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MEAN CONVERGENCE OF LAGRANGE INTERPOLATION
FOR EXPONENTIAL WEIGHTSON [—1, 1]

D. S. LUBINSKY

ABSTRACT. We obtain necessary and sufficient conditions for mean convergence
of Lagrange interpolation at zeros of orthogonal polynomials for weights on [—1, 1],
such as

W(x) = exp(—(l - xz)*”), a>0
or
w(x) = exp(— exp (1 — xz)*“). k>1, a>0,

where expy = exp(exp(~ coexp()-- )) denotes the k-th iterated exponential.

1. Introduction and results. There is a vast literature on mean convergence of
Lagrangeinterpolation at zeros of orthogonal polynomials. For weightson[—1, 1], most
of the positive results deal with generalized Jacobi weights—see[12], [13], [17], [20] for
some recent references. The broad spectrum of results have applications ranging from
approximation theory to number theory and numerical analysis—see [18] for some of
these, notably for the insights that Lagrange interpolation provides on the orthogonal
polynomials themselves.

In this paper, we consider the analogous problem for exponential weights w? on

[—1,1], suchas

@ Woo(X) = exp(—(1—x*)™*). a>0

or

@) Wio(X) = exp(—exp(1—x°) ). k>1 a>0,
where

denotesthe k-th iterated exponential. These are the first positive results on mean conver-
gence associated with weights that vanish strongly at 1. The corresponding question
for exponential weights on R has been considered in [3], [4], [10], [16].

Our results are based on the estimates of [8], which involve the following class of
weights: In its definition, we use the notation ~. We write

f(t) ~ g(t)
if there exist positive constants C; and C, such that for the relevant range of t,
C1 <f(t)/gt) <Co.
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Similar notation is used for sequencesand sequences of functions.

DEFINITION1.1. Letw := e Q whereQ: (—1. 1) — Riseven, and twice continuously
differentiable in (—1. 1). Assume moreover, that Q¥ > 0in (0. 1), j = 1,2, and that the
function

T(t) =1+tQ"(t)/Q'(t), te(-11)\{0}
isincreasing in (0, 1) with
T(0+) := tlm TM) > 1
and for t close enoughto 1,
T(t) ~ Q'(t)/ Q)
while for some A > 2 and t close enoughto 1,

A
1—1t2°

T =

Thenwewritew € W .
We note that the last inequality is (1.34) in [8, p. 9] and is needed for the bounds on
the orthogonal polynomialsthere. In particular, it implies

lim Q() = oo.

which is required in Definition 1.1 in [8]. The weights wi ., k > 0, « > 0 are the
archetypal elements of W .

Associated with the weight w? (note that we write the weight as a square), we can
define orthonormal polynomials

Pn(X) = pr(W2 X) = VX" + -, 1 >0,

satisfying
1
/—l pnme2 = Om.

We denote the zeros of p;, by
=1 <X < Xp—in < -0 < Xip < 1.

The Lagrange interpolation polynomial to afunction f: (—1,1) — R at {xj,} is denoted
by Ln[f]. Thus, if P, denotes the polynomials of degree < n, then L[f] € P,,_; satisfies

Lalf104) = f0g0).  1<j <n.

The Gauss quadrature rule for w? hasthe form

/jl Pw? = 2 AinP(n). P€ Pon-1.
. &
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where the Christoffel numbers ), are positive.
In analysis of exponential weights, an important role is played by the Mhaskar-
Rahmanov-Saff number a,,, the positive root of the equation

_ 2 1 antQ'(ant)
€) n=-— /O Vo=l dt.

One of its features is the Mhaskar-Saff identity [11]
IPWIL. (-1 = [PWL [-ava: P € Pn.

Forw e W, a, — 1asn— oo. We also need the quantity

4 60 = (nT(an) .
Onemay think of 6, asthe spacing X1, — Xon between the largest and second largest zeros
of pn. For

1
_ 20432

W = Wo o, T(an) ~ n‘”% DOy~ N 2413

[8, p. 8] so as @ — 0, we have roughly speaking, 6, — n~2, the spacing between the
largest and second largest zeros of the orthogonal polynomials for generalized Jacobi
weights. By contrast, for

k-1 .
W= W, k=1, T(@) ~ (] log n)(log,n)*™>
=1

where
log, = Iog(log(- --log(- - )))

denotesthe j-th iterated logarithm [8, p. 11]. Thusfor wo 4, T(an) grows like a power of
n, while for wy ,, k > 1, it grows slower than any power of n. This difference plays a
role in describing our convergence results for L,[f]. The final piece of notation needed
to state our result isthe function

X
an
Our Lagrangeinterpolation results depend on the following converse quadrature sum

estimate, whichisan analogue of the classical Marcinkiewicz inequality for trigonometric
polynomials:

(%) gn(X) = |1—

+6n, X€(—1,1).

THEOREM 1.2. Letwe W, 1 < p < oo and

1 1 . (5 13 1
(6) Z—B<A<m|n{z—5,z+2—p}.
Thenforn>1andP € Pp_4,
A n _2 p 1/p
™ PG i-1y = C3 04 PGP )
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Here C isindependent of P and n.

The upper bound on A in (6) is probably not sharp, but thisislargely irrelevant to this
paper: it is the lower bound on A in (6), which is sharp. Following is our main result,
which requires (7) only for A closeto 2 — %

THEOREM 1.3. Letw € W, 1 < p < oo and A € R. Thefollowing are equivalent:
(a8) There exists C independent of f and n such that for n > 1, and measurable

f:(-11) — R,

(8) ILnlfIWgR |12y < CllfWI|L (-1.1-
(b) 11

©) A>7-3

The disadvantage of the above result is that the weighting factor g, in the left-hand
side of (8) depends on n. In analogous questions for generalized Jacobi weights on
[—1, 1], one can effectively take gn(X) = g(X) = 1 — |x|, but not here.

We note too that there is no advantage to be gained by placing afactor gy, no matter
what choicefor r, in ||fw||__[—1,1. Indeed one needs (9) if (8) isto hold merely for f that
vanish outside any fixed non-empty subinterval of (—1, 1).

To avoid weighting factors that depend on n, we consider separately p < 4andp > 4:
for the former case, we do not need aweighting factor:

THEOREM 1.4. Letw € W and1 < p < 4. Letf:(—1,1) — RbeRiemannintegrable
in each compact subinterval of (—1. 1) and assume that for some o < 2,

(10) ‘ ,inlw_(fw)(x)(l —x9)* =0.
Then
(12) 1im |(Lalf] = w19 =0.

We note that one may replace (1 — x2)* by (1 — x2)*/P|log(1 — *?)|%, where a < %
(and so on). The weighting factor is more complex for p > 4:
THEOREM 1.5. Letwe W ,p>4,A € R.
(a) Let
1 1

(12) A>5-5

Let f:(—1,1) — R be Riemann integrable in each compact subinterval of (—1, 1) and
assume that for some o < ’l) (10) holds. Then

(13) 1im [|(Lalf] = WL+ Q¥3T] |1y = 0.

(b) Conversely, if (13) holdsfor eachf:[—1, 1] — R that is continuous and vanishes
outside [—3, 3], it is necessary that

(14) A

v
Al
OlF
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If p=4, (12) isalso necessary.
If instead of (13) we considered

lim [ (Lalf] — fw(log@ + Q)1+ Q/°TI |, =0

then (12) is necessary and sufficient for al p > 4. In fact we could replace log(2 + Q) by
any slowly growing function with limit co at 1. However, this would make an awkward
weighting factor even more awkward!

The closest relative of this situation for weights on R is the so-called Erdés weights
considered by S. B. Damelin and the author [3], [4]. There the weighting factor used was
equivalent to (1 + Q%3)~2. This was possible as T there grows slower than Q° for any
e > 0. However, as we have noted above, in the present situation, T may grow faster
than Q, unless Q grows fast enough near 1. Indeed, for wp 4,

1 1

T(x) ~ m; QX = A= X—1—.

By contrast for wy o, k > 1, for eache > 0,
T() = 0(log QX)) ™", x—1—.

For weights such as the latter we can then drop the T in (13).
Further justification for the choice of 1 + Q%/3T is provided by:

THEOREM 1.6. Letw € W andp > 4. LetU: (-1, 1) — R be measurableand satisfy

= Jim UL + Q00T(1 3 = oo.

Then there exists continuousf: (—1, 1) — R such that f vanishes outside [— % %] and

(16) limsup ||Ln[f]WU|||_p[_1A1] = 00.
n—oo

Our proof of Theorem 1.2 uses Konig'smethod [6], [7], adjusted so as to work for all
1 < p < oo. Itisinteresting to note that this is the third method we tried, the first two
failed to yield sharp results: we began by applying the method that has proved successful
for Freud weightson R ([3], [10], [16]). Thisfailed becausethe requisite results on mean
convergence of orthonormal expansions are not available, and moreover, the use of a
Lebesgue function type estimate yielded an extra factor of logn. The second method
tried was Nevai's from [17], but that failed as it needs polynomials R, of degree < n
such that

Ry ~w in[—an, an].

These are not available.

This paper isorganised asfollows: In Section 2, we state extranotation, and state some
technical lemmas. In Section 3, we state lemmas needed specifically for Theorem 1.2
and in Section 4, we prove Theorem 1.2. In Section 5, we prove the remaining results.
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2. Technical estimates. In the sequel, C, C;, Cy, ... denote positive constants in-
dependent of n, x and P € P,,. The same symbol does not necessarily denote the same
constant in different occurrences.

The Lagrangeinterpolation polynomial L,[f] admits the representation

Lo[f] = f;f(x,-n)lz,-n(x)
J:

where the fundamental polynomials ¢j, in turn admit the representation

Pn(X)
lin(X) = ———~——~-
00 G — )
We set
(17) Xon = Xin(1 +6n);  Xnewn = Xan(1 +6n)
and

lin := (s X—1n)s [lin] == %10 —Xn. 1<) <N
We also define the characteristic functions
1, X€El; .
w={g g 1<i<n

In describing spacing of zeros and related quantities, the function

(18) on() 1= max[\/gn(x» m}

plays an important role. (Recall g, was defined at (5)). In the sequel, we assume that
w € W without further mention. First we record all our estimates relating specifically
to orthogonal polynomials:

LEMMA 2.1. (a) Forn>1,

X1in
19 }1 _ M
(19) a

(b) Uniformlyforn>1and1<j <n,

S C(Sn.

(20) AW 2(4n) ~ X210 — Xin| ~ %d’n(xjn)-
(c) Uniformlyforn>land1 <j <n, andX € [X+1,n, X—1n],
(21) 9n(X) ~ Gn(Xin);  Pn(X) ~ Pn(Xin)-
(d) Uniformlyforn>21and1<j <n,

1

@) opwW ()

(Xjn - Xj+1,n)gn(xjn)l/4-
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(e) Uniformlyforn>1l1land1<j<nandxe (—11),

Pn(JW(x)
X—Xin |

(23) |Zjn(x)|W 1(X]H)W(X) ~ (Xjn — Xj+1, n)gn(xjn)1/4

() Uniformlyforn>1and1 <j <nandx e (—1,1),
(24) | £n(Y W (xnw(x) < C.
(9) Uniformlyforn>1l1and1 <j<n-—1andx € [Xs1n, Xn],
(25 CinQGOW T OGn)WX) + Lagn(IW (1.0 W(X) ~ 1.
(h) Uniformlyfor n>1andx € (-1, 1),
(26) [Prw|(x) < Cgn(x) /.

() LetO<p<oo.Forn>1,

p<4
(27) 1P|y, Jog(nﬂ) . p=4,
p>4

3'5“—-
NH

() Uniformlyforn>1land1 <j <n—1andx & (X+1n. Xn),

gn(xm) 1/4

jn

(28) [PaW|(9) ~ — ming[x = Xnl. [X = X101}

PrROOF. (a) ThisisCorollary 1.4(i) in[8, p. 9].

(b) Thisfollows from Theorem 1.2 and Corollary 1.4 (ii) in [8].

(c) Thisfollowsfrom (10.12) in[8, p. 111].

(d) Thisfollowsfrom Corollary 1.5(iii) in [8, p. 11] and Corollary 1.4(ii) in [8, p. 9].
(e) Thisisaconsequenceof (d) and the formulafor ¢;p.

(f) ThisisLemma12.2(b) in[8, p. 134].

(9) Itisaspecial caseof theresult of [9] that in [X+1.n. Xn],

GnIW(Gn)W(X) + Ljs1n(OW(Gn)W(X) > 1.

Aninequality in the other direction follows from (f).
(h) Thisfollowsfrom Corollary 1.5 (i), (ii) in[8, p. 10].
(i) Thisfollowsfrom Corollary 1.5(ii) and Theorem 1.8in [8, p. 12].
(i) Thisfollows easily from (€) and (g) and the fact that |ljn| ~ |lj+1nl- "

Next we record estimates involving Q and a,. We note that we may define a, by (3)
evenfor all u > 0 (and not just for integers n).

https://doi.org/10.4153/CJM-1998-062-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-062-5

1280 D. S.LUBINSKY

LEMMA 2.2, (a) Forj=0,1,2,andu> C,

(29) Q¥(ay) ~ uT(a) 2.
(b) Let o, 8 > 0. Thenuniformlyfor j =0,1,2,andu > C,
(30) T(aau) ~ T(aﬂu)i Q(j)(aau) ~ Q(j)(aﬂu)-

(c) Thereexist C, ¢ > 0 such that
(31) T(a) <Cu>*., u>C.

(d) ThereexistsC > Osuchthatfor 3 < ¥ <2,

ay 1 u
(32) ayl T(ay) |1 v"
Moreover, if o > 0, thereexists C > 0 such that for u > C,
Aoy 1

33 e
33 a | T(aw)

PROCOF. This is part of Lemma 3.2 in [8, p. 24], except (32), which follows by
integrating (3.9) in [8, p. 24]. ]

In the proof of the necessity parts of the theorems, we shall need:

LEMMA 2.3. Let0<p<00,0<A<B<00. Leté:(—1,1) — (0, 00) bean even
function with the following property: Uniformlyforn > 1,1 <j <n,

£(%)
34 A< =" <B, XE€ [X+Ln, Xin]-
(34) R [Xj 1,n Xjn]
For n> 1, let |, be a subinterval of (X.n. X1n) containing at least two zeros of p,. Then
(35) 1wl = Clign ™ *€ 1,1,

The constant C isindependent of n, I, ¢ but dependson A, B in (34).
PrOOF. We notefirstthatif 1 <j <n— 1, (28) and (34) give

in X; —1/4\P n .
[ e~ (E— ) etip [ min{fx— ol [x — Xerl}

Xin — Xj+1,n

~ (%) P A€ ()P (0 — K1) ~ A " gl

+1,n

by (21) and (34). Adding over those j for which [X+1n, Xn] C I gives the result: Note
that terms over adjacent intervals are of the same size up to ~. Thus if the endpoints of
In do not coincide with zeros of pp, the small intervals around these endpoints are of the
same size as an adjacent [Xj+1.n. Xjn] C |In. Of course, as |, contains at least two zeros,
there is such an adjacent interval . ]

Our final lemmain this section is a restricted range inequality:
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LEMMA 2.4. Let0 < p < oo and A € R. Let s > 0. Then there exists ny such that
forn>ngandP € Py,

(36) IPWGR [l Lyi-111 < ClIPWOR| Ly —a0(1—s5r).c0(1—s)] -

PrROOF. We claim that we can find ng and for n > np, polynomials R, of degree
O %) such that

(37) Rua ~ @A in[—an, an]; Raa > Cdhin[—1,1].

Once we have such polynomials, we note that for P € P,, P,R,a has degree

1/3
m=m(n) = n+ 06 ") = n<1+O(T(a”)) ) = n(1+0(1)).

2
Then from (32),
an C n
A<~ (1—-=)< .
e s T(an)<1 m> = Cn
S0

am < an(1+Cén);  6m = Cén.
In particular for agiven s, we can chooset > 0 so large that for large enough n,
am(1 — tom) < an(l — sn).
By Theorem 1.7 in [8, p. 12], givenK > 0, we havefor n > n;(K),

IPWgRllLyi-11 < ClIPWRyalL, -1
< CJ|PWR Al Ly —an(1-t5m),am(1—t5)]
< Cl|PWRnAllLy[an(1-s50).a0(1-s50)]

So we have (36).
We now turn to the proof of (37). For this purpose, we use Christoffel functions for
the classical Jacobi weights. First let 3 € [—%1. 0), and

u®) =1 —x) %z, xe(-L1).
Its Christoffel function A,(u, X) satisfies[15, p. 108],
I UX) ~ (11— + 07?8, xe[-1.1).

Moreover, if p;(u, X) is thej-th orthonormal polynomial for u, its zerosall lie in (—1, 1),
S0

=
A Hu,x) = g pP(u. )
]:
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isincreasing in (1, 0o) while (|1 — x?| + £~2)" is decreasing there. Thus

U > C1 -+ 070, x> 1

1/2

Then defining ¢ = £(n) := greatest integer < 6,/ “, and

— p—1y-1(;, X
Ras(X) = 077X, (Ua)
we see that
Rus ~ s in[ana; Ry >gp in[—1.1].
So we have R, satisfying (37) forA =3 € [—%1. 0). Now for any A € R, we can write
A =Kk3 + 2j, wherek, j are non-negativeintegers, and 8 € [—%, 0). We can then set

Rua(¥) = R,h_f,(x)((l - %2)2 +5ﬁ)1

and easily seethat (37) holds. n

3. Lemmas for Theorem 1.2. In this section, we present three lemmas required
specifically for the proof of Theorem 1.2. The first involvesthe Hilbert transform

90 4
—x> X —1

HIgl(9 := lim /‘t

—0+

If g € L1(R), then g existsa.e. Moreover, afamous theorem of M. Riesz assertsthat H is
abounded operator on L, for 1 < p < oo. We need amodification of M. Riesz’ theorem
that is essentially due to Muckenhoupt:

LEMMA 3.1. Letl < p<ooand

(38) —E<r<1—}.
p p

Thenfor b,c € Randg € Lp[—1,1],

(39) Higeo| o — x|+ | <] am|jo—1x|+d] |

Lp(R) Lp(®)’

where C is independent of g, b and c.
ProoF. The result is a special case of general results on A, weights, and the idea

already appears in [14], [6]. See also [17, p. 676]. However, since the result is not
formally stated anywhere, we give the proof. We shall use the notation

HIf (Y] (x) = HIf]()

to indicate the variable y of the function whose Hilbert transform is being taken. Now
we seethat (39) follows if we can show that

it

Hb " r}(x)“b—lxlﬂ'r < Cllhl[Lyw)-

Lp(R)
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(For, one can then set h(X) = g(x)‘ |b— x|+ c‘r.) We shall assumethat b > 0, the case
b < Oissimilar. By avariable substitution y = bt, x = bs, ¢ = bd we see that it suffices
to show that

(40) T = HH < ClIhllLyw),

Lp(R)

with C independent of h and d. (Thisworksfor b # 0, seebelow for b = 0). It sufficesto
prove (40) for non-negativeh. (Inthegeneral case, wewriteh = max{0, h} —max{0, —h}
and usethefact that the L, norms of each of these factors ontheright isno larger than the
corresponding norm for h.) We may also assume that h vanishesin (—oo. 0). (For in the
general case, we write h = hyo,o0) + hx(—,0), Where y denotes characteristic function,
and use the fact that each of the components on the right has L, norm no larger than
that of h. We also use areflectiont — —t in handling the second term). So suppose now
h > 0 and has support in [0, c0). Then we estimate T above by

TSZl/p(

h(t) B '
H{TI:H:GTM$“1 s +d|

Lp[0,00)

+ HH {¢}(s)\ 1+ +d| Lp(wq)

1t +d
We attend first to the term 7, which is more difficult because of differing factors 1 — t
and1+s. Now if r > 0, thenfor s € (—o0, 0],

= 21/p(7_1 + 7).

(I1+s/+d)" < (j1—9+d)’

so that Ht
ng‘HP——Q—jkﬂu—q+q' .
11—t +d Lo(—o0.0]
On the other hand if r < O thenfor t € [0, 00),
1 1
F < 2
[[1—t/+d |1+t +d|
Since the integrand in
h(t) }
H s
{|1—q+dr()
is of onesign for s < 0, we deduce that
h
o O Jojeso]
|1+t +d| Lp(—0,0]
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In summary, if o ;= —sign(r), then

TZSH Lr (9|11 +0s| +d :
‘ |1+ ot| + d‘ Lp(—00,0]

Now in > we make the substitutions

l+ot=|dlv; 1+os=]|dJu
and in 71, we make the substitutions

1-t=dlv; 1-—s=|du.
We see then that it sufficesto show that

’Hﬁ}@‘ i+ <Clalle

with C independent of g € L(R). For the factor ‘ [v| + 1, thisis awell known result of
Muckenhoupt [14, p. 308]. For the factor ] |v| — 1\, we may proceed as above to show
that it sufficesto consider factors of the form |v £ 1|, which can be reduced to the factor
|v[; thisand the case b = 0 or d = 0 reduces to Muckenhoupt'sinequality [14, p. 308]

h(v)

T S < ClIhlLyw)- .

|
Lp(R)

We shall also need an operator inequality of Konig, involving

1/p
Hh“Lp(du) = (/Q |h|pd,ll/>
where (Q, 1) is ameasure space and h is y-measurable.

LEMMA 32. Letl < p < ocoandq := ﬁ. Let (Q. u) be a measure space and
S R Q? — R. For pu-measurablef, define

(41) I = [ S W) duy).
Assume that

(42) sup [ 1S(u. V)| IR V)[* du(v) < N;
(43) sup [ 5(u )] IRW. V| P dhu(u) < N;

Then J is a bounded operator from L(dy) to Ly(dg), more precisely,

(44) 19Nl Lptary—tp(ary < N-
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PROCF. See[4, Lemma2.5, p. 745] for afull proof. ]

Konig's method involves replacing —— x_ _ by H[x),,]- Thisis achieved with the aid of
the following lemma:

LEMMA 3.3. For1<j <n,let

(45) Tn(X) = (an)(X){X _1X _ H[Tcl;:]|(x)
” 1
(46) fn(¥) -mm{||Jn| 5 |Jf)1(! )z}gn(X)‘l/“-

Thenuniformlyforn> land1 <j <nandX € [Xmn, X1n],
(47) [Tin(9)] < Cfin(X).

PROOF. The idea aready appearsin [6], [7] and the proof is very similar to that in

[4], but we include the details. Notefirst that
[ljn|

(48) HIxinl09 =logl =" E—

an

= —log|1l

jn
We consider two ranges of x:

(1) x—=%n| = 2lljn]
Using the inequality

1
[logl -+t < | <3
we see that
1 Hhgl®)| _ 1] [lnl +|Og{1_ ||jn|}
X = Xjn ||jn| ||jn| X— Xin X — Xin
linl
~ (X—%n)?

Then our bound (26) for p,, gives (47) for thisrange of x.
(1) [x = xjn| < 2[ljn|
From (28) and (21) weobtainif 2 <j <n,

1/4
o) < OB i ok x5}

< Cin(¥) min{|x — Xjn|, [X = X—1,n] }-

(We also use the fact that if k is fixed, |ljn| ~ |lj1in| uniformly inj,n). For j = 1, this
holds with the minimum replaced by |x — xin|. Thenfor 2 <j < n, thefirst identity in
(48) showsthat

X — Xjn

(@9) o] < a0 | L+ minlx— . b= x-aal} v

Iog‘
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Since
[lin] > Cmax{|X — Xn, [X = X—1n[}

we see that with
X— XJn
Xji—1n — X

-

we obtain for both signs of the exponent,
[7n(¥)] < Chia([1+ u*| logu*]].

As either uor u™! liesin [0, 1] and tlogt is bounded for t € [0. 1], we obtain (47). It
remainsto handlethe casej = 1. Notethat for X € [Xnn, Xan], (it isonly here we need this
restriction), with |x — x3n| < 2|l1,|, we have

|X_ X0n| ~ 5(].
(See (17)). Theninstead of (49), we obtain

- Xln|

1+C|X5 o X=X

on

[T1n(X)| < Cf1n(X) log

n

|

where ¢ ~ 1 independently of X, j, n. As|x — xq5| < Cép, the boundednessof tlogtin
any finite subinterval of [0. co) again givesthe result. ]

4. Proof of Theorem 1.2. Throughout we assumethat w € W , that the hypotheses
of Theorem 1.2 hold, and assume the notation of Section 2, as well as (45), (46). We
shall break the proof of Theorem 1.2 into several steps:

Step 1. Express PW as a sum of two terms.
LetP e P, 1. Forl <k<n, set

Yin i= (Br)0n)
(PAW) (Xn)
and recall that
)\knW_Z(an) ~ Xe—1n = Xn = ||kn|-
We write

(PW)(x) = (La[PIW)(x)
= (PaW)(X) > Yin

k=1

(50) + (PawW) (X)H

{ 1 Hxal®)
X — Xkn ||kn|

n
ki
ZYKnX d

k=1 ||kn|

(x) =1 J1(x) + J(%).

Note that in view of the behaviour of the smallest and largest zeros (see (19)) and the
restricted range inequality Lemma 2.4, we have for some C independent of P and n,

(51) IPWERlLpi-111 < CllPWGR I Lyfxn i -
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STEP 2. Estimate ||J2d2].
(We beginwith J, asit is easier to handle). We may write

1
(52) A= 2 +r
where 1 1 1 1
(53) —B<r<1—5 and r<§(1+l—3).
Using our bound (26) for pn, we then have
A n Xkn
||‘]29nHLp[xnn«,Xln] S C H ZYKn || gn
kn | Lp[xnn -Xln]
S C [iy Xkr‘l:|
k=1 | Ikn| Lp[xnn-xln]
rn |ykn| 1/p
=C p
21{ ||kn| } /lkn %

where, in the second last line, we used Lemma 3.1. Now by (21),
~/|k gﬂp ~ gn(xkn)rp“knl

and by (22),
(54) kol ~ |PW|(Xen) | Ten| G (Xien) /.

Then using (52) followed by (20), we have
192 il < c[z ol PP ()]
) p 1/p
(55) < C[3 N Z050) PGP )|
k=1

Step 3. Estimate ||J1d3]-
By Lemma 3.3,

|Jl(X)| = ‘i YKnTkn(X)I < Ci |ykn|fkn(x)
k=1 k=1

1/p

19t < 13 [ [32 D] "6

Using the spacing (20), (21) and the definition (46) of fy,, we seethat

fin(X) ~ %gn(xjn) 1/4-, X € ljn
uniformly innandinj. k with j # k. We deduce that
(56) ||‘Jlgﬁ|||—p[xnn-x1n] S C[S-]- + SZ]
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where (recall (52) and (54))

pl 1/p

S = {Z“M{ZMJ%%@Nr

j=2

and by (46) and (21),
n 1/p
= [Z; |yjn|p||jn|17pgn(xjn)rp]
]:

Exactly asin the last part of Step 2, we seethat (54) gives

n 1/p
(57) S < C[ 3 AW g0 Pk P (61)|
J:
To deal with S, we use Lemma 3.2 with a discrete measure space. Using (54), we see
that
1/p
S < C| 3wl WA 0o
where
b =bk=0, 1<k<n
andforj #Kk,
;
bi = |lknl? 7 [1in| Y POy — % —2(9“(““)) )
ik | kn| | Jn| (an Xjn) gn(an)
Defining the n x n matrix B := (bj);',-;, we seethat if £7 denotes R" with the usual ¢,
norm, then

n 1/p

St = ClBlgg [ ol [PWGRP)|
If we can show that for some C; independent of n, that
(58) [Blleg—rp <C1. n>1,
then, we obtain, taking account of (56) and our estimate (57) on S, that

A n _2 p 1/

”Jlgn H Lp[xnn~xln] S C[kz )‘knW (an)|F>\Ngﬁ| (an):|
=1

Together with (50) and our estimate (55) for J,, we then obtain the desired inequality
(@).
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Step 4. The proof of (58).
LetussetQ={1,2,3,....n}inLemma3.2, andletussetthere({j}) = 1,1 <j < n,
and

gn(xkn)) b
gn(xj n)
where o will be chosen later. We see that Lemma 3.2 gives (58) if we can show that

S(.K) = by R(.K) = (“k“')p_lq(

[ljn]

sup >~ S KRG K < C;

] k=1

upy” 5. KRG K P < C.
k j=1

that is, if we recall the choice of {bj}, S Randthat § +; = 1,

gn(an)) ~rea/p <C

n
su len |2 (% — X ‘2(
jpk;1| kn| ( kn Jn) gn(Xjn)

7
gn(xkn))’“/q “c

sup > [l |1 — X *2(—
ka:Z]_ | kn| I Jn|(xkn Xjn) gn(xjn)
j#k

Now recall (20) and (21). Then we see that we can reformulate these sums as integrals,
and it sufficesto show that for o = 0. 1,

s sp 20T 0 (gn(t))”” dt < Cy.

xel—ana] N te[—an.anl:x—t1>Son®)} (X — )2 \ gn(X)

where o o
60 =r+—; =—r+—.
(60) Bo q B1 D

(Note that our range of integration and range of x may exclude small intervals around X1,
or Xnn, but thisisfinein view of (20), (21); theterm o = 0 correspondsto the second sum
and ¢ = 1 correspondsto the first sum). We need only estimate the integral for x € [0, a,)
and thus need only show for ¢ = 0, 1,

(61) ap 2 /{ a® (gn(t))ﬁ" dt < Cy.

x€[0,an] n te[0.an]:x—t/>Son(¥} (X — 1)2 \ gn(X)

Now for x, t € [0, a,],

X —1=an[gn(t) — gn(X)]
and recall that ¢n(t) is given by (18) and gn(t) is given by (5). Thus making the substitu-
tionsu = gy(t), v = gn(X) it sufficesto show for o = 0, 1,

62) sup a7 /{ Yn(u) (U)ﬁu du<Cy.

velsndtsy N U, 148n):|u—v> S a0} (U — V)2 \ v
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where

(63) o9 = max{\/éT(an) ﬁ}

Let us make the further substitution u = vy. We see that it suffices to show that for our
rangeof v,and o =0, 1,

Un(WT Yo y)y*
= < ‘
©9 ! nv /{VE on /2 y-1>&un(v)} (Y — 1)2 dy<C
Note that
Yn(V) { 1 1 } { 1 1
_max{ —, —— Y <max{ —, ——
nv nyV' nT(anVv3/2] — NVBn nT(an)s?/2

o] 182) <

for large n, by (31). Thusif Cin the limit of integration in (64) is small enough, we may
estimate

l/fn(V)l 7 [/51/2 dy

2/v1 YR )y
/v /{y6[1/2-2]:|y—1\2n%wn(V)}+/ ]

2 J(y—1y
(65) = |1+|2+|3.

Firstly in 1, we have yn(vy) ~ yn(Vv), SO
) dy

(66) 2= nv  Jyelt/22:y-1> £} (y — 1)2 =C
We also see that

6 < ey ay

" Un(W)' 2 _

(68) ls < G — [ ug(w)y 2 dy.

We now distinguish two ranges of x:

RANGE | V € [bn. 1551
Here

1
Un(V) ~ T@) v
and 1 1
ye [Q 5] = Pn(vy) ~ Wv—y
S0 . /1/2y3 ol2gy<
L nT(an)v3/ 2 T
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provided
(69) 5(,—%>—1, o=0.1
Next, in estimating |3, we must take account of the fact that
1 l
Then
C Mx{2 G} o /24,2
I3 < ——— ? d
3 < nT(an)v3/2 / y y
o /2+B3,—2 dv<cC
= W[( Y /ax{zw y/o 2 dy <
as T(ap)v < 1 and provided
(70) Boto/2<1, o=01
RANGEIIl. ve [ﬁ.lﬂsh]
Here
Pn(v) ~ Vv
and

y € [2,00) = Yn(Vy) ~ /WY

1/2
< J246,-2 gy < (an) -
ls < - ol / y dy < C— =1
by (31) and provided (70) holds. Next, we estimate
C(WV, 1—”{ max {22, T(.W}( ) g o }
< =7 b5 d
1< 20— e Ty ) ¥ Y g (V)Y

C
< —0 /243, /2484 <
< nW(T(an)v "y ay nﬂ/ y/#hdy<C

provided (69) holds. Recall too that T(a,)v > 1 and (31), which impliesthat v > Cn=2*
in this present range.
In summary, we have shown that for v € [6,, 1 +6,] and o € {0, 1},

I <C(l1+1x+13) <C

and hence have completed the proof of (58), provided we can choose the parameter o in
B3, to satisfy

g g _
(71) 1—§>60>§—1 0'—0,1.
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Step 5. The proof of (71) for a suitable choice of «.
We seefrom (60) that we need

1
—1<r+g<1; —s<r+2
q 2 p

1

5
Rearranging these inequalities leads to

1
gL+ <a<qgl-—r); p(r— —) <a< p<r+§>.
We see that we can choose such an o provided
1 1
—ae+n <p(r+3); p(r—3) <a@-n.

Solving for r leads to

_P/2*q p/2+q<:>—}(1+%) <r<}(1+%).

p+tq p+q 2 2
Finally, we also needed (38) for the application of Lemma 3.1, namely that
Lorcn-l
p p

Comparison of the lower and upper bounds for r shows that we need

—é <r<min{1—}.}<1+})}s

p 2 p
which is precisely (53). So we have (71) and hence (58).
Finally, recallingthat A =r + %1 givesthe condition (6) of Theorem 1.2. ]

5. Proof of Theorems1.3to 1.6. We begin with the

PROOF OF THE SUFFICIENCY PART OF THEOREM 1.3. Assume(9). Now if (8) holdsfor
agiven A, then it also holdsfor any larger A, as g, isboundedin [—1, 1], independently
of n. Thus we may assume that A is so small that (6) holds. Then setting P := L[f] in
(7), we have

n _ 1/p
LAl MR -2y = {3 Mo () PG P )
=1
n 1/p
< 1wl -2 (10 — X))
k=1

an 1/p
< twle1C( [, o)
by (20) and (21). Then we continue this as

/

= ||fW||Lm[,Ll]Ca,,l]/p(/_llHl— |t| ‘ +5n}Ap dX)l P < C”fWHLm[le}

asAp > —1. m
In the proof of the necessity part of al the theorems, we use the following:
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LEMMA 5.1. Let [a,b] be a closed subinterval of (—1,0) and for n > 1, let
fa: (—1,1) — R, with f, = 0 outside[a, b], and

(72) fa(Xn) = Wil(xjn)Sign (pA(Xjn))s Xn € (a,b).

Then there exists ng such that for n > ng and x € [0, 1],
(73) ILn[fn] ()| > Clpn(x)|.

ProOOF. Since[a, b] C (—1,0), we havefor x € [0, 1],

~ 1
La[fa](X) = pn(X) x,nez(a,b) W] () (X — Xin)

~ P S ©in = Xi+1.)
xne@b) X+ Xl

~ Pn(X) Z (Xjn - Xj+1.n) ~ Pn(X).
%n€(a,b)

Here we have used (22), and thefact that —1 < a < b < 0, sothat g, ~ 1in[a, b] for
large n. ]

PROOF OF THE NECESSITY PART OF THEOREM 1.3. Assume (8). Construct f, asin
Lemma5.1 so that f, also satisfies

[fWllL -1 = 1.

(We may also assume that f,, is continuous, but that is irrelevant to the proof). Then for
some C; independent of n,

C

Cllfawlle.i—1.17 > [ILalfalWgR |l i-11

A1
(74) CHangﬁHLp[QXln] Z CHgn 4 ||Lp[oexln]

v

by first Lemma 5.1 and then Lemma 2.3. Now (19) and an easy calculation (compare
(27)) shows that
1 r>-1

’ p

1 - 1
Ighllto ~  (0GMYP. r=—p

1

r+s
5n p! I’<——

Since the last two terms on the right-hand side grow to oo with n, we deduce from (74)

that
1 1
A—=>—=,
4 > p

that is, (9) holds. ]
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PROOF OF THEOREM 1.4. Let f satisfy (10) and P be a polynomial. Then from
Theorem 1.2 with A = 0, and n large enough,

[(F = LalfDWI[ 21 < [|(F = P)W]|L,i—1.5 + ILalP — fIwl|L1—1.1

< 1t = Pl + O3 A 2P — P

Now by hypothesis, fw is Riemann integrable over each compact subinterval of (—1, 1),
and for some o < %

m@ﬁMW@—2V=Q

The same is true of Pw (even with o = 0). Next, by Lemma 10.1 in [8, p. 106], there

exists
HX) =S hypd,  alhy >0,
j=0
with
HX) ~w2(X) in(—1,1).
Defining

G(X) ;= HX)(1 —x)) ™", xe (-1,1).

we seethat G is even, has a Maclaurin series with al non-negative coefficients, and by
(10),

‘ Elrr11 w2(X)|(P — f)w|(X)? /G(X) = 0.

X|—1—

Next, given any fixed M > 0, we havefor large enough n, (see (33))

an+M6n=an(1+o(ﬁ)) <ap;m < 1.

Hence, given alarge enough M > 0, we havefor large n,
n n 2 2
le AinG(Xjn) ~ Z; AW “(n)(1 — %) P
I 1=
n
< CZ )‘jnW_z(Xjn)(an + Mdn — ijn)_ap
=1
n 2 an
< CY AW “(Xin)On(Xin) " < C / an On(X)" P dx < C
j=1 -

by an easy calculation, as ap < 1. Here we have also used (19), (21). Then Theo-
rem 1.6(b) [5, p. 94] shows that

1 S~ o200 P — WP050) = [ (P — Ty
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and hence

limsup [|(f — La[f )WL (-1 < Cl|(f — P)W][L,[-1.1-
n—o0

Here C is independent of P and n (it came only from the converse quadrature sum
estimate). Moreover, our condition (10) on f and density of polynomiasin Ly[—1, 1],
easily imply that this last right-hand side may be made as small as we please. ]

PROOF OF THE SUFFICIENCY PART (A) OF THEOREM 1.5. Let
(75) F(X) = 1+ Q¥3()T(X).

We first show that
(76) gn(F(X) > C. xe(-1.1).n>1.

We need only do thisfor x € [0, 1) and consider three ranges of x.

(1) x € [0.3,]
Write x = a,. Then

& a 1
gn(x)21—azl—a_2r~m
by (33). Then
I(F(X) = C{% +Q¥3)| >C
so (76) follows.
(”) Xe [an/z a2n]
Here by (29), (30),
(77) F(an) ~ Q2/3(an)-|—(an) N (nT(an))Z/S _ 551‘

Asgn > bn, (76) follows.

(1 x € [az, 1)

Asboth F and g, are increasing over this range of x, (76) follows from the previous
range of x.

Next let P beapolynomial andf satisfy the hypothesesof Theorem 1.5(a). We proceed
similarly to Theorem 1.4. Note that A > 0 follows from (12). We also note that if the
conclusion of Theorem 1.5(a) holds for a given A, then it holds for any larger A, so we
may assumethat A is small enough to satisfy (6). Then using (76),

I(F — LalfWF 2 |-y
< ClJI(f — P)wahlip—1.13 + | LalP — Flwghli,—1.1]

n /
< I — Pl + (3 w2 (P = v PO

< €[t = Pl + (3 Mo 20| (P — wPC)) |
k=1
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asgh isboundedin [—1, 1] independently of n. Then proceeding asin the previous proof,
we obtain
limsup |(f — Lalf))WF2l,r-1.4 < CII(f — PIW[L1-1.1
n—oo
with C independent of P and the result follows. ]

PROOF OF THE NECESSITY PART (B) OF THEOREM 1.5. Definef, asin Lemma5.1 with
[a.b] = [—3. —2] and the additional restrictions that f, is continuousin (—1. 1) and

(oWl 2.2 = 1.
Let F be given by (75). By the conclusion of Lemma5.1,
ILnlfalWF 2l f-111 > ClIPaWF ™| ga, 500
> CF(an)iAHg;1/4|||-p[3n/2-xn1]

by Lemma 2.3. A straightforward calculation and (77) show that we may continue this
as

a-3+ [ (logn)/4, p=4

> a'e .

(78) > Céy, X 1 >4
Next by applying the uniform boundedness principle to suitable (and obviously defined)
spaces of functions, we deduce from the hypothesis of (b) that for n > 1 and for every
continuous h: (—1. 1) — R vanishing outside[—3. 1] that

ILathIWF 2|11y < CllW|Lf-1.0-
where C isindependent of h and n. Applying thisto h = f,, gives

c> 5ﬁ*%+% y (logn)V/4, p=4 ‘
1 p>4
Recall that 6, decaysto 0 asn — oo faster than n=%/3, Then for p = 4, we deduce that
A>0andf0rp>4,wededucethatA2%1—%. .
Finally, we turn to

THE PROOF OF THEOREM 1.6. Assumethat for continuousf: (—1, 1) — R such that

f vanishesoutside[—1. ] we have

(79 lim sup [|La[fIWUlu[-11y < 0o
Let f, be asin the previous proof and F be given by (75). Then as above
C > [ILa[fa]WU|[L-11 = CllPaWU |Lfa, . x01
> Cllgn*Ulliytay -

Now given A > 0, we can by hypothesis (15), and then (77) continue this for large n as

11, — -1
> AF(@n2)? #1007 ytay el = Cirdn g0 ™ *lILytay sl > CoX.

where C,, C; areindependent of A. For large enough A, we obtain acontradiction. =
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