This paper developed and analysed a numerical scheme to solve a degenerate elliptic PDE arising from
prediction with expert advice in relatively high dimensions (n ≤ 10) by exploiting symmetries in the
equation and solution. Based on numerical results, we are able to make a number of conjectures for the
optimality of various adversarial strategies in Section 1.2. Our results have some limitations; mainly we
are not able to solve the PDE on all of Rn, and so our results are restricted to the box [− 1, 1]n.

We expect these numerical methods could be extended to a few more experts, perhaps the n = 11 and
n = 12 expert problems, using parallel processing or computational clusters with vastly more memory.
The finite horizon problem should be amenable to similar techniques. There are also other prediction
with expert advice PDEs, in particular the history-dependent experts setting [12, 21], that would benefit
from numerical explorations. In terms of theory, we posed a number of conjectures and open problems
that stem from this work in Section 1.2 that would be interesting to explore in future work.
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A Definition of a viscosity solution

For convenience, we recall the definitions of viscosity solutions for a general second-order nonlinear
partial differential equation

H(∇2u, ∇u, u, x) = 0 in O, (A.1)

where H is continuous and O⊂R
n. Let USC(O) (resp. LSC(O)) denote the collection of functions that

are upper (resp. lower) semicontinuous at all points in O. We make the following definitions.
We first recall the test function definition of viscosity solution.

Definition A.1 (Viscosity solution).We say that u ∈ USC(O) is a viscosity subsolution of (A.1) if for
every x ∈O and every ϕ ∈ C∞(Rn) such that u − ϕ has a local maximum at x with respect to O

H(∇2ϕ(x), ∇ϕ(x), u(x), x) ≤ 0.

We will often say that u ∈ USC(O) is a viscosity solution of H ≤ 0 in O when u is a viscosity subsolution
of (A.1).

Similarly, we say that u ∈ LSC(O) is a viscosity supersolution of (A.1) if for every x ∈O and every
ϕ ∈ C∞(Rn) such that u − ϕ has a local minimum at x with respect to O

H(∇2ϕ(x), ∇ϕ(x), u(x), x) ≥ 0.

We also say that u ∈ LSC(O) is a viscosity solution of H ≥ 0 in O when u is a viscosity supersolution of
(A.1).

Finally, we say u is viscosity solution of (A.1) if u is both a viscosity subsolution and a viscosity
supersolution.

For more details on the rich theory of viscosity solutions, we refer the reader to the user’s guide [19]
and [10].
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