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PLANAR SUBLATTICES OF A FREE LATTICE. II 

IVAN RIVAL AND BILL SANDS 

In Planar sublattices of a free lattice, I [8] we verify Jonsson's conjecture for 
finite planar lattices; in particular we obtain a characterization of finite planar 
sublattices of a free lattice among all finite lattices. In the present paper we use 
arguments of a quite different flavour to obtain another characterization. Let 

& = {C2
3} U {Sn\n ^ 0} VJ {Llt L2j L2

d, L3, L8
d, U] U {L5, L8} 

be the family of lattices illustrated in Figures 1, 2, 3, and 4. Our goal is to prove 
the following theorem: a finite lattice is a planar sublattice of a free lattice if and 
only if it does not have a member of ̂  as a sublattice. 

C 2
3 

FIGURE 1 

1. Introduction, and plan of the proof. A lattice L is semidistributive if it 
satisfies the two conditions 

(SDv) a V b = a V c implies a V b = a V (b A c) 

and 

(SDA) a A b = a A c implies a A b = a A (b V c). 

Jônsson [3] has demonstrated that sublattices of a free lattice are semidistri­
butive. Some years earlier, Whitman [9] showed that sublattices of a free lattice 
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FIGURE 3 
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FIGURE 4 

satisfy the condition 

(W) a A b g c V d implies a A b ^ c, a A b g d, a S c V d, 

or b <k c V d. 

The celebrated conjecture of Jônsson (see [4]), alluded to at the beginning of 
this paper, asserts that a finite lattice is a sublattice of a free lattice if and only 
if it is semidistributive and satisfies (W). For the history of this conjecture we 
refer the reader to [8]. 
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20 I. RIVAL AND B. SANDS 

FIGURE 5 

Let A 3 be the partial ly ordered set of Figure 5, let 3? = {Rn\n ^ 0} be the 
family of part ial ly ordered sets i l lustrated in Figure 6, and let£f = {Sn\n ^ 0) 
be the family of lattices i l lustrated in Figure 2. Most of the rest of this paper 
is devoted to the proof of the following two results. 

T H E O R E M 1.1. A finite semidistributive lattice is planar if and only if it docs 
not contain a member of [A?,] \J 3i as a subset. 

T H E O R E M 1.2. Let L be a finite semidistributive lattice satisfying (W). Then L 
contains a member of {A?,) \J 3% as a subset if and only if L contains a member 
of {C2

3} VJ Sf as a sublattice. 

We recall two theorems in the spirit of Theorem 1.6 below. The first is due to 
B. Davey, W. Poguntke , and I. Rival [2], and the second to R. Antonius and 
I. Rival [1]. 

T H E O R E M ' 1 . 3 . A finite lattice is semidistributive if and only if it does not con­
tain one of the lattices of Figure 3 as a sublattice. 

T H E O R E M 1.4. A finite semidistributive lattice satisfies (W) if and only if it does 
not contain one of the lattices of Figure 4 as a sublattice. 

Finally we quote the main result from [8]. 

T H E O R E M 1.5. A finite planar lattice is a sublattice of a free lattice if and only if 
it is semidistributive and satisfies (W). 

Combining the preceding five theorems yields the promised characterizat ion 
of finite planar sublatt ices of a free lattice. 

T H E O R E M 1.6. A finite lattice is a planar sublattice of a free lattice if and only if 
it does not contain a member of 3^ as a sublattice. 

Observe t ha t no member of # ~ is a sublat t ice of another member of J^~. I t 
follows tha t Theorem 1.6 is best possible, in the sense t ha t no lattice in J^~ may 
be omit ted. Also, while it is t rue t ha t the lattices Sn are all sublatt ices of a free 
lattice, this observation is not essential either to the s t a tement or the proof of 
the theorem. 

Theorem 1.6 provides an unexpected dividend. 
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FIGURE 6 

COROLLARY 1.7. Let L be a finite semidistributive lattice satisfying (W) and 
of breadth at most two. If L is subdirectly irreducible then L is planar. 

Combining Corollary 1.7 with Theorem 1.5 yields 

COROLLARY 1.8. Let L be a finite subdirectly irreducible lattice of breadth at 
most two. Then L is a sublattice of a free lattice if and only if L is semidistributive 
and satisfies (W). 
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22 I. RIVAL AND B. SANDS 

2. P r e l i m i n a r i e s . T h e breadth b(L) of a finite lat t ice L is the smallest integer 
b such t ha t every join V Ï Ï i %i of elements of L is equal to a join of b of the 
Xi's. For any integer w ^ 3, a crown of order 2w (Figure 7) is a part ial ly ordered 
set {xi, yu x2, y2, . . . , ffn, ;yw} in which 

xi < yu yi > X2, x2 < y2, y2 > x3, . . . , yn-\ > xn, xn < yn, and yn > xi 

are the only comparabil i ty relations. 

FIGURE 7. A crown of order 2n 

LEMMA 2.1. Let L be a finite semidistributive lattice. The following are equiva­
lent: 

(i) L contains no crown of order six; 
(ii) b(L) ^ 2; 

(iii) L contains no crown. 

Proof, (i) <=> (ii) is Lemma 3.4 of [5], while (ii) <=> (hi) is Lemma 2.4 of [8] 
together with Theorem 3.1 of [5]. 

L E M M A 2.2. Let L be a finite semidistributive lattice of breadth at most two, and 
let a, b, c G L. 

(i) If a V b = a V c = b V c, then {a, b, c] is not an antichain. 
(ii) Either a V b ^ c or a V c ^ b or b V c ^ a; in particular, 

{a V b, a V c, b V c) is not an antichain. 

Proof, (i) is the dual of Lemma 2.7(ii) of [8]. T o prove (ii), suppose t ha t 
aVb^c, aVc^b, and b V c ^ a. Then {a V b, a V c, b V c) is an 
antichain, and the join of any pair equals a V b V c, contradict ing (i). 

Let n be a positive integer. A down-down fence [6] of length 2n + 1 is a 
part ial ly ordered set {x\, 3/1, x2, y2, . . . , #*, 3V #n+i} m which 

ffi < yu y\ > x2} x2 < y2l y2 > x3, . . . , x„ < yn, yn > xn+1 

are the only comparabi l i ty relations (see Figure 8) . 

L E M M A 2.3. Let L be a finite semidistributive lattice of breadth at most two. Let n 
be an integer ^ 2 and let {%\, y\. x2j y2, . . . , xm yn, xn+i} be a down-down fence 
in L. Then 
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FIGURE 8. A down-down fence of length 2n + 1 

(i) Xi V xn+i > Xifor each i £ {I, . . . , n + 1} : and 
(ii) there exists i £ {2, . . . , n) such that x\ V xt < xi V x^+i awd x* V xn+i 

< xi V xn + i . 

Proof, (i) First let n = 2. Since Xi V x 2 :g 3/1 and x2 V x3 S y2, we have 
tha t Xi V x2 J x3 and x2 V x3 ^ Xi, and therefore Xi V x3 > x2 by Lemma 
2.2(ii). Proceeding by induction, assume the result is true for all integers k such 
t ha t 2 S k S n — 1. We certainly have tha t Xi V xn+i $ yt for 
any i £ {1, . . . , w}. Therefore, if Xi V xw+i ^ x?- for any z G {2, . . . , n}, the 
subset {xi, 3/1, x2, 3̂ 2, . . . , tfw, 3>w, #H+I> #1 V x„+i} of L is a crown, contradict ing 
Lemma 2.1. Hence we can find ^ £ {2, . . . , n) such tha t Xi V xn + i > Xj. Now 
by induction we have Xi V xn+i ^ Xi V xt > x;- for all j £ {1, . . . , i], and 
Xi V xn+i ^ Xt V x -̂j-i > xA for all k 6 {i, . . . , n + 1}, as claimed. 

(ii) When n — 2, x\ V x2 ^ Xi V x3 and x2 V x3 5g Xi V x3 follow from 
(i). Also, since Xi V x2 ^ yx and x2 V x3 ^ y2 we have Xi V x2 < Xi V x3 

and x2 V x3 < Xi V x3, as desired. Theiefore let w > 2. As above, xn V xw + i < 
Xi V xn+i\ it follows tha t if X\ V xn < Xi V xn+i we are done. Hence, since 
xn < Xi V xw.+i by par t (i), we assume xi V x„ = Xi V xn+i. By induction we 
choose j G {2, . . . , w — 1} such tha t Xi V x;- < Xi V xn = Xi V x^+ i and 
x;- V xn < Xi V xn+i. If xn V xn + i ^ x^ V xw, then x,- V xw = x^ V x n + i by 
(i), establishing (ii). Therefore let xn V xw+i be noncomparable to x;- V x„. 
We now have tha t {xi V Xj, Xj V xw, xn V xre+i} is an antichain, and (xi V Xj) 
V (Xj V xn) = Xi V xn+i = (xi V Xj) V (xn V xn + i ) ; from Lemma 2.2(i), 
Xj V xn + i = (Xj V xw) V (xn V xw+i) < Xi V xn+i, and (ii) follows. 

3. T h e proof of T h e o r e m 1.1. By the completion L ( P ) of a partially ordered 
set P to a lattice we shall mean the construction known variously as the 
"normal completion", "completion by cu ts" , or "MacNeil le complet ion"; 
recall t ha t a partially ordered set P is a subset of a lattice L exactly when L (P) 
is a subset of L. In [6], D. Kelly and I. Rival defined a family J$f of lattices 
with the property tha t a finite lattice L is planar if and only if L does not con­
tain a member of J£ as a subset. The family 

^ = {An\n ^ 0} U {5 , £ d , C, Cd, D, Dd} U {£„, £ / , Fn , Gn, # > è 0} 

of partially ordered sets, which (up to duali ty) is illustrated in Figure 9, 
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satisfies [L(P)\P € &\ = f£ (see [7]). Hence the following is an al ternate 
formulation of the Kelly-Rival result. 

T H E O R E M 3.1. A finite lattice is planar if and only if it does not contain a 
member of & as a subset. 

To begin the proof of Theorem 1.1, we first observe tha t if L is a finite planar 
lattice, L cannot contain a member of {^3} \J S% as a subset. Certainly 
^ 3 $£ L by Theorem 3.1. If RQ = {ai, «2, #3, bi, &2, &3, c} is contained in L, then 
so is {a2, a3, &2, &3, c, &i}, which is isomorphic to the partially ordered set B, 
contrary to Theorem 3.1. Finally if some 

Rn — { ^ 1 J ̂ 2 , . . . , <Vf3> &1> &2, • • • , ^n+3, C}, 

7Z ^ 1, is contained in L, then so is {ai, a2, . . . , <Vf2, 62, 63, . . . , frn+3> c}> which 
is isomorphic to Gn_i, again a contradiction. We have proven the "only if" 
direction of Theorem 1.1. 

The converse is a little more complicated, and will be established gradually. 

T H E O R E M 3.2. Let L be a finite semidistributive lattice of breadth at most two. 
(a) If L contains a member of {C, Cd, D} Dd] U {En, En

d, Fn\n ^ 0} as a 
subset then L contains B or Bd as a subset. 

(b) / / L contains Hn as a subset then L contains B, Bd, or Gm as a subset for 
some m S n. 

Proof, (a) We proceed through the list of partially ordered sets in (a) in the 
order given; a t each stage we will establish the existence of B or Bd in L, or 
(what is sufficient) we will exhibit in L a partially ordered set already con­
sidered. A similar s trategy will be adopted elsewhere in this paper. 

Case (i): C. 
Choose C — {a,b, c, d, e,f,g] Q L; observe tha t we may assume e A / = c, 

f A g = d, and c A d = a. By the dual of Lemma 2.3 (i), e A g = e A f A g 
= c A d = a. Next, if b A c $ d then {b, b A c, e, a, d, /} is a subset of L 
isomorphic to Bd

} as desired; hence we now let b A c ^ d and similarly 
b A d ^ c, which implies b A c = b A d. Thus bAg = bAfAg = 
bAd = bAc = bAfAe = bAe, and by (SDA) b A g = b A (e V g). I t 
follows tha t e V g ^ b, and so e V g ^ f. Hence {e, c,f, d, g, e V g} ~ Bd. 
Of course, a dual argument handles Cd. 

Case (ii): D. 
This one is easy. Let D = {a, b, c, d, e,f,g} Çz L\ by Lemma 2.2(i) and the 

symmetry of D we may assume tha t eVf<eVf\/g, t h a t is, e V / =£ g. 
Hence \e V / , g, e,f, a} d,b} = Cd, and by the previous case we are done. 

Case (iii): [En\n ^ 0}. 
Let n ^ 0 be minimal such tha t there is a subset of L isomorphic to either 

En or En
d. We first consider the case n = 0. 
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Withou t loss of generality, let E0 = {ai, a2, &i, b2, b%} c, d) Ç Z,. We may 
assume tha t &i A b2 = ai , b2 A bz = «2, &i V #2 = b2, b2 V c = d, and (from 
the dual of Lemma 2.3 (i) ) 61 A b% = ai A a2. If a i A a2 $ c then 

{ai A 02, c, au a2, bu d, fr3} ^ C; 

hence we let a\ A a2 < c. If a,\ V c > a2 and a2 V c > &i then a,\ V c = 
a2 V c, and by (SDv) a\ V c = (fli A a2) V c = c, a contradict ion. By sym­
met ry we may let a,\ $ a2 V c. If a\ A c J a2 then 

{ai, 62, «2, a2 V c, c, ai A c} ~ B; 

hence we assume ci\ A c < a2 whereupon a\ A c = a,\ A a2 = a± A b2 A &3 = 
ai A 63. By (SDA) ai A c = ai A ( c V 63), and it follows t ha t ai $ c V ^3. 
Hence b2 ^ c V 63, and we have {62, d, c, c V &3, &3, «2} = ^ -

Next assume n = 1, and let £ 1 = {ai, a2, a3, &i, 62, ^3, 64, c, d} Ç L. We 
know immediately tha t c < b2 V 63» for otherwise 

{fll, O3, 61, 52 V 63, &4, C, ^} = £ 0 , 

contradict ing the choice of n. By Lemma 2.2(i) and the symmet ry of Eiy we 
may assume tha t &3 V c < b2 V 63, and hence ^3 V c ^ 62- But 
now {a?., «3, ô2, ^3, ^4, £, ^3 V c] = Eo, again contradict ing the choice of n. 

Finally suppose t ha t n > 1, and let {ai, . . . , an+2, bi, . . . , 6n+3, c, a7} be a 
subset of L isomorphic to En. We may assume tha t a,j V a^+i = bj+\ for each 
j G {1, . . . , n + 1}. Since {ai, b2, a2, 63, . . . , 6w+2, tfn+2} is a down-down fence, 
by Lemma 2.3 (ii) we may choose i £ {2, . . . , w + 1} such t h a t ai V «* < 
a,\ V an+2 and a* V aw+2 < a± V aw+2. If c ^ ai V a< and c $ a* V a„+2, then 
{ai, a*, an+2, bi, a\ V a*, a* V an+2, bn+z, c, d) == E1} which is a contradict ion; 
therefore by symmet ry let c < ax V at. Since a,\ V a2 = b2, in par t icular we 
have i > 2. Now set 

fe = max {j|2 ^ 7 g w + 1, fli V ^ < «i V an+2, ay V an+2 < «1 V a n + 2 } . 

By Lemma 2.3 (i), aj < ci\ V ak for all j G {1, . • . , k]} which implies t ha t 
bj = aj-i V a j < cii V a^ for each j Ç {2, . . . , fe} ; also, since i ^ k we have 
c < ax V eu S ai V a A;. If &*+! < ai V â -, then ai V aA+i ^ ai V bk+i g 
ai V a* < «i V an+2, and a^+i V an+2 ^ a* V an+2 < ax V aw+2 by Lemma 
2.3 (i), contradict ing the maximal i ty of k. Hence 6^+1 ^ ci\ V afc, and so 
{ai, . . . , ak, blf . . . , 0^+1, c, ai V ak] = Ek-2. Since k — 2 < n, this contra­
dicts the choice of n. 

Case ( iv): {Fn\n è 0}. 
Let w ^ 0 be minimal such t ha t there is a subset of L isomorphic to Fn. 
First suppose n = 0, and let Fo = {ai, a2, 61, &2, c, ^, e} C L. We may 

assume tha t a\ A d = c, b2 V d == e, ai V a2 = b2, and bi A b2 = ai . If 
&i Vfl2 | r f then {&!, &i V a2, a2, ^, d, c] = B; hence let 61 V a2 > d, and 
dually bi A a2 < d. H bi V d ^ b2 then {èi, &i V d, d, e, b2, a\} •= B; hence 
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we may let 61 V d > &2 V d = e, and dually a2 A d < c. But now 61 V d = 
b\ V d V a2 = 61 V #2, and by (SDv) we have ôi V d = bi V (a2 A d) = 61, 
a contradiction. 

Next suppose w = 1, and let Fi = {ai, a2, a3, &i, 62, 63, c, d, e) C L. We may 
assume tha t bi A b2 = a>i, a± V a2 = &2, b2 A b3 = a2, and a2 V a3 = 63- If 
b2 V d ^ bz then {<2i, a2, &i, b2, 63, d, fr2 V d} = £0; hence we let b2 V d > 63. 
If 63 V rf J &2 then {a2, a3, &2, &3, c, d, ^3 V d} = F 0 , contradicting the choice 
of n; hence bz V d > b2, and so b2 V d = bz V d. From Lemma 2.2(i), 
b2 V &3 J d. But now {ai, a3, 61, b2 V 63, c, d, e} ~ F0, contradicting the choice 
of n. 

Finally suppose n > 1, and let {ai, . . . , an+2, &i, . . . , frn+2, c, d, e) be a 
subset of L isomorphic to Fn. We may assume tha t aj V aj+i = 6^+i for each 
7 G { l , . . . , w + l } . Since {ai, b2j a2, 63, . . . , frn+2, an+2} is a down-down fence, 
by Lemma 2.3 (ii) we may choose i G {2, . . . , n + 1} such tha t ai V at < 
a,\ V an+2 and a< V aw+2 < ax V an+2. If d $ ai V a< and d $ fli V an+2, then 
{ai, a f, an+2, &i, a\ V a*, a< V an+2, c, d, e) ~ Fi} which is a contradict ion; 
therefore either d < a,\ V at or d < at V an+2. Suppose tha t (i < ^ V fl<. Set 

fe = max {j\2 ^ j ^ w + l , a i V f l j < a i V ^+2 ,^^ V an+2 < ci\ V anf2} ; 

as in Case (iii), bj < ai V aA for each j £ {2, . . . , k}, and i S k implies t ha t 
d < a,\ V at S ai V ak. By the maximality of k, we again conclude bk+i $ 
ai V ak, and so {ai, . . . , ak, bu • • • , ^ + 1 , d, a± V a&} = Ek-2. We now suppose 
d < at V an+2. Set 

fe' = min \j\2 ^ j ^ w + l , a i V flj < fliV an+2, a^ V an+2 < &i V an+2}. 

As before, b} < a^ V aw+2 for j £ { '̂ + 1, • . . , n + 2}, and since kr ^ i we 
have d < at V an+2 ^ a /̂ V an+2. From the minimality of k', it follows tha t 
bk' $ ak> V an+2, and hence 

{ak>j . . . , a w + 2 , bk>, . . . , bn+2} c, d, ak> V ^ + 2 } = Fn+i-k>. 

Since w + 1 — k' < w, this contradicts the choice of n. 

(b) Let n ^ 0 be minimal such tha t there is a subset of L isomorphic to Hn. 
First assume n = 0, and let i?o = {^i, «2, &i, b2, bd, c, d) Q L. If c A a2 ^ b% 

then {c A a2, a2, au 63, 62, ^1} =B\ hence we let c A a2 < 63. Since a2 A Ô3 
^ ai , we have a2 A bz ^ c. If c A bz < a2 then 

{61, d, a2 A bz, c A 63, «2, 63, ^} = C; 

hence assume c A &3 < a2. If &2 ^ c V a,\ then {c, c V a-i, ai , ^3, &2, bi} ~ B; 
hence assume b2 < c V ai ^ c V a2 and dually 52 > rf A a2. If c > a2 A b2 

then c A b2 = (c A bd) A b2 ^ a2 A b2 ^ c A b2, implying t ha t c A b2 = 
a2 A &2. Since c V a2 > b2 this is a violation of (SD A ) , and so c ^ a2 A b2. If 
c V d ^ b2 then {c, c V d, d, 63, &2, 61} = JB; hence assume c V d > b2. From 
b2 V d ^ 63 it follows tha t &2 V rf ^ c and 62 V rf J a2. If c V d J a2 then 
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{a2 A b2j d, a2, b2 V d, bi, c, c V d] ~ F0; hence assume c V d > a2. If 
c V a2 ^ ^3 then {&i, fr2, &3, &i, «2, c V a2, c} = Go as desired; hence assume 
c V a2 > &3. Now c V a 2 ^ c V & 3 ^ £ V d ^ c V a 2 , implying c V a2 = 
c V d. By (SDv) and the above results, d<cVd = c\/ (d A a2) ^ 
c V b2 ^ c V fli. But a dual argument shows that d A a2 < c, and hence 
c \/ d = c V (d A a2) = c, a contradiction. 

Therefore w > 0. Let i / n = {&i, . . . , an+2, 61, . . . , &n+3, c, d} Ç L. If 
c V ( i > aw+i then {c, c V d, d, bn+d, an+i, b\} ~ B\ hence we let c V d > an+\. 
If c V d > &w+2 then {c, c V d, d} bn+z, bn+2, bi} =B\ hence we let c V d ^ 
d V fr„+2. If d V &w+2 J an+i then 

{ai, . . . , are+i, bu . . . , 6re+i, d V &„+2, c, d} ^ iïn_i, 

contradicting the choice of n; hence d V bn+2 > an+i. Next, we may assume 
c V an+2 > bn+2j for otherwise {61, . . . , bn+2, au . . . , an+u c V aw+2, c) = Gn_i, 
as desired. Further, we assume c V an+2 > ôn+3, for otherwise 

{bi, • • • , &n+3> #1, . . . , &re+2, c V an+2, c) ~ Gn\ 

thus we have that c V an+2 ^ c V &n+3 ^ c V d. We may assume ôw+3 V c > 
an+2, for otherwise {a2, J, an+2, 6w+3, &i, c, 6w+3 V c ) = F0. It follows that 
6n+3 V c = an+2 V c, and by (SDv) &„+3 V c = (&n+3 A av+2) V c. We may 
assume bn+z A an+2 < c V d, for otherwise 

{bn+z A an+2, bn+z, d, c V d, c, bi] ^ B. 

Thus c V (èn+3 A aw+2) = c V d, and by (SDv) c V d = c V (bn+3 A an+2 A d) 
= c V (a„+2 A d), implying c ^ an+2 A d. However, d A an+2 < bn+z\ there­
fore, letting k be minimal such that d A an+2 < bk, we have 2 ^ k ^ 12 + 3. 
If fe = n + 3, then d A av+2 < &w+2, and 

{bn+2, bn+i, an+2, d A an+2, d, bn+^} ^ Bd; 

hence we assume k < n + 3. If d A an+2 < afc_i, then 

{̂  A aw+2, afc_i, afc, . . . , an+2, bk-i, bk, . . . , bn+s, d] ~ Gn-k+2; 

hence we assume d A an+2 < ak-\. If k = 2 we have 

{61, d A an+2, c, b2, d, au b%} ~ E0; 

thus we let k > 2. But now {ai, . . . , afc_i, &i, . . . , bk, c, d A an+2) ~ Hk^ 
where 0 ^ k — 3 < n, contradicting the choice of n. 

As a corollary, we obtain an improvement of Theorem 3.1 for finite semidis-
tributive lattices. 

COROLLARY 3.3. A finite semidistributive lattice L is planar if and only if it 
does not contain AZj B, Bd, or Gn, n ^ 0, as a subset. 

Proof. We need only prove the "if" direction. By Lemma 2.1, L contains 
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An for some n ^ 3 if and only if it contains A%. By Theorems 3.1 and 3.2 the 
corollary follows. 

T H E O R E M 3.4. Let L be a finite semidistributive lattice of breadth at most two. 
(a) / / L contains B or Bd as a subset then L contains RQ as a subset. 
(b) If L contains Gn as a subset for some n ^ 0 then L contains Rm as a stub set 

for some m ^ n + 1. 

Proof, (a) Assume B = {a, bf c, d, e, f} Ç L. We first observe t ha t we must 
have a V e > c, for otherwise {a V e, a V c, c V e) is an antichain, contrary 
to Lemma 2.2(h). If c A a ^ e, then {/, a, b, c A a, c, d, e) is a subset of L 
isomorphic to Ro, as desired. Thus we assume c A a ^ e and simi­
larly c A e ^ a, which implies c A a = c A e. But since c < a V e this is a 
violation of (SD A ) . Of course, a dual argument handles Bd. 

(b) Let n ^ 0 be minimal such tha t there is a subset 

\ai, . . . , an+z, &i, . . . , &n+3, c} 

of L isomorphic to Gw. Since bn+2 A c ^ au we have frw+2 A c J &i. Choose & 
minimal such tha t &w+2 A c < bk; then 2 ^ & ^ w + 2. First we assume 
k > 2. If frn+2 A c < ak, then {alf . . . , ak, bu . . . , bk, bn+2 A c} = Gk-z where 
0 S k — 3 < ?z; on the other hand, if bn+2 A c < ak then 

\bn+2 A c, ak, ak+i, . . . , an+z, bk-i, bk, . . . , 6^+3, c) ~ Gn+2-k 

where 0 S n -\- 2 — k < n. In either case we have a contradiction to the choice 
of n. Hence k = 2; t ha t is, &w+2 A c < b2, which implies bn+2 A c = b2 A c. 

We first consider the case b2 A c < a2. Assume tha t b2 A c : j a2 V &i; then 
{a2, «2 V 6i, 6i, 62, ^2 A c, ai} =B, and we are done by par t (a). Hence 
b2 A c ^ a2 V 61. Now, if a2 A b2 ^ c we have 

[au 61, a2 A &2, ^2 A c, a2, 62, c} = C, 

while if a2 A b2 < c we have 

{b2 A c, 61, c, (62 A c ) V 61, a2 A b2j a2, a2 V li} = F0 . 

In either case we are done by Theorem 3.2 and par t (a) . 
Therefore bn+2 A c = b2 A c < a2j and by dual i ty a2 V c > &w+2- If 

a2 A &i ^ c then a2 A b± S c A bi = c A b2 A bi ^ a2 A &i, implying a2 A 
61 = c A 61, and by (SDA) we have a2 A 61 = (a2 V c) A &i = &i, a con­
tradiction. Thus a2 A 61 $ c and by dual i ty aw+3 V &w+2 J c Now 

{au . . . , aw+3, an+3 V bn+2, a2 A bu bu . . . , bn+dl c) ^ i?n + i , 

and Theorem 3.4 is established. 

The assumption tha t L has breadth a t most two is necessary. For example, 
the lattice of Figure 10 has breadth three, is semidistributive, and contains B 
as a subset (the shaded elements), bu t does not contain R0 as a subset. 
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FIGURE 10 

COROLLARY ( T H E O R E M 1.1). A finite semidistributive lattice is planar if and 

only if it does not contain Az or Rn, n ^ 0, as a subset. 

Proof. Immedia te from Corollary 3.3 and Theorem 3.4. 

4. T h e proof of T h e o r e m 1.2. I t is well-known and easy to prove t ha t if L 
is an arb i t rary lattice, A% is a subset of L if and only if C2

Z is a sublat t ice of L. 
Also, it is evident from Figures 2 and 6 t ha t Rn is a subset of Sn for each n ^ 0; 
thus if Sn is a sublatt ice of a latt ice L, certainly Rn is a subset of L. This com­
pletes the "if" direction of Theorem 1.2. 

For each n ^ 0, let Pn = L(Rn), the completion of Rn (see Figure 11) ; recall 
t ha t if Rn is a subset of a latt ice L, so is P n . We require one more lemma. 

L E M M A 4.1 . Let L be a lattice satisfying (W), and let Rn\{c\ be a subset of L 
for some n ^ 0. Then Sn\{c} is a sublattice of L. 

Proof. Let Rn\{c] = {au . . . , an+3, bu . . . , bn+z) C L. Since L(P n \ {c} ) = 
P n \ { c } , P w \{ c ) i s a subset of L, as indicated in Figure 11. Moreover we claim 
tha t the elements {ai, . . . , an+2, b2, . . . , 6w+3} of PW\{CJ generate a sublatt ice 
of L isomorphic to 5^\{c}. For simplicity, we will give the construct ion only 
in the case n = 0; an induction based on similar a rguments will handle the 
general case. If n = 0, the required sublatt ice of L isomorphic to <S0\{c} is 
given in Figure 12. Notice t ha t «i V (a2 A b2) < a2 A (ai V b2), (a2 A bz) V 
b2 < (a2 V 62) A &3, and a2 A 63 $ #i V &2 hold by vi r tue of (W) . 

Now let L be a finite semidistr ibutive lattice satisfying (W). We may assume 
tha t A 3 is not a subset of L, which implies t h a t 6(L) ^ 2 by Lemma 2.1. Let 
n ^ 0 be minimal such t h a t there exists a subset of L isomorphic to Rn. 
Choose 

P„ = {«1, . . . , an+3, &i, . . . , &n+3, c) C [ai A 61, aw+3 V &n+3] S £ 
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FIGURE 11 

such that there does not exist a subset of L isomorphic to Rn in any proper 
subinterval of [ai A &i, &n+3 V bn+z]. Then we have seen that we can find 
Sn Ç L, generated by {&i, . . . , aw+2, 62, . . . , &w+3, c}, such that 5w\{c} is a 
sublattice of L. Observe that we may assume that a2 A b2 = &i and a„+2 V 
&n+2 = an+z. To complete the proof of Theorem 1.2 we need only show that 
an+2 V c = an+3 V bn+z and 61 V c = bn+z (a dual argument handles the 
corresponding meets). 
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FIGURE 12 

First , we may assume tha t bn+^ = (aw+3 A bn+^) V c. Hence, since 

\Cln+2, <Vf3, #n+3 A &w+3> 0w+3» C\ 

is a down-down fence, Lemma 2.3 (i) implies t ha t an+2 V c = an+2 V 
(aw+3 A bn+z) V c = aw+3 V fen+3, as desired. 

Now suppose n = 0. If a2 A &3 $ b2 V c then 

{«2 A bz, ciz A Ô3, b2, b2 V c, c, a\\ 

is a subset of L isomorphic to B, and is contained in [ai A b2, 63]. By Theorem 
3.4 there is a subset of L isomorphic to RQ which is contained in \a\ A b2, 63], 
a proper subinterval of [ci\ A &i, «3 V 63], contrary to assumption. Therefore 
«2 A bs < b2 V c, and by (W) we are forced to conclude t ha t b3 = b2 V c. 
If (a2 A 63) V c ^ &2 then {a2, a3, 62, è3, (a2 A &3) V c, a2 A 63} is a subset of 
L isomorphic to B, and is contained in [bi, a3 V 63], a proper subset 
of [a 1 A bi, a-i V 63]- By Theorem 3.4 we again have a contradict ion. T h u s 
(a2 A b%) V c ^ b2 V c which implies (a2 A 63) V c — bz = b2 V c. By 
(SDv) we conclude t ha t bz = {a2 A b% A b2) V c — b\ V c, completing the 
case n = 0. 

We now assume n > 0. As in the case n = 0, our first goal will be to prove 
t ha t b2 V c = 6w+3. Choose & maximal such t ha t b2 V c > ak; it is clear t h a t 
1 ^ & ^ fz + 1. If k = 1, then {a2, a3, 62 V c, c, a,\] = B, and by Theorem 
3.4 L mus t contain a subset isomorphic to RQ. cont rary to the choice of n. 
Assume 2 S k ^ n. If b2 V c > &*+!, then 

{ai, . . . , a^+2, 6i, . . . , bk+1, b2 V c, c} ^ ^ _ i , 
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and k — 1 < n, contradicting the choice of n. On the other hand, if b2 V c > 
bk+1 then \afc, . . . , an+2} bk+h . . . , 6n+3, b2 V c} = Gn_*; by Theorem 3.4 L 
must contain a subset isomorphic to Rm for some m ^ n — k -{- 1, and since 
1 ^ n — k + 1 ^ n — 1 this again contradicts the choice of n. Therefore 
k = n + 1, and so b2 V c > an+i. If ô2 V c ^ ^ + 2 , then 

{aw+2, an+3, bn+2, bn+s, b2 V c, an+i\ ~ B, 

which is a contradict ion; hence b2 V c > bn+2. H b2 \/ c ^ an+2 A &n+3 then 

[au . . . , aw+i, aw+2 A bn+z, b2, . . . , 6„+2, ^2 V c, c) 

is a subset of L isomorphic to Gn-1} and is contained in [ax A b2, bn+z]} a proper 
subinterval of [cii A &i, aw+3 V bn+z]. By Theorem 3.4 [a\ A 62, ^+3] contains 
a subset isomorphic to i?m for some m ^ n. By the choice of n we must have 
m = n; bu t this contradicts the minimality of Rn. Thus b2 V c ^ an+2 A bn+zy 

and by (W) we conclude b2 V c = bn+z. 

Now if a2 V c $ 62, we have {a2, . . . , an+3, 62, . . . , &»+3, «2 V c} ^ 2?n_i, 
contradict ing the choice of n. Hence a2 V c ^ 62, and so «2 V c = &n+3 = 
62 V £. By (SDv), bn+z = (a2 A b2) V c = bi V c, and the proof of Theorem 
1.2 is complete. 

5. T h e c o r o l l a r i e s . With Theorem 1.6 in hand the proof of Corollary 1.7 is 
simple although not obvious. The principal observation is this: 

LEMMA 5.1. Let L be a finite lattice satisfying (W) and let a, b be elements of L 
with a< b, a join reducible and b join irreducible. Then there exist elements a', b' 
of L such that a ^ a', b' ^ b, b' is join irreducible, and bf is the unique cover of a'. 

Proof. Let a' be a maximal join reducible element in {x Ç L\a ^ x ^ b}. 
Then a' < b. Since L satisfies (W) a' must have a unique cover V. Evident ly , 
V ^ b. 

Let L be a finite, semidistributive lattice satisfying (W) and of breadth a t 
most two. In addition, let us suppose tha t L is nonplanar. Then according to 
Theorem 1.6 L contains a sublatt ice isomorphic to Sn for some n ^ 0 (cf 
Figure 2). Then 

ai V 61 < a2 A (ai V b2) < bn+2 V (an+2 A 5„+3) < aw+3 A t„ + 3 

(cf. Figure 12). In view of Lemma 5.1 there exists elements a / , &/, a2 , b2 

such t ha t 

«1 V 61 g a / < V ^ a2 A (01 V 62), 

&w+2 V (an+2 A &n+3) ^ 02' < 62' ^ an+z A &w+3, 

a / , a2 ' are join reducible (whence meet irreducible), &/, 52 ' are join irreducible, 
and bi covers a / , b2 covers a2. Let 0i = 0 ( a / , &/), 02 = 0(a2 ' , W)» be the 
smallest congruence relations identifying a / with bi, and a2 ' with &2', respec­
tively. Then evidently 81 ^ 82 and any congruence relation 8 smaller than 
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either is the equality relation. In particular, L cannot be subdirectly irreduc­
ible. This establishes Corollary 1.7. 

Corollary 1.8 now follows at once from Theorem 1.5. 

Acknowledgement. The authors thank G. Grâtzer for his helpful suggestions 
regarding the organization of this paper. 
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