A UNIVERSAL PROPERTY OF THE TAKAHASHI QUASI-DUAL

DETLEV POGUNTKE

Introduction. Topological group always means Hausdorff topological group, homomorphism (isomorphism) between topological groups always means continuous homomorphism (homeomorphic isomorphism). For a topological group G, the topological commutator subgroup (the closure of the algebraic commutator subgroup) is denoted by G'. For each locally compact group G, Takahashi has constructed a locally compact group G_T (called the Takahashi quasi-dual) and a homomorphism $G \to G_T$ such that G_T is maximally almost periodic, and G_T' is compact. The category of all locally compact groups with these two properties is denoted by [TAK]. Takahashi's duality theorem states that $G \to G_T$ is an isomorphism if $G \in [TAK]$. In this paper we show that for each locally compact group G the homomorphism $G \to G_T$ has a universal property, namely that for each homomorphism $G \to H$, H being in [TAK], there is exactly one homomorphism $G_T \to H$ such that the diagram

commutes. In the language of category theory this means that [TAK] is reflective in the category of all locally compact groups. Takahashi's duality theorem is a simple consequence of this result. Moreover, we give another description of the group G_T and show that $G \in [TAK]$ if and only if G can be embedded as a closed subgroup of a product of a compact group and a locally compact abelian group.

1. In this section we describe Takahashi's construction $G \to G_T$ and show that $G \to G_T$ is dense and induces an isomorphism $G/G' \to G_T/G_T'$.

Let G be a locally compact group. The set Hom(G, U(n)) of all homomorphisms from G into the unitary group U(n) in n dimensions is topologized as follows:

- (i) Hom(G, U(1)) is equipped with the compact-open topology.
- (ii) If n > 1 and $D \in \text{Hom}(G, U(n))$ then the sets $\{D \otimes \chi \mid \chi \in U\}$, U any neighborhood of the identity in the group Hom(G, U(1)), form a fundamental system of neighborhoods of D in Hom(G, U(n)).

Received June 17, 1971.

1. Remark. Hom (G, U(1)) is isomorphic to Hom (G/G', U(1)), the Pontryagin character group of G/G', because every compact subset of G/G' is the image of a compact subset in G under the natural homomorphism $G \to G/G'$.

Let G and \mathfrak{A} be the topological sums (over the positive integers) of the spaces $\operatorname{Hom}(G,U(n))$ and U(n), respectively.

- 2. Definition. A map $Q: G^{*} \to \mathfrak{A}$, satisfying the conditions:
- (1) if $D \in \text{Hom}(G, U(n))$ then $Q(D) \in U(n)$;
- (2) if $D, D' \in G$ then
 - (a) $Q(D \oplus D') = Q(D) \oplus Q(D')$ and
 - (b) $Q(D \otimes D') = Q(D) \otimes Q(D')$;
- (3) if $D \in \text{Hom}(G, U(n))$ and $U \in U(n)$ then

$$Q(UDU^{-1}) = UQ(D)U^{-1};$$

is called a unitary mapping.

If x is any element of G then r(x): $G \to \mathfrak{A}$, defined by r(x)(D) = D(x), is a unitary mapping. Moreover, the set of unitary mappings forms a group under pointwise multiplication, and r is a homomorphism from G into this group.

3. Remark. If $s: G \to bG$ is the Bohr compactification of G then s induces a bijective map s^* : $(bG)^* \to G^*$, and s^* induces an isomorphism s^{**} from the group G^{**} of unitary mappings on G^{**} onto the group $(bG)^{**}$ of unitary mappings on $(bG)^{**}$. If both groups are endowed with the finite-open topology (as we will always assume in the sequel), this isomorphism is an isomorphism of topological groups. Tannaka's duality theorem states that there is an isomorphism i from i from i from i onto i onto i with i is a Bohr compactification, too.

 G_T is defined (i) algebraically, as the subgroup of G^{**} consisting of those elements which are continuous with respect to the topology defined above, and (ii) topologically, as being equipped with the compact-open topology. Then it can be shown (see [2], e.g.):

- 4. Proposition. (1) G_T is a locally compact group.
- (2) G_T' is compact.

This and the following (trivial) proposition are the only parts of Takahashi's paper needed here.

- 5. Proposition. If $u: G_T \to G^{**}$ denotes the inclusion map then:
- (1) u is a homomorphism of topological groups (hence G_T is maximally almost periodic);
- (2) r factors through u, i.e. there exists a homomorphism w: $G \rightarrow G_T$ with uw = r.

In order to establish the universal property of $w: G \to G_T$ we need some more information on u and w, given in the following lemmas.

6. Lemma. (i)
$$u(G_T') = (G^{*})' = \overline{r(G')}$$
, and (ii) $u^{-1}((G^{*})') = G_T' = \overline{w(G')}$.

Proof. Of course, $r(G') \subset u(G_{T'}) \subset (G^{\circ\circ})'$. Since $G_{T'}$ is compact, $u(G_{T'})$ is closed and therefore, $r(G') \subset \overline{u(G_{T'})} = u(G_{T'}) \subset (G^{\circ\circ})'$. For (i) it remains to prove that $(G^{\circ\circ})'$ is contained in $\overline{r(G')}$. Since r is dense $(r:G \to G^{\circ\circ})$ is a Bohr compactification of G), $\overline{r(G')}$ is a normal subgroup of $G^{\circ\circ}$, and r induces a dense homomorphism $G/G' \to G^{\circ\circ}/\overline{r(G')}$. Therefore, $G^{\circ\circ}/\overline{r(G')}$ is an abelian topological group, and $(G^{\circ\circ})'$ is contained in $\overline{r(G')}$. The equality $u^{-1}((G^{\circ\circ})') = G_{\underline{T'}}$ follows from (i) because u is injective. Moreover, w(G') and, therefore, $\overline{w(G')}$ is contained in $G_{\underline{T'}}$. Since $G_{\underline{T'}}$ and hence $\overline{w(G')}$ are compact, $u(\overline{w(G')})$ is closed, and we get

$$u(\overline{w(G')}) \supset \overline{uw(G')} = \overline{r(G')} = u(G_{T'})$$

which implies $\overline{w(G')} \supset G_T'$ because u is injective.

7. Lemma. If Ch(Hom(G, U(1))) denotes the Pontryagin character group of the locally compact abelian (see 1) group Hom(G, U(1)) then $v:G_T \to Ch(Hom(G, U(1)))$, defined by

$$v(Q) = Q \Big|_{\operatorname{Hom}(G, U(1))}^{U(1)},$$

is a homomorphism of topological groups. The kernel of v is G_{τ}' .

Proof. Since any element Q of G_T is continuous and Q satisfies conditions (1) and (2) (b) in 2, Q induces a homomorphism

$$v(O)$$
: Hom $(G, U(1)) \rightarrow U(1)$

of topological groups.

The proof that v is a homomorphism of topological groups is immediate and omitted.

Since v is a homomorphism into an abelian topological group, G_T is contained in the kernel of v. Let Q be any element in G_T . $r: G \to G^{**}$ induces a bijective (because r is a Bohr compactification of G) homomorphism \tilde{r} from $Hom(G^{**}, U(1))$ onto Hom(G, U(1)).

$$\operatorname{Hom}(G^{\vee},\ U(1)) \xrightarrow{\widetilde{r}} \operatorname{Hom}(G,\ U(1))$$

$$v(Q)$$

$$U(1)$$

Explicitly: $(v(Q)\tilde{r})(\chi) = v(Q)(\chi r) = Q(\chi r)$ for $\chi \in \text{Hom}(G^{\check{}}, U(1))$, and it can be shown easily that $Q(\chi r) = \chi(u(Q))$. (Fix χ and prove that the continuous homomorphisms χ and $P \mapsto P(\chi r)$ from $G^{\check{}}$ to U(1) coincide

on r(G) and hence on G^{\vee} .) Thus, if Q is in the kernel of v then $\chi(u(Q)) = 1$ for all $\chi \in \text{Hom } (G^{\vee}, U(1))$ and hence $u(Q) \in (G^{\vee})'$; by 6 (ii) we get $Q \in G_T'$.

8. Lemma. w: $G \to G_T$ induces an isomorphism w': $G/G' \to G_T/G_{T'}$ of topological groups.

Proof. Of course, the induced map w' is a homomorphism. By 7 there is an injective homomorphism v' such that

commutes. As we remarked in 1, $\operatorname{Hom}(G,U(1))$ is isomorphic to $\operatorname{Hom}(G/G',U(1))$. Therefore, by the Pontryagin duality theorem, there exists an isomorphism $d\colon G/G'\to\operatorname{Ch}(\operatorname{Hom}(G,U(1)))$ given by $d([y])(\chi)=\chi(y)$ where $y\in G,[y]$ denotes the image of y under the natural homomorphism $G\to G/G',$ and $\chi\in\operatorname{Hom}(G,U(1))$. A simple computation shows d=v'w' or, equivalently, $(d^{-1}v')w'=\operatorname{id}_{G/G'}.$ On the other hand, from $(d^{-1}v')w'(d^{-1}v')=\operatorname{id}_{G/G'}(d^{-1}v')=d^{-1}v'=(d^{-1}v')\operatorname{id}_{G_{T}/G_{T}'}$ we obtain $w'(d^{-1}v')=\operatorname{id}_{G_{T}/G_{T}'}$ because $d^{-1}v'$ is injective. Thus, w' is an isomorphism with inverse $d^{-1}v'$.

9. Lemma. w: $G \rightarrow G_T$ is a dense mapping.

Proof. By 8 and 6 we get

$$G_T = w(G) \cdot G_{T'} = w(G) \cdot \overline{w(G')} = \overline{w(G)}.$$

- 10. Remark. Especially, 9 implies that w is an epimorphism in the category of locally compact groups.
- **2.** In order to be able to give another description of the groups in [TAK] we need the following lemma whose simple proof is omitted.
- 11. LEMMA. Let G, G_1 , G_2 be topological groups, and let $f_i: G \to G_i$ (i = 1, 2) be homomorphisms. Then the following conditions are equivalent:
- (1) the homomorphism $G \to G_1 \times G_2$ induced by f_1 and f_2 is a homeomorphism onto a subgroup of $G_1 \times G_2$;
- (2) for each neighborhood U of the identity in G there exist neighborhoods V_i of the identity in G_i such that $f_1^{-1}(V_1) \cap f_2^{-1}(V_2)$ is contained in U.
- 12. Theorem. Let G be a locally compact group, let $s:G \to bG$ be the Bohr compactification of G, and let $q:G \to G/G'$ be the natural homomorphism. Then the following conditions are equivalent:
 - (a) $G \in [TAK]$;
- (b) the homomorphism $G \rightarrow bG \times G/G'$, induced by s and q, is a homeomorphism onto a closed subgroup;

(c) G can be embedded as a closed subgroup of a product of a compact group and a locally compact abelian group.

Proof. (b) \Rightarrow (c) and (c) \Rightarrow (a) are trivial.

(a) \Rightarrow (b). Let U be a compact neighborhood of the identity in G. Because of 11 we need only to construct neighborhoods V and W in bG and G/G', respectively, such that

(*)
$$q^{-1}(W) \cap s^{-1}(V)$$
 is contained in U .

Choose W = q(U). Since UG' is compact and G is maximally almost periodic, s induces a homeomorphism from UG' onto s(UG'); especially, s(U) is a neighborhood of the identity in the space s(UG'). Therefore, there exists a neighborhood V of the identity in bG such that $s(UG') \cap V$ is contained in s(U); (*) is easily verified.

In order to show that the image of G is closed in $bG \times G/G'$, take a net $(x_{\alpha})_{\alpha \in I}$ in G such that

$$s(x_{\alpha}) \xrightarrow{\alpha \in I} x \text{ and } q(x_{\alpha}) \xrightarrow{\alpha \in I} q(y).$$

We have to construct $z \in G$ with s(z) = x and q(z) = q(y). Without loss of generality, we may assume that $y \in G'$ (if this is not the case consider the net $(x_{\alpha}y^{-1})_{\alpha \in I}$). Let U be a compact neighborhood of the identity in G. Since UG' is compact and q(U) is a neighborhood of q(y) in G/G' there exists a subnet $(x_{\alpha})_{\alpha \in J}$ such that (i) $\alpha \in J \Rightarrow q(x_{\alpha}) \in q(U)$ or, equivalently, $x_{\alpha} \in UG'$, and (ii) $\lim_{\alpha \in J} x_{\alpha}$ exists. $z = \lim_{\alpha \in J} x_{\alpha}$ is the desired element of G.

In order to prove the main theorem we need the following lemma whose simple proof is omitted.

- 13. Lemma. Let G, L, H_1 , H_2 be topological groups, let H be a closed subgroup of $H_1 \times H_2$, and let w be a dense homomorphism from G to L with the property that for homomorphisms f_i from G to H_i (i = 1, 2) there exist homomorphisms \hat{f}_i from L to H_i such that $f_i = \hat{f}_i w$. Then for each homomorphism f from G to H there exists a unique homomorphism \tilde{f} from L to H with $\tilde{f}w = f$.
- 14. THEOREM. Let G be a locally compact group, let G_T and $w: G \to G_T$ be as in §1. Then $G_T \in [TAK]$, w is a dense homomorphism, and for each $H \in [TAK]$ and each homomorphism $f: G \to H$ there exists exactly one homomorphism $\hat{f}: G_T \to H$ with $f = \hat{f}w$.

Moreover, this property determines (w, G_T) uniquely up to isomorphism. More precisely, if $G^* \in [TAK]$ and $w^* \colon G \to G^*$ is a homomorphism such that for each $H \in [TAK]$ and each homomorphism $f \colon G \to H$ there is a unique homomorphism $\hat{f} \colon G^* \to H$ with $f = \hat{f}w^*$ then there exists an isomorphism $i \colon G_T \to G^*$ with $iw = w^*$.

- 15. Corollary. If $G \in [TAK]$ then $w: G \to G_T$ is an isomorphism.
- 16. Remark. In the language of category theory the theorem states that the full subcategory [TAK] is an epireflective subcategory of the category

of all locally compact groups, and that for each locally compact group G its [TAK]-epireflection is given by $w: G \to G_T$. (For the definition of epireflective subcategories see [1], e.g.)

Proof of the Theorem. Because of 9, 12, and 13 it suffices to show that for each compact group K, each locally compact abelian group A, each homomorphism $g: G \to K$, and each homomorphism $h: G \to A$ there exist homomorphisms \hat{g} and \hat{h} from G_T to K and A, respectively, such that $g = \hat{g}w$ and $h = \hat{h}w$. Since $uw = r: G \to G^{\sim}$ is the Bohr compactification of G (see §1) there exists a homomorphism $\tilde{g}: G^{\sim} \to K$ with $g = \tilde{g}r$. Then $\hat{g} = \tilde{g}u$ solves the problem. The fact that w induces an isomorphism w' from G/G' onto $G_T/G_{T'}$ (see 8) implies the existence of \hat{h} .

The last assertion of the theorem is a standard computation. The proof of the corollary is trivial because (G, id_G) has the universal property if $G \in [TAK]$.

Now, we will give another description of the group G_T .

17. Proposition. Let G be a locally compact group, s: G oup bG the Bohr compactification of G, and q: G oup G/G' the natural homomorphism. The homomorphisms s and q induce a homomorphism $\sigma: G oup bG imes G/G'$. Define $\dagger G: \overline{\sigma(G)}$, denote by j: $\dagger G oup bG imes G/G'$ the inclusion homomorphism, and let τ be the unique homomorphism such that

commutes. Then $\dagger G \in [TAK]$, and for each homomorphism $f: G \to H$, H being in [TAK], there exists one and only one homomorphism $\hat{f}: \dagger G \to H$ with $\hat{f}\tau = f$. Especially, G_T is isomorphic to $\dagger G$.

Proof. Use 13 and the characterization of the groups in [TAK] from 12 as in the proof of 14, and then use the universal properties of $G \to bG$ and $G \to G/G'$.

$$C \xrightarrow{f} A \times B = C \xrightarrow{e} D \xrightarrow{m} A \times B$$

the $(\mathfrak{C}, \mathfrak{M})$ -factorization of f, then $e: C \to D$ is the reflection of C in \mathscr{D} .

REFERENCES

- 1. H. Herrlich, Topologische Reflexionen und Coreflexionen (Berlin, 1968).
- 2. H. Heyer, Dualität lokalkompakter Gruppen (Berlin, 1970).
- 3. L. S. Pontryagin, Topologische Gruppen (Leipzig, 1958).
- K. Suzuki, Notes on the duality theorem of noncommutative topological groups, Tôhoku Math. I. 15 (1963), 182–186
- 5. S. Takahashi, A duality theorem for representable locally compact groups with compact commutator subgroup, Tôhoku Math. I. 4 (1952), 115-121.
- T. Tannaka, Über den Dualitätssatz der nichtkommutativen topologischen Gruppen, Tôhoku Math. J. 53 (1938), 1-12.

Universität Bielefeld, Bielefeld, West Germany