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PLANAR SUBLATTICES OF A FREE LATTICE. II

IVAN RIVAL AND BILL SANDS

In Planar sublattices of a free lattice, I [8] we verify Jénsson’s conjecture for
finite planar lattices; in particular we obtain a characterization of finite planar
sublattices of a free lattice among all finite lattices. In the present paper we use
arguments of a quite different flavour to obtain another characterization. Let

F = {C* U (S,|n = 0} U {Ly, Ly, Ls% Lg, L%, Ls} \J {Ls, Ls}

be the family of lattices illustrated in IFigures 1, 2, 3, and 4. Our goal is to prove
the following theorem: « finite lattice 1s a planar sublattice of a free lattice if and
only if it does not have a member of ¥ as a sublattice.

o

FIGURE 1

1. Introduction, and plan of the proof. A lattice L is semidistributive if it
satisfies the two conditions

SDv) a Vb

Il

a V¢ implies a V b

aV (b Ac)
and
SD,) aANb=aAc¢ implies a ANb=a A (b Vc).

Jénsson [3] has demonstrated that sublattices of a free lattice are semidistri-
butive. Some years earlier, Whitman [9] showed that sublattices of a free lattice
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FI1GURE 2
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Ll L2 de
Ls Ly? Ly
FIGURE 3
L; Ls
FIGURE 4

satisfy the condition
W) aAb=cVd implies a Ab=c,aANb=d,a=cVd,
orb £¢Vd.

The celebrated conjecture of Jonsson (see [4]), alluded to at the beginning of
this paper, asserts that a finite lattice is a sublattice of a free lattice if and only
if it is semidistributive and satisfies (W). For the history of this conjecture we
refer the reader to [8].
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Ay

FIGURE 5

Let A4, be the partially ordered set of Figure 5, let # = {R,|n = 0} be the
family of partially ordered sets illustrated in Figure 6, and let.¥ = {S,|n = 0}
be the family of lattices illustrated in Figure 2. Most of the rest of this paper
is devoted to the proof of the following two results.

THEOREM 1.1. 4 finite semidistributive lattice 1is planar if and only if it docs
not contain a member of {A3z} \J X as a subset.

THEOREM 1.2. Let L be « finite semidistributive lattice satisfying (W). Then L
contains a member of { A3} \J R as a subset if and only if L contains a member
of {C3} \JU.Y as a sublattice.

We recall two theorems in the spirit of Theorem 1.6 below. The first is due to
B. Davey, W. Poguntke, and I. Rival [2], and the second to R. Antonius and
I. Rival [1].

THEOREM'1.3. A4 finite lattice 1s semidistributive if and only if it does not con-
tain one of the lattices of Figure 3 as a sublattice.

THEOREM 1.4. 4 finite semidisiributive lattice satisfies (W) if and only if it does
not contain one of the lattices of Figure 4 as a sublattice.

Finally we quote the main result from [8].

THEOREM 1.5. 4 finite planar lattice is a sublattice of a free lattice if and only if
it 1s semidistributive and satisfies (W).

Combining the preceding five theorems yields the promised characterization
of finite planar sublattices of a free lattice.

THEOREM 1.6. A finite lattice 1s a planar sublattice of a free lattice if and only if
it does not contain a member of ¥ as a sublattice.

Observe that no member of % is a sublattice of another member of % . It
follows that Theorem 1.6 is best possible, in the sense that no lattice in F may
be omitted. Also, while it is true that the lattices S, are all sublattices of a frec
lattice, this observation is not essential either to the statement or the proof of
the theorem.

Theorem 1.6 provides an unexpected dividend.
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FIGURE 6

COROLLARY 1.7. Let L be a finite semidistributive lattice satisfying (W) and
of breadth at most two. If L is subdirectly irreducible then L 1s planar.

Combining Corollary 1.7 with Theorem 1.5 yields

CorOLLARY 1.8. Let L be a finite subdirectly irreducible lattice of breadth at
most two. Then L is a sublattice of a free lattice if and only if L 1is semidistributive
and satisfies (W).
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22 I. RIVAL AND B. SANDS

2. Preliminaries. The breadth b(L) of a finite lattice L is the smallest integer
b such that every join V%] x; of elements of L is equal to a join of b of the
x's. Forany integer n = 3, a crown of order 2n (Figure 7) is a partially ordered
set {x1, ¥1, X2, Yo, - + ., %o, ¥x} in which

x1 <y Y1 > X, X2 < Yo, Yo > Xgy e, Yoot > Xy X < Yy and y, > 2
are the only comparability relations.

Y1 V2

Vn

FIGURE 7. A crown of order 2n

LEMMA 2.1. Let L be a finite semidistributive lattice. The following are equiva-
lent:
(1) L contains no crown of order six,
(ii) b(L) = 2;
(ii1) L contains no crown.

Proof. (i) & (ii) is Lemma 3.4 of [5], while (ii) & (iii) is Lemma 2.4 of [8]
together with Theorem 3.1 of [5].

LeEmMA 2.2. Let L be a finite semidistributive lattice of breadth at most two, and
let a, b, ¢ € L.

M Ifavb=aVc=>b\Vc, then {a,b, ¢} is not an antichain.

(ii) Etther a V b =2 cora NV ¢ Zborb V ¢ = a;in particular,

{a VbyaV bV c}isnot an antichain.

Proof. (i) is the dual of Lemma 2.7(ii) of [8]. To prove (ii), suppose that
aVbzxc,aVezxb and bV e Za Then {¢ Vb aVe bVl isan
antichain, and the join of any pair equals ¢« V b V ¢, contradicting (i).

Let # be a positive integer. A down-down fence [6] of length 27 4 1 is a
partially ordered set {x1, y1, X2, Y2, . . ., Xp, Yy, Xny1} in which

X1 < Vi, V1 > X2, X2 < Vo, Yo > X3y o0 vy Xy < Yy Yn > Xnt1
are the only comparability relations (see Figure 8).

LeMMA 2.3, Let L be a finite semidistributive lattice of breadth at most two. Let n
be an integer = 2 and let {x1, v1, X2, V2, « « « y Xpy Yoy Xpy1} e a down-down fence
wn L. Then
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N Vo Yn

X1 Xo Xn Xn+1

Ficure 8. A down-down fence of length 2% + 1

() x1 V X1 > xyforeachi € {1,...,n+ 1}:and
(i1) there exists 1 € {2, ..., n} such that x; V x; < x1 V Xpp1 and x; V X410
< %1V Xpg1.

Proof. (i) First let » = 2. Since %1 V xs < y; and x2 V x3 £ ys, we have
that x1 V x2 & x3 and x2 V x5 2 x3, and therefore x; V x3 > x2 by Lemma
2.2(i1). Proceeding by induction, assume the result is true for all integers k& such
that 2 = k = »n — 1. We certainly have that x1 V x,41 £ vy, for
any 1 € {1,...,n}. Therefore, if x1 V %41 & x, for any ¢ € {2,...,#n}, the
subset {X1, V1, X2, V2, + + + , Xn, Yy Xni1y X1 V X,41} of L is a crown, contradicting
Lemma 2.1. Hence we can find 7 € {2, ..., n} such that x; V x,41 > x.. Now
by induction we have x1 V x,41 = %1 V x; > x; for all j € {1,...,4}, and
X1V X1 2 X5 V Xpp1 > xpforallk € {,...,n + 1}, as claimed.

(i) When n = 2, x; V x2 < %1 V x3 and x2 V x3 £ x; V x3 follow from
(1). Also, since x; V x2 < y; and x2 V x3 < y2 we have x; V xs < 61 V x3
andxs V x3 < x1 V &3, as desired. Therefore let # > 2. Asabove, x, V x,41 <
X1V X,ye1; it follows that if x; V x, < %1 V x,41 we are done. Hence, since
X, < %1 V X,p1 by part (i), we assume x; V x, = &1 V %,41. By induction we
choose j € {2,...,n — 1} such that x; Vx; <x; V x, = x;1 V &1 and
x; Vox, <x1 VX I x, Va1 x5V, then x; V x, = x; V %41 by
(1), establishing (ii). Therefore let x, V x,;1 be noncomparable to x; V x,.
We now have that {x1 V x;, %, V x,, %, V x,41} is an antichain, and (x; V x;)
V(@ V) =21V X = (1 V)V (x, Vx.g); from Lemma 2.2(i),
X5V X1 = (0 V x,) V (%, V x51) < %1V X,41, and (ii) follows.

3. The proof of Theorem 1.1. By the completion L(P) of a partially ordered
set P to a lattice we shall mean the construction known variously as the
“normal completion’”’, “‘completion by cuts’”, or ‘“NMacNeille completion’;
recall that a partially ordered set P is a subset of a lattice L exactly when L ()
is a subset of L. In [6], D. Kelly and I. Rival defined a family & of lattices
with the property that a finite lattice L is planar if and only if L does not con-
tain a member of £ as a subset. The family

P = {4,n 20} U (B, B C, C%, D, D \UI|LE,, EZ F, G, H,Jn = 0}

of partially ordered sets, which (up to duality) is illustrated in Figure 9,
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satisfies {L(P)|P € &} =% (see [7]). Hence the following is an alternate
formulation of the Kelly-Rival result.

THEOREM 3.1. 4 finite lattice is planar if and only if it does not contain «
member of P as a subset.

To begin the proof of Theorem 1.1, we first observe that if Lisa finite planar
lattice, L cannot contain a member of {4;} \U % as a subset. Certainly
As & L by Theorem 3.1. If Ry = {ay, as, as, by, bs, b3, ¢} is contained in L, then
so is {as, as, by, b3, ¢, a1}, which is isomorphic to the partially ordered set 3,
contrary to Theorem 3.1. Finally if some

Rn = {CLl, A2y« v vy Apys,y b], b?y oo ybn+3a C}y

n = 1,is contained in L, then so is {ay, as, . . ., G2, b2y b3y .« ., buys, ¢}, which
is isomorphic to G,-1, again a contradiction. We have proven the “only if”
direction of Theorem 1.1.

The converse is a little more complicated, and will be established gradually.

THEOREM 3.2. Let L be « finite semidistributive lattice of breadth at most two.

(@) If L contains a member of {C, C% D, D% U {E,, E,% F,n = 0} as a
subset then L contains B or B? as a subsel.

(b) If L contains H, as a subset then L contains B, B%, or G, as a subset for
some m = #.

Proof. (a) We proceed through the list of partially ordered sets in (a) in the
order given; at each stage we will establish the existence of B or B%in L, or
(what is sufficient) we will exhibit in L a partially ordered set already con-
sidered. A similar strategy will be adopted elsewhere in this paper.

Case (i): C.

Choose C = {a, b, c,d, e, f, g} € L;observe that we may assume e A f = c,
fANg=d,andc A d = a. By thedual of Lemma 2.3 (i),e Ag=eANf A g
=c¢Ad=a Next, if b AcF£d then {b,b A ¢,e,a,d, f} is a subset of L
isomorphic to B¢% as desired; hence we now let b A ¢ < d and similarly
bANd =¢ which implies b A¢c=bb Ad Thus bAg=bAfAg=
bAd=bANc=bAfANe=0bAeandby (SDAbAg=0bA (eV g). It
follows that ¢ V g 2 b, and so e V g 2 f. Hence {¢,¢,f,d, g, ¢ V g} = B
Of course, a dual argument handles C%

Case (ii): D.

This one is easy. Let D = {a, b, ¢, d, ¢, f, g8 € L; by Lemma 2.2(i) and the
symmetry of D we may assume thate V f <e V f V g, thatis, e V f 2 ¢.
Hence {e V f, g, ¢, f, a, d, b} =2 C?% and by the previous case we are done.

Case (iii): {E,|ln = 0}.

Let n = 0 be minimal such that there is a subset of L isomorphic to either
E, or E,% We first consider the case n = 0.
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Without loss of generality, let Eq = {ai, as, b1, bs, b3, ¢, d} © L. We may
assume that by A by = ay, b2 A b3 = aq, a1 V az = by, ba V ¢ = d, and (from
the dual of Lemma 2.3(i)) b1 A b3 = a1 A aqe. If a1 A a2 £ ¢ then

{a1 A as, ¢, ay, az, by, d, b3} = C;

hence we let a1 A as <c¢. If a1 V ¢ > ay and apz V ¢ > a; then a; V ¢ =
as V ¢, and by (SDv) a1 V ¢ = (a1 A a2) V ¢ = ¢, a contradiction. By sym-
metry we may let ay £ as V ¢. If a3 A ¢ £ as then

{ai, by, ag, a2 V ¢, ¢, a1 A ¢} = B;

hence we assume a; A ¢ < as whereuponai; A ¢ = a; A as = a1 A b2 A by =
ay A bs. By SDA) a1 A ¢ = ai A (¢ V bs), and it follows that ay £ ¢ V bs.
Hence by £ ¢ V b3, and we have {by, d, ¢, ¢ V by, by, ax} = B.

Next assume n = 1, and let E; = {ai, as, a3, by, by, by, by, ¢, d} S L. We
know immediately that ¢ < by V b3, for otherwise

{(11, as, bly bZ \/ bSy b47 C, d} g EO!

contradicting the choice of #. By Lemma 2.2(i) and the symmetry of E;, we
may assume that by V ¢ < by V b3, and hence b3 V ¢ % b,. But
now {as, as, be, b3, by, ¢, by V ¢} = Iy, again contradicting the choice of .

Finally suppose that # > 1, and let {ai, ..., auo, b1, ..., b3, ¢, d} be a
subset of L isomorphic to E,. We may assume that a; V a 41 = by, for each
jef1,...,n 4 1}. Since {ay, by, as, bs, . . ., byys, Qnye} is a down-down fence,
by Lemma 2.3 (ii) we may choose 7 € {2,...,n + 1} such that a; V ¢, <
a1V @z and a; V dppe < a1V appe. I ¢ £ a1V asand ¢ £ a; V a,40, then
{a1, ay, apioy b1, @1 V @y, a; NV dyis, boys, ¢, d} =2 E;, which is a contradiction;
therefore by symmetry let ¢ < a; V a4 Since a; V as = by, in particular we
have 1 > 2. Now set

k=max{j2 Sj=<n+1,a1Va;<arV dnz a; V Gz < a1V Qpyo}.

By Lemma 2.3 (i), a¢; < a1 V a; for all j € {1,...,k}, which implies that
by =a;-1 Va; <ar V a,foreach j € {2,...,k}; also, since 1 £ k we have
c<arVa, a1V a,. H by <ar Va, then a1V agr = a1V by =
a1V oar < a1V Gyps, and apq1 Vo Gupe S ap Vo dpge < a1 Vo dyge by Lemma
2.3 (1), contradicting the maximality of k. IHence byy1 £ a1 V ay, and so
{as, ...y ap b1, ooy Uiy, €, a1 V ap} =2 Ey_y. Since k& — 2 < n, this contra-
dicts the choice of #.

Case (iv): {F,|n = 0}.

Let » = 0 be minimal such that there is a subset of L isomorphic to F,.

First suppose # = 0, and let Foq = {a1, as, b1, b3, ¢, d, ¢} € L. We may
assume that ay Ad=1¢, by Vd=c¢e, a1V ay = by, and by A by = a;. If
by V az 2 d then {b;, b1 V ay, as, ¢, d, ¢} =2 B; hence let b; V as > d, and
dually by A a2 < d. If by V d 2 b, then {by, b1 V d, d, ¢, by, a1} = B; hence
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we may let by V d > by V d = ¢, and dually a2 A d < ¢. But now b, V d =
by VAV az = by V as and by (SDv) we have by V d = b1 V (a2 A d) = by,
a contradiction.

Next suppose #n = 1, and let Fy = {ay, aq, a3, b1, by, b3, ¢, d, ¢} C L. We may
assume that b; A b2 = a1, a1 V as = by, b2 A by = ay, and as V a3 = b;. If
by V d Z bs then {ay, ag, b1, be, by, d, by V d} = Eo; hence we let by V d > b,
If b3 V d % by then {as, as, b, by, ¢, d, by V d} = Fy, contradicting the choice
of n; hence b3 Vd > by, and so by V d = b3 V d. From Lemma 2.2(i),
by V b3 % d. But now {ay, as, b1, b2 V b3, ¢, d, e} = F,, contradicting the choice

of n.

Finally suppose # > 1, and let {ai, ..., dny2, b1,. .., boro, ¢, d, e} be a
subset of L isomorphic to F,. We may assume that a; V a1 = b4 for each
j€1{1,...,n+ 1}. Since {ai, b2, as, b3, . . ., buya, Gnyo} is a down-down fence,
by Lemma 2.3 (ii) we may choose 7 € {2,..., % + 1} such that a; V a; <

a1V przand @y V tupe < @1V Gppo. If d £ a1 V agand d £ ay V ayye, then
{ai, @y duye, b1, a1 V @y @y V Gpya, ¢, d, ¢} = F;, which is a contradiction;
therefore either d < a1 V a;0r d < a; V apye. Suppose that d < a1 V a,. Set

E=max {j2 £ j=n+1,a1Va; <a1V Guz2a;V o < a1V ppa};

as in Case (iii), b; < a; V a; foreach j € {2,...,k}, and ¢ < k implies that
d <aiVay £a1V e By the maximality of k, we again conclude b1 $
a1 V ay,and so {a1, ..., ax b1, ..., bier, d, a1 V @i} = Er_o. We now suppose
d < a;V Gppa Set

EF=min{jl2 £j<n+1,a1Va; <arV o a;V tpe < a1V apis).

As before, b; < ap V a,40 for j € {F' +1,...,n + 2}, and since ¥’ =< 7 we

have d < @y V @pi2 = apr V apye. From the minimality of £/, it follows that
by £ ar V dpys, and hence

{ak’y R ¢ ]) bk'y ey bﬂ+2y ¢, dy Ay \% an+2} = 1k’ -

Since n + 1 — k' < n, this contradicts the choice of #.

(b) Let # = 0 be minimal such that there is a subset of L isomorphic to H,.

First assume # = 0, and let Ho = {a1, a3, b1, b2, b3, ¢,d} & L. If ¢ A as £ bs
then {c¢ A as, aq, ay, b3, by, b1} = B; hence we let ¢ A a2 < bs. Since a2 A bs
= a1, we have as A b3 £ ¢. If ¢ A bs € ap then

{bly dy (2] /\ bSy c /\ b3’ Qa, b31 C} E C;

hence assume ¢ A by < ap. If by £ ¢ V a4 then {¢, ¢ V a4, a1, b3, bs, 01} = B;
hence assume by < ¢ V a1 = ¢ V as and dually by > d A as. If ¢ > as; A by
then ¢ A ba = (c A b3) A by £ as A by =c A by, implying that ¢ A b, =
az A bs. Since ¢ V a2 > b, this is a violation of (SD,), and so ¢ % as A bs. If
¢V d % bythen {c, ¢ V d, d, by, by, b1} =2 B; hence assume ¢ V d > by. From
b V d = bs it follows that by V d % cand by V d % ae. If ¢ V d % a, then
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{as A Do, d, ay, ba V d, by, ¢, ¢ V d} = Fy; hence assume ¢ V d > a,. If
¢V ay % bs then {by, by, b3, a1, as, ¢ V a3, ¢} = G, as desired; hence assume
cVay >bsz. Now ¢ Var ZcVby=2cVdzZcV ay implying ¢ V ay =
¢V d. By (SDv) and the above results, d <cVd=cV (d A ay) =
¢V by = ¢V a. But a dual argument shows that d A as < ¢, and hence
cVd=cV (@A as) = ¢, a contradiction.

Therefore n > 0. Let H, = {a1,..., Gpy2, b1, .., 0pys, ¢, d} S L. If
¢V dX» apthen {c,c V d,d, byyis, Guyr, b1} = B; hence weletc V d > apqr.
If ¢ Vd>» byo then {c, c V d, d, byys, byyo, b1} = B; hence we let ¢ V d =
d Vv b,,+2. Ifd Vv Z),H.g % Ayt then

{alv ey Optay blr sy bn-f—l; d \/ bn+2y c, d} = Hn—lv

contradicting the choice of #n; hence d V b,y2 > @,+1. Next, we may assume
¢V Gpya > bypg, for otherwise {0y, . .., bygay @1, « « + ) Gpi1y € V gy €} =2 Gy
as desired. Further, we assume ¢ V a,y2 > by13, for otherwise

{blv o e 9b71+3v A1y « v oy Apyo, C \Y A2y C} = Gn;

thus we have thatc¢ V ¢,02 = ¢ V b3 2 ¢ V d. We may assume b,43 V ¢ >
Uny2, for otherwise {as, d, @nio, buys, b1, ¢, buys V ¢} = Fy. It follows that
bnts V ¢ = @pyo V ¢, and by (SDv) b,13 V ¢ = (byys A apye) V ¢. We may
assume b,43 A @2 < ¢ V d, for otherwise

{bn+3 AN An+2, bn+3’ da cV dy c, bl} = B.

Thus ¢ V (bpss A tpg2) = cVd,and by SDv)c Vd =¢c V (bpps A a2 A d)
= ¢V (a2 A d), implying ¢ % a,42 A d. However, d A @42 < byps; there-
fore, letting & be minimal such that d A a,49 < by, we have 2 =k = n + 3.
If 2 =n+4 3, thend A a,32 € byye, and

{Ons2y D1y Qnpa, @ N apyo, d, byys) = B,
hence we assume &k < n + 3. If d A a,2 < a;_1, then

{d N aprs, Gty Qry o ooy Qppoy Die1y Diy o ooy bpgs, @) =2 Gropis;
hence we assume d A a,.2 € a;—1. If & = 2 we have

{b1, d N nye, C, b, d, ay, b3} = Ey;

thus we let & > 2. But now {ai, ..., a1, b1,...,05 ¢, d N Qpyo} = Hy_y
where 0 = & — 3 < n, contradicting the choice of #.

As a corollary, we obtain an improvement of Theorem 3.1 for finite semidis-
tributive lattices.

COROLLARY 3.3. 4 finite semidistributive lattice L is planar if and only if it
does not contain Az, B, B4, or G,, n = 0, as a subset.

Proof. We need only prove the “if"" direction. By Lemma 2.1, L contains
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4, for some » = 3 if and only if it contains 4;. By Theorems 3.1 and 3.2 the

corollary follows.

THEOREM 3.4. Let L be a finite semadistributive lattice of breadth at most two.

(a) If L contains B or B as a subset then L contains R, as a subset.

(b) If L contains G, as a subset for some n = 0 then L contains R,, as a subset
for some m < n + 1.

Proof. (a) Assume B = {a, b, ¢, d, e, f} C L. We first observe that we must
have @ V e > ¢, for otherwise {¢ V e, ¢ V ¢, ¢ V e} is an antichain, contrary
to Lemma 2.2(ii). If ¢ A @ £ ¢, then {f, ¢, b, ¢ A a, ¢, d, e} is a subset of L
isomorphic to Ry, as desired. Thus we assume ¢ A ¢ = e and simi-
larly ¢ A e = @, which implies ¢ A ¢ = ¢ A e. But since ¢ < a V e this is a
violation of (SD,). Of course, a dual argument handles B

(b) Let # = 0 be minimal such that there is a subset

{aly vy Qpysy blv LB bn+31 C}

of L isomorphic to G,. Since b,y2 A ¢ = a1, we have b,42 A ¢ £ b;. Choose %
minimal such that b,,2 A ¢ < b;; then 2 <k < n 4+ 2. First we assume
B> 2 Ifbya A ¢ € ay, then {aq, ..., ag b1y ...y by bpy2 A ¢} = Gi_3 where
0 < k — 3 < n;on the other hand, if b,;2 A ¢ < a; then

{bn+2 A Cy Ay Qpg1y o « oy Apy3y bk—ly bk, ey bn+3, C} =~ n+2—k

where 0 < n + 2 — k& < n. In either case we have a contradiction to the choice
of n. Hence k = 2; that is, b,.2 A ¢ < bs, which implies b,42 A ¢ = by A c.

We first consider the case bs A ¢ < as. Assume that by A ¢ £ as V by; then
{az, ay V b1, b1, by, b2 A ¢, a1} = B, and we are done by part (a). Hence
b A ¢ = as V by Now, if a2 A b2 £ ¢ we have

{aly bly Ao /\ b2y b2 /\ C, Qg, b2y C} E C)
while if a2 A by < ¢ we have
{b2 A ¢, b1,¢, (b2 A ¢) V b1, as A ba,as,as V b1} = F.

In either case we are done by Theorem 3.2 and part (a).

Therefore by,io A ¢ = by A ¢ < ay, and by duality a2 V ¢ > bype. If
as ANby Scthenae ANby Sc Abi=¢ A by Abi = as A by, implying as A
by = ¢ A by, and by (SDA) we have as A by = (a2 V ¢) A by = by, a con-
tradiction. Thus ¢ A b1 £ ¢ and by duality @¢,43 V b2 £ ¢. Now

{aly e 7an+31 pt3 V bn+2y Qg /\ bly bly .. ybn+3y C} g Rn+1v

and Theorem 3.4 is established.

The assumption that L has breadth at most two is necessary. For example,
the lattice of Figure 10 has breadth three, is semidistributive, and contains B
as a subset (the shaded elements), but does not contain R, as a subset.
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FiGure 10

CoroLLARY (THEOREM 1.1). 4 finite semidistributive lattice is planar if and
only if 1t does not contain Az or R,, n = 0, as a subset.

Proof. Immediate from Corollary 3.3 and Theorem 3.4.

4. The proof of Theorem 1.2. It is well-known and easy to prove that if L
is an arbitrary lattice, A; is a subset of L if and only if C;?® is a sublattice of L.
Also, it is evident from Figures 2 and 6 that R, is a subset of .S, for each n = 0;
thus if S, is a sublattice of a lattice L, certainly R, is a subset of L. This com-
pletes the “if”” direction of Theorem 1.2.

Foreachn = 0,let P, = L(R,), the completion of R, (see Figure 11); recall
that if R, is a subset of a lattice L, so is P,. We require one more lemma.

LeEmMA 4.1, Let L be a lattice satisfying (W), and let R,\{c} be a subset of L
for some n = 0. Then S,\{c} s a sublattice of L.

Proof. Let R\{c} = {a1, ..., aus, b1y. .., bus} © L. Since L(R\{c}) =
P\{c}, P\{c} is a subset of L, as indicated in Figure 11. Moreover we claim
that the elements {ai, ..., @y, bs, . .., byys} of P\{c} generate a sublattice

of L isomorphic to S,\{c}. For simplicity, we will give the construction only
in the case # = 0; an induction based on similar arguments will handle the
general case. If n = 0, the required sublattice of L isomorphic to Sc\{c} is
given in Figure 12. Notice that a1 V (a2 A b2) < aa A (a1 V bs), (as A b3) V
by < (as V bs) A by, and as A by £ a1 V by hold by virtue of (W).

Now let L be a finite semidistributive lattice satisfying (W). We may assume
that A3 is not a subset of L, which implies that (L) =< 2 by Lemma 2.1. Let

# = 0 be minimal such that there exists a subset of L isomorphic to R,.
Choose

Ry ={ay, ., s 01y o ooy bngsy ¢} © (a1 A by, Gz V byys] © L
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Up+2

(12

(€3]

FI1GURE 11

such that there does not exist a subset of L isomorphic to R, in any proper
subinterval of [a1 A b1, @yy3 V b,y3). Then we have seen that we can find
S, C L, generated by {ai, ..., apo, b2y ..., byrs c}, such that S,\{c} is a
sublattice of L. Observe that we may assume that a2 A b = b; and a,42 V
Dpt2 = anys. To complete the proof of Theorem 1.2 we need only show that
Qpy2 V € = Gp3 V byrs and by V ¢ = b,y3 (a dual argument handles the
corresponding meets).
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as V by

as V by by

(a2 V b2) A bs
(az A b3) V b2

ay V by
as N b&

as N (a1 V b2)
a V (azs A b2)

be

as N by
a 2 2

ay /\ bz

FI1GURE 12

First, we may assume that 0,13 = (¢,+3 A b,+3) V ¢. Hence, since

{@ng2y Ay, Quis A Dygs, Dypys, €}

is a down-down fence, Lemma 2.3 (i) implies that ¢, 2 V ¢ = pa V
(@pss N bugs) V ¢ = dyys V byps, as desired.
Now suppose # = 0. If as A b3 £ by V ¢ then

{as A b3, az A bz, ba, b2 V ¢, ¢, a1}

is a subset of L isomorphic to B, and is contained in [¢1 A D,, 03]. By Theorem
3.4 there is a subset of L isomorphic to R which is contained in [@1 A bs, b3],
a proper subinterval of [a; A b1, a3 V b3, contrary to assumption. Therefore
az A\ by < by V¢, and by (W) we are forced to conclude that b; = b2 V c.
If (as A b3) V ¢ 2 bsthen {as, a3, be, b3, (a2 A 03) V ¢, a2 A b3} is a subset of
L isomorphic to B, and is contained in [b;, a3 V b3], a proper subset
of [a1 A b1, a3 V b3]. By Theorem 3.4 we again have a contradiction. Thus
(a2 AN b3) Ve = by Ve which implies (a2 A b3) V ¢ = by = by V ¢c. By
(SDv) we conclude that b3 = (a2 A b3z A bs) V ¢ = by V ¢, completing the
case n = 0.

We now assume # > 0. As in the case n = 0, our first goal will be to prove
that by V ¢ = b,,3. Choose k maximal such that b, V ¢ > ay; it is clear that
1 =k =n+4 1. 1If k=1, then {as, as, b2 V ¢, ¢, a1} = B, and by Theorem
3.4 L must contain a subset isomorphic to K. contrary to the choice of #.
Assume 2 = k =< n. If b2 V ¢ > by, then

{alv ooy Qpyo, bly s ey bk+1v b2 V c, C} g Rk—l,
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and k£ — 1 < n, contradicting the choice of #. On the other hand, if b, V ¢ }
Drs1 then f{ag, ..., @Guyoy Disty o ooy bpys, b2 V ¢} =2 G,—x; by Theorem 3.4 L
must contain a subset isomorphic to R,, for some m < n — k + 1, and since
1 =n—%k+1 =<n—1 this again contradicts the choice of n. Therefore
k=mn-+1,andsods V¢ > aui1. If b2 V ¢ & 0,49, then

{an+27 (py 3y bn+2y bn+3y b2 V c, (l’n—{—l} :r_\:/ B,
which is a contradiction; hence by V ¢ > byyo. If b2 V ¢ % Gpy2 A byys then
{aly ey Quyy Qg2 /\ bn+3y b?y LR ybn+2y bZ V C, C}

is a subset of L isomorphic to G,—i, and is contained in [@; A b3, b,43], a proper
subinterval of [a; A b1, anys V Duys]. By Theorem 3.4 [a; A bs, byy3] contains
a subset isomorphic to R, for some m = n. By the choice of » we must have
m = n; but this contradicts the minimality of R,. Thus bs V ¢ = 42 A buys,
and by (W) we conclude b, V ¢ = b,;3.

Now if a» V ¢ % b, we have {as, ..., Guys, b2y o ooy bpys, a2 V ¢} =R,y
contradicting the choice of #. Hence a; V ¢ = b2, and so a2 V ¢ = by =
by V ¢. By (SDv), 0,45 = (as A b2) V ¢ = b1 V ¢, and the proof of Theorem
1.2 is complete.

5. The corollaries. With Theorem 1.6 in hand the proof of Corollary 1.7 is
simple although not obvious. The principal observation is this:

LeEmMA 5.1. Let L be a finite lattice satisfying (W) and let a, b be elements of L
with a < b, a join reducible and b join irreducible. Then there exist elements a’, b’
of L suchthata < a’, 0" = b, b isjoin irreducible, and b’ is the unique cover of a’.

Proof. Let @’ be a maximal join reducible element in {x € Lla < x £ b}.
Then a’ < b. Since L satisfies (W) ¢’ must have a unique cover 5’. Evidently,
v < b.

Let L be a finite, semidistributive lattice satisfying (W) and of breadth at
most two. In addition, let us suppose that L is nonplanar. Then according to
Theorem 1.6 L contains a sublattice isomorphic to .S, for some n = 0 (cf
Figure 2). Then

ar V by < as A (a1 V bs) <bgraV (@yya N bpyz) < @ppsz A bpys

(cf. Figure 12). In view of Lemma 5.1 there exists elements a,’, b, aJ’, b,’
such that

a1 Vb £ a) <b' = ax A (a1 V be),
buie V (Uppe A byys) = a’ < by = apps A buygs,

ay’, ay’ are join reducible (whence meet irreducible), b,’, by’ are join irreducible,
and b, covers ai/, by’ covers ay’. Let 8, = 0(a), by'), 02 = 0(ay’, b)), be the
smallest congruence relations identifying a," with b,’, and a,’ with b,’, respec-
tively. Then evidently 6; £ 6, and any congruence relation 6 smaller than
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either is the equality relation. In particular, L cannot be subdirectly irreduc-
ible. This establishes Corollary 1.7.

Corollary 1.8 now follows at once from Theorem 1.5.

Acknowledgement. The authors thank G. Gritzer for his helpful suggestions
regarding the organization of this paper.
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