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Introduction. As is well known, the theory of linear inequalities is closely 
related to the study of convex polytopes. If the bounded subset P of euclidean 
d-space dld has a non-empty interior and is determined by i linear inequalities 
in d variables, then P is a ^-dimensional convex polytope (here called a 
d-polytope) which may have as many as i faces of dimension d — 1, and the 
vertices of this polytope are exactly the basic solutions of the system of in­
equalities. Thus, to obtain an upper estimate of the size of the computation 
problem which must be faced in solving a system of linear inequalities, it 
suffices to find an upper bound for the number fo(P) of vertices of a d-polytope 
P which has a given number /d_i(P) of (d — l)-faces. A weak bound of this 
sort was found by Saaty (14), and several authors have posed the problem of 
finding a sharp estimate. Dantzig (3) mentions the closely related problem 
(arising naturally in connection with the simplex method for linear program­
ming) of determining those convex sets which have the maximum number of 
extreme points, among all sets which are determined by a system of m linear 
equations in n non-negative variables. 

Our main concern here is with the conjectured inequality 

(1) A < ( ,„ -»«+.») + fe -MJW) 
and its dual equivalent 

where [k] denotes the greatest integer <& and / s denotes the number of s-faces 
of a d-polytope. The validity of these inequalities for all d-polytopes was 
conjectured by Jacobs and Schell (10) and by Gale (8, 9), who observed that 
the proposed upper bound in (1*) is attained by the neighbourly d-polytopes 
(studied by Bruckner (1), Carathéodory (2), Gale (7, 8), and Motzkin (13)) 
having the remarkable property that for all m < [d/2], each m vertices deter­
mine an (m — l)-face. Dually, equality in (1) is attained for d-polytopes 
such that for all m < [d/2], each m (d — 1)-faces intersect in a (d — m)-face. 

The assertions (1) and (1*) are trivial for d < 2, where equality always 
holds. For d = 3 they become f0 < 2/2 — 4 and f2 < 2/0 — 4, facts known 
to Euler (5). Saaty's bound (14) was sharp for d < 4. The inequalities (1) 
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and (1*) were established by Fieldhouse for all d < 6, and by Gale (9) for 
arbitrary d when /d_i = d + 2 or d + 3. (I have not actually seen the thesis 
of Fieldhouse, but have read a review of it (6).) Thus Gale shows that (1) 
holds whenever/d_i is small enough. We show here that it holds whenever 
/d_i is large enough, specifically when /d_i > (d/2)2 — 1. This covers the case 
d < 6 and thus includes the result of Fieldhouse, but it does not include 
Gale's theorem when d > 6 and does not fully settle the conjecture. 

Under the restriction / 0 > (d/2)2 — 1, the inequality (1*) is established 
not only for <i-polytopes, but also for an arbitrary Eulerian (d — l)-manifold 
of Euler characteristic 1 — (— l)d

y where an Eulerian n-manifold (as introduced 
in (12)) is a finite simplicial w-complex Mn such that for each s-simplex as Ç Mn, 
the linked complex L(as, Mn) has the same Euler characteristic 1 — ( — l)n~s 

as an (n — s •— 1)-sphere. The principal tool is a formula from (12), applying 
to all Eulerian (d — 1)-manifolds, which expresses /d_i linearly in terms of 

f[d/2]-l,f[d/2]-2, • • • i / l , / o , 

and the Euler characteristic x- With the aid of similar formulae for /d_2» 
. • • »/[d/2j> we are able to show that whenever f0 is sufficiently large, then 
among all of the cZ-polytopes (or Eulerian (d — 1)-manifolds with x = 1 
— (— l)d) which have/o vertices, the neighbourly d-polytopes maximize not 
only/d_i but also all of the other functions / , (1 < s < d — 2). The results 
for Eulerian manifolds appear in §1 below, and they apply directly to ^-poly-
topes which are (d — 1)-simplicial. (A poly tope is s-simplicial if each of its 
s-faces is a simplex.) A construction in §2 reduces the problem for general 
d-polytopes to those which are (d — 1)-simplicial. It is also proved there that 
if a d-polytope P is not a ^-simplex, then 

/S(p)>(f+î) + (d71) for 0<s<d-l, 
where the lower bound is sharp. §3 discusses the inequalities (1) and (1*) for 
general J-polytopes, and §4 is devoted to Dantzig's problem. §4 also contains 
a characterization of those convex polyhedra (not necessarily bounded) 
which are affinely equivalent to the intersection of some flat with £)n, the 
positive orthant in 9ÎW. 

1. Eulerian manifolds. Let K denote the class of all finite simplicial 
complexes. For K G K and m > 0, let sm(K) denote the m-skeleton of K; 
that is, sm(K) is the set of all simplices as Ç K for which 5 < m. (Note that 
sm(K) = K if and only if dim K < m, so dim sm(K) = m if and only if 
dim K > m.) For each subclass J of K we define 

Si»(J) = {sm(J) : J € J } , 

Jv ~ {J € J •' J has exactly v vertices}, 

and J[m] = {J € J : sm(J) is a complete m-complex}. 
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Thus J Ç J[m] if and only if / Ç J, / has at least m + 1 vertices, and each 
m + 1 vertices of J determine an ra-simplex of / . 

Now suppose that J C K and <£ is a real-valued function on / . The function 
0 will be called m-invariant provided <j>{J) = <t>(J') whenever J and / ' are 
members of J such that fs(J) = fs(J

f) for all s < m. We shall say that <f> 
is proper for (J, ra, z>) provided <£ is m-invariant, J»[w] ^ 0, and sup #(JP) 
= (j>{Jv[m\). If 0(7) < <j>{3v[m]) for all J" Ç Jv~Jv[m], then 0 is said to be 
strictly proper for (J, ?n, v). 

1.1. PROPOSITION. Suppose that J C K , 0 < Z < m, a^J \p and $ are real-
valued functions on J. If\f/ is proper for (J, /, v) and <j> is proper [strictly proper] 
for (J, mj v)y then \p + (j> is proper [strictly proper] for (J, m, v). 

Proof. Let J0 Ç. iv[m] C 3v[l]. Then 

sup(^ + 0)(J») < sup TACJJ + sup <j>{iv) 

= *(/o) + 0 ( / o ) = (* + *)(/o). 

Thus ^ + 0 is proper for (J, m, i>)- If 0 is strictly proper and / Ç J P ~ J * M , 
then 0(7") < cf>(J0) and consequently (^ + 0)(J) < (;/> + 0)(/o) . 

Now let 4̂ denote the set of all eventually zero sequences a — (a0, «i, » . .) 
of real numbers. For a £ A and K Ç K define 

a(X) = £ « , / . ( * ) , 
5=0 

where fs(K) is the number of s-simplices of K. It is clear that if as = 0 for 
all s > my then the function a is m-invariant on K. 

We shall denote by n^r) the falling factorial n(n — 1) . . . (n — r + 1) and 
by # ( r ) the rising factorial n(n + 1) . . . [n + r — 1), with the convention 
that ««j) = 1 = w(0). 

1.2. THEOREM. Suppose that a Ç 4̂ with as — 0 whenever s > m and whenever 
s < m — k. Then the function a is proper for (K, w, z;) if 

(a,) É «„ - . (« + 1)(,)(» - s)ij~s) > 0 (0 < j < fc), 
6 = 0 

and is strictly proper when the conditions (a.,) (0 < j < &) are z;a/id with strict 
inequality. 

Proof. Suppose that K £ Kv and K0 £ K„[w]. Each s-simplex o-* of K is 
determined in s + 1 different ways by specification of one of the (s — 1)-faces 
(having s vertices) of a8 together with the remaining vertex of a8 (which is 
one of v — s vertices of K). Thus 

(*.) (s + l)fs(K) <(v- s)fs^(K). 
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Writing fs for/ s(iT), we obtain the following inequalities, whose justification 
is indicated in parentheses to the right: 

(bm) 0» + 1)/» < (» - tn)fm-i 

(1) {m + l)(am^ifmr.i + amfm) </m_i[am_i(ra + 1) + aw(i; — m)] 

(#0, W 

(Jm-l) *»/„_! < (» - W + l)/m-2 

(2) (m + l ) m ( a m _ 2 / m - 2 + « m - l / m - l + am /O T) 

</fli-2[a»-j(w + l)w + a»-i(w + l)(u — w + 1) 

+ am(y — w) 0 - m + 1)] (1, au 6m_i) 

(fe) (W + l)(fc)(«m_fc/m_fc + û^jb+l/m-fc+l + . . . + ûW-i / ro- i + «m/m) 

< /m-* [ Ç « m _ s ( w + l )c , ) (» — 5) ( f c"S) J (k - 1, ttfc-i, &w-fc+l) 

But, of course, 

and in conjunction with the inequalities (k) and (ak) this implies that 

(**) a(K) < [{m + l ) ^ ] - 1 ( m _ \ + J E «*-.(w + 1)(.,(* - m) a " s ) 

= 5^'(m-s+l) = a(*o)' 
whence a is proper for (K, w, v). 

Suppose, finally, that all of the inequalities (aj) (0 < j < &) are strict and 
that a(K) = a(i£0). Since the inequality in (k*) is strict unless 

Jm ( • ) 

we conclude that K G Kv[m — &]. An inequality ((k — 1)*) (which is related 
to the inequality (k — 1) as (&*) is to (&)) then shows that K 6 Kp[w — k 
+ 1]; continuing the process, we conclude after a number of steps that 
K e K9[m]. 

1.3. COROLLARY. Suppose that a = (a0, . . . , ami 0 , . . .) £ A (that is, as = 0 
/or all s > m). If am > 0, /A^^ /^e function a is strictly proper for (K, m, v) 
whenever v is sufficiently large. 

Proof. Note that condition (a7) in 1.2 is equivalent to an inequality of the 
form 

amvj + pj(v) > 0, 
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where p5 is a polynomial of degree j — 1 whose coefficients are determined by 
the values of aof alt. . . , am. 

1.4. COROLLARY. Suppose that a = (0, . . . , 0, am_i, am, 0 , . . .) G A. If the 
numbers am and am-i(m + 1) + am(v — m) are both > 0 [>0], then the junction 
a is proper [strictly proper] for (K, m, v). 

Proof. This is merely the case k = 1 of 1.2. 

For each positive integer n, let En denote the class of all Eulerian w-manifolds 
(as defined in the Introduction and in (12)). When n is odd and M Ç Ew, 
the Euler characteristic xC&O is necessarily equal to 0 (12; 3.2). When n 
is even and c is an integer, En,c will denote the class of all Eulerian w-manifolds 
M for which X(M) = c. We recall from (12, 3.2) the fact that if M G En 

with n = 2u — 1 or n = 2u — 2, then 

| g ( _ i r , - , i ± i ( » : i T i ) j ( J f l «=c--a.-i-
( M ) = < / \ U-2 / . __ - \ 

(-i)«+1(M ^ JxW + g (-i)-'2(w
 M £ 1

 l)fj{M) 
{ îor n = 2u — 2. 

A 6Z-polytope P will be called m-neighbourly provided each m vertices of P 
determine an (m — l)-face of P . Gale (7, 8) has proved that for d/2 < m 
< d + 1, the only m-neighbourly d-polytopes are the d-simplices, while for 
m < d/2 there exist m-neighbourly d-polytopes having any specified number 
of vertices > d + 1. Such polytopes must be (d — l)-simplicial when m — d/2 
(7), but for m < d/2 there exist m-neighbourly ^-polytopes which are (d — 1)-
simplicial and also those which are not (d — l)-simplicial (both having any 
number of vertices > d + 1). As the term will be used here, a neighbourly 
d-polytope is one which is (d — l)-simplicial and [d/2]-neighbourly. If K is 
the complex formed by all of the proper faces of such a poly tope, then of 
course K G K[[(d — 2)/2]]; that is, K is a simplicial complex whose [{d — 2)/2]-
skeleton is a complete complex. By (12, 3.3), K is an Eulerian (d — 1)-
manifold, so we conclude that 

for v > 2u + 1, the class E^_ 1[^ — 1] is non-empty; 

for v > 2u, the class E2
v
u~2'2[u — 2] is non-empty. 

1.5. THEOREM. Suppose that n = 2u — 1 and v > n + 2. TTzew the functions 
fmfn-ii • • • »/«+i and fu are (u — 1)-invariant on En, and for v sufficiently large 
they are strictly proper for (En, u — 1, v). In particular, if v > u2 — 1, then 

sup/n(E:) = /„(E-f[« - 1]) = - ^ - (" " # ) ; 
v U \ U / 

for v > u2 — 1 /Â5 maximum of fn on Ev
n is attained only on Ev

n[u — 1]. 
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Proof. For the (u — l)-invariance of the functions / » , . . . , / « on En, it 
suffices to note that on En each of these functions is a linear combination of 
the functions/w_i,. . . , /0 ; cf. (12, 2.4). In fact, for 0 < i < u — 1 the function 
fn-i is seen to have the form 

/„_< == (")fu-, + E «(».*,i)/i (onE"). 

Since by 1.3 the function 

(a(n, i, 0), a(n, i, 1), . . . , a(w, i, u - 2), ( J J , 0, . . .) (€ A) 

is strictly proper for (K, u — l,v) whenever v is sufficiently large, and since 
the class Ev

n[u — 1] is non-empty, it follows that /n_. is strictly proper for 
(Ew, u — 1,2/) whenever z; is sufficiently large. 

Since 

v_ (v — u\ 
v — u\ u / 

is exactly the number of ^-faces of a neighbourly {n + 1)-polytope which 
has v vertices (8), we may complete the proof of 1.5 by showing that the func­
tion fn is proper for (En, u — 1, v) when v > u2 — 1 and strictly proper when 
v > u2 — 1. To this end, we employ the formula for fn stated above, repre­
senting fn as a linear combination of /M_i and /M_2, plus a linear combination 
of fu-z and fu^} plus . . . . For example, 

/ is = (fe - 6/.) + (20/4 - 48/8) + (90/2 - 132/0 + 132/0 

when n = 13. In view of 1.1 and 1.4 we may reach the desired conclusion by 
verifying that if we write aj = a(n, 0,j)> then 

—oij-iij + 1) + aj(v — j) > 0 for j = u — 1, u — 3, . . . , 

with strict inequality when we want strict propriety. This is equivalent to 
the requirement 

\j) l « , - i / a , | < ( » - j ) / ( j + l ) . 

The requirement [j] is satisfied when j = u — 1; for the left side of the in­
equality [u — 1] is equal to u — 1 and the inequality is equivalent to the 
condition {v > u2 — 1) which forms part of our hypotheses. Now, as j de­
creases through the values u — 1, u — 2 , . . . , the right side of [j] actually 
increases, so to complete the proof of 1.5 it suffices to show that during this 
same decrease in j , the left side of the inequality [j] decreases in value. This 
amounts to the requirement that 

\ai-i/at\ < |aVa*+i| (1 < i < u — 2) 

or equivalently that 
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^ + 2)V u-1 A u-1 )<<* + »{ u-! )• 
This is equivalent to the assertion that 

i(i + 2)0* - 2u + l)(i - u + 1) < (i + l)2{i - u)(i - 2u - 2), 

which on substituting x — 1 for i reduces to 

ux2 — 3ux + 2u2 > 0. 

The discriminant of the quadratic form is u2(9 — 8u), which is negative when 
u > 2. This establishes the propriety of fn except when u = 1, and that case 
is trivial; further, the strict propriety of fn is assured when v > u2 — 1. 

1.6. THEOREM. Suppose that n = 2u — 2, v > w + 2, and the integer c is 
given. Then the functions fn,fn-u •••>/«, and fu-i are (u — 2)-invariant on 
Ew,c, and for v sufficiently large they are strictly proper for (En>2, u — 2, v). In 
particular, if v > u2 — 2, then 

sup/„(E:-2) = fn(E
nAu - 2]) = 2 ^ ~ *) , 

while for v > u2 — 2 the maximum of fn on En
v'

2 is attained only on En
v
t2[u — 2]. 

Proof. (This is a paraphrase of the proof of 1.5.) By (12, 2.4), each of the 
functions fnt . . . ,/M_i on Ew is a linear combination of the functions /M_2, 
. . . ,/o and x (where x is the Euler characteristic). Since the value of x is 
fixed (=c) on En>c, the functions /n , . . . ,fu-i must be (u — 2)-invariant on 
En,c. Now for 0 < i < w — 1, the linear expression of fn^t in terms of /M_2, 
. . . ,/o and x involves /w_2 with a positive coefficient, and since the class 
En

v
,2[u — 2] is non-empty it follows that /„__< is strictly proper for (Ew'2, w — 2, z;) 

whenever y is sufficiently large. 
For n = 2u — 2 and p > rc + 2, the type of construction and reasoning 

which were employed by Gale (8) for odd n leads to neighbourly (n + 1)-
fv — u \ 

polytopes having v vertices and 2( _ 1 ) w-faces. The proof of 1.6 is com­
pleted by showing that if 

(the coefficient of// in the expression for /J , then for v > u2 — 2 and j = u — 2, 
w — 3 , . . . , |«y_i/a;| < (z; — j)/(j + 1). Verification of this is quite analogous 
to that in 1.5. 

2. Polytopes and pyramids. Recall that a convex polytope P in dld is the 
convex hull of a finite set or (equivalently) is a bounded set which is the 
intersection of a finite number of closed half-spaces. A face of P is either P 
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itself, the intersection of P with a supporting hyperplane, or the empty set Q. 
A proper face is one other than P or 0. 

The following is well known and easily proved. 

2.1. PROPOSITION. Suppose X is the set of all vertices of a convex polytope 
P = con X, and Y is a proper subset of X. Then the following three statements 
are equivalent: 

(i) Y is the set of all vertices of some face of P; 

(ii) aff F n c o n ( X ~ F) = 0; 

(iii) X admits a supporting hyperplane H for which X C\ H = F. 

(Here "con" indicates the convex hull and "aff" indicates the affine hull 
(smallest containing flat).) 

A d-polytope P will be called pyramidal at q provided P is the join of q 
and a (d — 1)-polytope; an equivalent requirement is that the vertex q of P 
should not be an affine combination of the remaining vertices of P. 

2.2. PROPOSITION. Suppose that q is a vertex of a face F of a polytope P . If 
P is pyramidal at q, then so is F. 

2.3. PROPOSITION. A d-simplex is pyramidal at each of its d + 1 vertices. If 
a d-polytope is pyramidal at d — 1 or more of its vertices, then it is a d-simplex. 
For each d > 2 there exists a d-polytope Pd which is pyramidal at exactly d — 2 
of its vertices. 

Proofs. We prove only the second and third assertions of 2.3, leaving the 
rest to the reader. Clearly the first assertion is true if d < 2. Suppose it is 
known for d = k — 1 > 2 and consider a ^-polytope P which is pyramidal at 
k — 1 or more of its vertices. Let q be such a vertex and let Q be the (k — 1)-
polytope such that P is the join of q and Q. It follows from 1.2 that Q is pyra­
midal at k — 2 or more of its vertices and then from the inductive hypothesis 
that Q is a (k — l)-simplex. Thus the set P ( = c o n (Q KJ {q})) is a ^-simplex 
and the second assertion of 2.3 follows by mathematical induction. 

To construct the poly topes Pd we start by taking for P 2 an arbitrary convex 
quadrilateral (which clearly has the desired property), and having defined 
Pfc_i we let Pk be the join of Pfc_i and an additional independent vertex q. 
(For example, we may assume that Pfc_i C 9Î*-"1 C 9?fc; then choose q Ç 9t* 
~ 9Î*-"1 and let Pk = con (Pk-i VJ {q})>) For later use, note that the s-faces 
of Pk are just the s-faces of Pk-i and in addition the joins of q with the various 
(s — 1)-faces of P*_i; hence 

/.GP*) = / s ( P * - i ) + / s - i ( P * _ i ) . 

When X is the set of all vertices of a d-polytope con X and q is one of these 
vertices, we shall say that X' is obtained from X by pushing q to q' provided 

https://doi.org/10.4153/CJM-1964-067-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1964-067-6


VERTICES OF A CONVEX POLYTOPE 709 

X' = {X ~ {q}) KJ {q'}, where q' is a point of con X such that the segment 
]qf q'] does not intersect any (d — l)-flat determined by points of X. Clearly 
such a pushing is always possible. The following result amplifies a remark of 
Gale (9, §2). 

2.4. THEOREM. Suppose X is the set of all vertices of a d-polytope con X, 
and X' is obtained from X by pushing q to qf. Then q' is a vertex of the d-polytope 
con Xf

 y and each proper face of con X' which includes qf is pyramidal at q'. 
For all s < d — 1, 

/ s(con Xf) > /s(con X) + gt(q, X) + gs+1(q, X), 

where gr(qt X) denotes the number of proper r-faces of con X which include q 
but are not pyramidal at q. If every proper face of con X which includes q is 
pyramidal at q> then fs (con X') = / , (con X) for all s. 

Remark. The purpose for which 2.4 is employed here can also be served by 
a simpler result (involving pulling rather than pushing) appearing in (16). 

Proof. From the definition of pushing it is clear that q' $con(X ~ {q}), 
whence con X' is indeed a d-polytope having X1 as its set of vertices. Now 
suppose that q' is a vertex of some proper face F of con X' which is not pyra­
midal at q', and let G be a (d — l)-face of con X' such that G 3 F. Then 
qf lies in the (d — l)-flat aff G which is determined by the subset G H X o f 
X. This contradicts the definition of pushing, so we conclude that each proper 
face of con Xr which includes q' is pyramidal at q'. 

Now suppose that F is the set of all vertices of an r-face; con F of con X. 
We shall prove the following statements: 

(a) If q$. Yy then con Y is an r-face of con X'. 
(J>) V ° € Y and con Y is pyramidal at qy then the set con ( ( F ~ {q] ) 

\J {qr}) is an r-face of con X'. 
(c) Ifr^d— l , g Ç F, and con F is not pyramidal at g, then con(F ^ {q}) 

is an r-face of con X'f and there is a proper subset S of Y ~ \q) such that con 5 
is an (r — l)-face of con X\ con (S U {q'}) is an r-face of con X', and con 5 
intersects the relative interior of con F. 

From (a) and (b) it follows that each s-face of con X which misses q or is 
pyramidal at q contributes one s-face to con X'. And (c) shows that if 5 < d — 1, 
then at least two more s-faces are contributed to con X' by each s-face of 
con X which includes q but is not pyramidal at q\ while if s < d — 2, an 
additional s-face of con X' arises from each (s + l)-face of con X which includes 
q but is not pyramidal at q. Since there is no duplication among these contri­
butions, the inequality stated in 2.4 is implied by the conjunction of (a), 
(b), and (c). 

If F is as in (a) and H is a supporting hyperplane of con X such that 
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X C\H = F, then X' C\H = F and consequently con F is an r-face of 
con X'. This proves (a). 

Now with X C 9îd, suppose F is as in (b) and let Z = F ~ {q}. We want 
to show that 

aff(Z U {g'j) C\A = 0, where ^ = c o n ( X ~ F). 

Suppose the contrary. Then we have 

avq' + 2 azZ = 2 ft; # G conX, 

with 

«o + ]C «,: = 1 , £ At = 1, always ft, > 0. 

Since q' is interior to con X while con Z is an (r — l)-face of con X, it follows 
that a0 > 0. Now we assume without loss of generality that 0 6 aff Z and 
let £ denote a linear transformation of dld onto 9td_r+1 such that the kernel 
£_1(0) °f £ is equal to aff Z. Then, of course, 

{(aff F) = R(&) and £(aff(Z U {g'}) = R(tf). 

Since F is the set of all vertices of a face of con X, we have 

(aff Y)C\A = 0 and R(£q) C\^A = 0 , 

where the second statement follows from the first because aff F = %~l{R{j£p)). 
Thus, the polytope %A in ^~r+1 is not intersected by the line R(£q) but (re­
calling that a0 > 0) it is intersected by the ray ]0, °° [(£#')• Consequently, 
the segment ]q, qf] includes a point w such that the ray ]0, <»[(£w) intersects 
a (d — r — l)-face of £4. There must be d — r vertices VQ, . . . , vd-T-\ of this 
face whose affine hull is a (J — r — l)-flat in 9?d-r+1, and then with ut G J""1 fa*) 
P\ X it can be verified that the subset Z W {^^^~r~1 of X determines a (d — 1)-
flat in 9îd which includes the point w of ]£, />']. This contradicts the definition 
of pushing and completes the proof of (b). 

Now (preparing for (c)) with X C 9îd, let us denote by C the union of all 
rays which emanate from q' and pass through the various points of con(X 
~ {q}) ; C is a polyhedral convex cone with vertex qf and C is pointed (contains 
no line). We claim that con X' — C C\ con X, where inclusion in one direction 
is obvious. To establish the reverse inclusion we must show that if p G con X 
~ con X', then p $ C. When p $ con X', we know that p is separated from 
con X' by a (d — l)-flat i J determined by points of X', and since £ G con X, 
this flat must pass between p and p\ In view of the definition of pushing, this 
implies that q' G Hv whence H is a supporting hyperplane of C and p $ C. 
We conclude that con X ' = C Pt con X. From this it follows that every face 
F of con X' which includes q' is contained in a face of C, and hence all of the 
other vertices of F must lie in the set (X ~ {q}) C\ bdry C 

Now suppose, finally, that F is as in (c) ; that is, F is the set of all vertices 
of an r-face con F of con X (with r < d — 1), and g G F but con F is not 
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pyramidal at q. Let Z = Y ~ {q}. Then it is clear that aff Z = aff F and 
(by 2.1) con Z is an r-face of con X'. This is the first assertion of (c). With 
the cone C as above, the set B = bdry C is the union of a finite number of 
(d — 1)-dimensional polyhedral cones, each having qf as its vertex. Since 
con ZCC and p G F C\ ( (aff Z) ~ C), the poly tope con F cuts across 5 
and the intersection 5 O con F ( =1? r\ con Z) is the union of a finite number 
(>1) of (r — 1)-faces of con Z. It can be verified that each of these faces F 
is an (r — l)-face of con J ' and that con(FVJ {q'}) is an r-face of con J ' . 
This establishes (c) and hence completes the proof of 2.4 except for the state­
ment about the equality of fs (con X) and / , (con Xf). That statement follows 
from (a), (b), and (c) in conjunction with the fact that each proper face of 
con X' that includes qr is pyramidal at qr. 

A polytope will be called s-simplicial provided all of its s-faces are simplices. 

2.5. COROLLARY. For v > d + 1 and 2 < s < d — 1, let M(d, v> s) denote 
the class of all d-polytopes which have v vertices and which, among all d-polytopes 
with v vertices, have the maximum number of s-faces. Then M (d, v, s) includes 
d-polytopes which are (d — l)-simpliciaL All of the members of M(d, v, s) are 
s-simplicial and (for 5 < d — 2) (s + l)-simplicial. If d — s -\- lf d = 5 + 2, 
or d = 2(s + 1), then all of the members of M(d, v, s) are (d — l)-simplicial. 

Proof. Suppose Q G M.(d, v, s) and let qh . . . , qv be the vertices of Q. 
Let XQ = {qt : 1 < i < u}t and for 1 < i < v let the set Xt be obtained from 
Xt-i by pushing qt to a new position q/. Let P = con{g* : 1 < i < v}. From 
2.4 it follows that every proper face of P is pyramidal at each of its vertices, 
and then from 2.3 that P is (d — l)-simplicial. The inequality in 2.4 implies 
that fs(P) >/«(Q) (whence P G M(d,v,s)), with strict inequality if some 
s-face (or, when s < d — 2, some (5 + l)-face) of Q fails to be a simplex and 
hence is non-pyramidal at some vertex. But, of course, strict inequality is 
impossible, so all of the desired conclusions follow except for the special case 
d = 2(s + 1). That case is covered by Gale's observation (8) that "the faces 
of a neighborly polytope are simplexes." 

There is an open problem connected with 2.5. For each d > 3 let M(d) 
denote the set of all integers 5 G [1, d — 1] such that for each v > d + 1, 
all of the members of M.(d,v,s) are (d — l)-simplicial. From 2.5 it follows 
that {d - 1, d - 2} C M(d), and also (d - 2)/2 G M(d) when d is even. 
By considering pyramids based on neighbourly poly topes, it can be verified 
that 5 i M(d) when s < (d - 3)/2. The problem is to determine M(d) for 
all d. Note that M(3) = j l , 2), Af(4) = {1, 2, 3}, 

{3,4} C K 5 ) C{2 ,3 ,4} and {2,4,5} C M(6) C {2, 3, 4, 5}, 

but we do not know whether 2 G ikf(5) or 3 G ilf (6). 
It may be generally known that each ^-polytope has at least as many 

s-faces as has a ^-simplex (14, 327), but we have not found a proof in the 
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literature. Accordingly, it seems worth while to establish the following stronger 
result. 

2.6. THEOREM. For all d and s, each d-simplex has exactly I J s-faces. 

For all s and for each d-polytope P which is not a d-simplex, 

/•"»C':!)+(':')•• 
further, there is a d-polytope Pd having 

'•™-C:i)+(':') 
for all s. 

Proof. The first assertion is obvious, for a d-simplex has (d + 1) vertices 
and each 5 + 1 of these determine an s-face. Now for all d and s, let 

«*'>-C':D+(v)' 
note that 

Z(d,s) = £ ( d - l,s)+S(d- l , s - 1). 
The polytopes Pd are constructed as in 2.3; that they have the stated property 
follows from the above recursion for £(d, s) in conjunction with the equation 
terminating the proof of 2.3. 

We want to show that if d > 2 and P is a d-polytope which is not a d-simplex, 
then fs(P) > £(d, s) for all 5. This is evident in the two-dimensional case, 
where $(2, 0) = g(2, 1) = 4. Suppose it is known up through the (d — 1)-
dimensional case, and consider a d-polytope P as described. Since P is not a 
simplex, 2.3 implies that P is non-pyramidal at some vertex p. Let F be a 
(d — l)-face of P which misses p and let g be a vertex of P which is not in 
P U {p}. Such a q exists by non-pyramidality. Let G be a (d — l)-face of P 
which includes q but not p. Let H be the intersection with P of a (d — 1)-
hyperplane which strictly separates p from the remaining vertices of P , and 
let i£ be the intersection with G of a (d — 2)-hyperplane which (relative to 
the (d — l)-flat aff G) strictly separates q from the remaining vertices of G. 
The (d — 1)-polytopes F and G and the (d — 2)-polytope i£ may all be 
simplices, but in any case the inductive hypothesis implies that 

un + /...m + /,_,(*) > (s ^,) + (f) + (d ~ ') 

Since the numbers/S(F),/S_i(i7), and/s_i(iT) are respectively the numbers of 
s-faces of P which lie in F, which include p, and which lie in G while including 
q, it follows t h a t / , ( P ) > f(d, s). 
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3. The number of vertices of a convex polytope. Here the results of 
§§1 and 2 are applied to establish the conjectured inequality (1) from the 
Introduction, under the restriction that fd_i > (d/2)2 — 1. 

For 1 < s < d — 1 and v > d + 1, let N(d, v, s) denote the number of 
s-faces of a neighbourly d-polytope which has v vertices. (It follows from 
formulae in (12) that all such poly topes have the same number of s-faces. 
According to Gale (8), this has also been established by Fieldhouse (perhaps 
in 6).) 

3.1. THEOREM. For each integer d > 2 there is an integer k(d) which has the 
following property: 

Whenever v > k(d) and P is a d-polytope having v vertices, then fs(P) 
< N(d, v, s) for 1 < s < d — 1; if s = d — 1, s = d — 2, or P is (d — 1)-
simplicial and s > [(d — 2)/2], thenfs(P) < N(d, v, s) unless P is neighbourly. 

Proof. Let k(d) be chosen according to 1.5 and 1.6, so that when d = 2u 
and v > k(d) the functions/d_i, . . . ,/M are strictly proper for (Ed_1, u — l,v), 
while when d = 2u — 1 and v > k(d) the functions /d_i, . . . ,/M_i are strictly 
proper for (Etf~1,2, u — 2, z>). Consider a d-polytope P which has v vertices, 
with v > k{d). If P is (d - l)-simplicial, let Q = P. If P is not (d - 1)-
simplicial, let Q be a (d — l)-simplicial d-polytope such t h a t / 0 ( P ) = MQ), 
MP) <MQ) for l < s < d - l , f*-2(P) <f+-*(Q) and fd^(P) <fa-1(Q). 
(The existence of such a Q is guaranteed by 2.5.) By (12, 3.3), the complex 
formed by the proper faces of Q is an Eulerian (d — 1)-manifold. Thus, from 
the choice of k(d) it follows that fs(Q) < N(d, vy s) and that the inequality 
is strict for 5 > [(d — 2)/2] unless Q is neighbourly. This completes the proof. 

3.2. THEOREM. Suppose that P is a d-polytope having v vertices andf (d — 1)-
faces. If d = 2u, then 

•P ^ f J when v > u2 — 1 
v — u\ u / 

and 

v < T^-— ( j whenf > w2 — 1. 
J — U\ U / 

If d = 2u — 1, //zew 

/ < 2 (jl I l) wfew » > **2 - 2 

*md 

v < 2 ({ Z i ) w / ^ > ^2 - 2. 

Proof. For the inequalities " / < . . . ," use 2.5 in conjunction with 1.5 and 
1.6, as was done in the proof of 3.1. The inequalities "v < . . ." then follow 
with the aid of the standard polarity theory for convex polytopes (15). 
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3.3. COROLLARY. At least for d < 6, the inequalities (1) and (1*) of the 

Introduction are satisfied by all d-polytopes. 

It seems probable that the extra conditions on v,f, and d are required in 
3.1-3.3 merely because our approach is inadequate. We are interested mainly 
in those cell-complexes which arise as the system of all proper faces of a 
d-polytope, but have not made full use of all the structure at our disposal. I t 
was used only to restrict attention to Eulerian (d — 1)-manifolds of Euler 
characteristic 1 — ( — l)d, and then a formula valid for all such manifolds 
was used to express /d_i as a linear combination of 

f[d/2]-i,f[d/2]-2, . . . , / i , a n d / o . 

From that point on, the reasoning applied to an arbitrary simplicial (d — 1)-
complex, without using even the information contained in 2.6. Presumably, a 
fuller use of the available structure would lead to a proof of the inequalities 
(1) and (1*) without additional restrictions. Thus, we conjecture that fs(P) 
< N(d,v, s) whenever 1 < s < d — 1 and P is a d-polytope having v vertices, 
while (dually) fs(P) < N(d,f, d — 1 — s) whenever 0 < 5 < d — 2 and P is 
a d-polytope having f (d — 1)-faces. 

For 2 < d < / — 1, let V(f, d) denote the maximum number of vertices 
achieved by any d-polytope which has / (d — 1)-faces. Part of the above 
conjecture is the same as the JSG-conjecture (Jacobs and Schell (10), Gale 
(8, 9))—namely, that 

and 

V(f, d) = 2fJ ~ UJ when d = 2u - 1; 

this is proved in 3.2 for u2 — 1 < / . Now it is also of interest to determine the 
maximum of V(f, d) for other ranges of values of d (when/ is given). Partial 
results in this direction can be obtained from 3.2, and the same line of reasoning 
leads to the following observation. 

3.4. PROPOSITION. Suppose the JSG conjecture is correct, and f is an integer 
> 2 . Then for the polytopes which have f maximal proper faces, the maximum 
possible number of vertices is the larger of the two numbers 

and 

<'--.') ^ [ ¥ + i 2 - „ r + 4 ) ] -
Proof. From the JSG conjecture it follows that if 2(u + 1) < / — 1, then 
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V(f,2u) _ (f-u-l)(u + l) 
V(f,2(u + l)) (f-2u)(f-2u-l)' 

whence 

(1) V(f, 2u) < V(J, 2(« + 1)) « « < (5/ - 4 - VC5/2 - 4))/10. 

The JSG conjecture implies also that if 2u + 1 < / — 1, then 

V(f, 2w - 1) _ (/ - «)« 
7 ( / , 2 » + l ) ( f - 2 « + l ) ( / - 2 « ) * 

whence 

(2) F(f, 2« - 1 ) < F(f, 2« + 1) «=> « < (5/ + 2 - V(5/* + 4))/10. 

Now let 5 be the largest integer such that 2 < 2s < / — 1 and 

F(f, 2s) = max{ 7(f, 2«) : 2 < 2w < / - 1}, 

and let t be the largest integer such that 2 < 2/ — 1 < / — 1 and 

V(f, 2t-l) = max{ V(f, 2u - 1) : 2 < 2u - \<f - 1}. 
Then 

V(f, 2s-2)< V(f, 2s) > V(f, 2s + 2) 

and from (1) it follows that 

* - 1 < (5/ - 4 - V(5f - 4))/10 < s, 
whence 

s = K 5 / + 6 - V(5f - 4))/10]. 

Similar reasoning based on (2) shows that 

/ = [ ( 5 / + 1 2 - V(rof2 + 4))/10]. 

This completes the proof, for the maximum which we seek is either V(f, 2s) 
or V(f,2t — 1) (or both). (This reasoning assumes that 

1 < 2s - 2 < 2s + 2 < / - 1 and 1 < 2 * - 3 < 2 J + 1 < / - - 1 . 

The assumption fails for a few small values of / , but these are easily treated 
directly.) 

When / < 7, the validity of 3.4 follows from 3.3 (without using the JSG 
conjecture). The first alternative in 3.4 arises f o r / G {3,4, 6, 7}, the second 
f o r / G {2,4,5}. 

4. The problem of Dantzig. Dantzig's problem (3, no. 7) is not imme­
diately concerned with linear inequalities in real variables, but rather with m 
linear equations in n non-negative variables. Accordingly, our attention is 
directed to the positive orthant Ow, consisting of all points of dtn which have 
exclusively non-negative co-ordinates. A linear equation in n real variables 
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determines a hyperplane in 9ÎW, and a system of m linear equations determines 
a flat of dimension > n — m; if the system is not redundant, the dimension 
of the flat is equal to n — m. Thus Dantzig's problem may be stated more 
geometrically as follows: Among the intersections of £)n with the various 
^-dimensional flats in 9?w, which ones have the maximum number of vertices 
and what is this maximum number? 

Up to this point we have discussed only bounded sets. However, there is 
no such restriction in Dantzig's problem, and accordingly we define a d-poly-
hedron to be a ^-dimensional set which is the intersection of a finite number of 
closed half-spaces. As is well known (15), a set is a J-polytope if and only if 
it is a bounded ^-polyhedron. 

Considering each finite-dimensional linear space to be self-dual with respect 
to an inner product ( , ), we shall use without specific reference the standard 
polarity theory for convex bodies. The results employed here can be found 
in (15) or (11). We require also the following remark. 

4.1. PROPOSITION. Suppose that E and F are finite-dimensional linear spaces, 
f is a linear transformation of E into F, and fa is the adjoint of f. Then for each 
set X C E it is true that 

r((fx)°) =x°n (rn 
Proof. Here fa is the linear transformation of F into E which is defined by 

the condition that (x, Çay) = (fx, y) for all x G E and y G F. To establish 
4.1 it suffices to note that if x G Ey y G F, and x = Çay, then the following 
five statements are equivalent: x G X°; (x, x) < 1 for all x G X; (x, Çay) < 1 
for all x G X; (fx, y) < 1 for all x G X; y G (fX)°. 

In applying 4.1 we shall use the fact that the linear transformation fa is 
non-singular provided that f maps E onto F. 

The next theorem extends an observation of Davis (4). 

4.2. THEOREM. Suppose that P is a k-polyhedron in 9îfc, with 0 G int P . 
Then the following three statements are equivalent: 

(a) P is affinely equivalent to the intersection of On with some k-flat in 9JW. 
(b) P contains no line and P has at most n (k — 1)-faces. 
(c) the polar body P° is a k-polytope in 9?fc with at most n vertices other than 

the origin 0 {which may be a vertex of P° but is not required to be). 

Proof, (a) => (b). Suppose (a) holds. Then there is a non-singular afiine 
transformation J of 9Î* into 5RW such that fP = (£3Î*) Pi Dn. For 1 < i < n 
let 7)i be the composition of £ with the ith co-ordinate function on 9?n. Then 
the ^-polyhedron P is the intersection of the n sets {x G 9Î* : rn(x) > 0} 
(1 < i < n), and since each of these sets is either all of 9Î* or is a closed 
half-space in $Kfc, it follows that P has at most n (k — 1)-faces. Since On contains 
no line, the same is true of P. 
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(b) => (c). Suppose (b) holds and 0 G int P , whence of course P° is bounded. 
Since P contains no line, P° is not contained in a hyperplane in 5R* and con­
sequently P° is ^-dimensional. Each vertex of P° other than 0 corresponds to 
a (k — l)-face of P , so P° is a &-polytope with at most n vertices other than 0. 

(c) => (a). Suppose (c) holds and consider the ^-simplex 

S = {x = (x\ . . . , xn) e Rn : £ > * ' < 1; ** > 0 for all *} C £>\ 

Since 0 £ P° and P° has at most # vertices other than 0, there exists a linear 
transformation f of dtn onto 9Î* such that fS = P°. From 4.1 it follows that 
the set P is affinely equivalent to a ^-section of the set 

S° = {x G P * : x z ' < 1 for al i i} , 

and of course S° is equivalent to £)n. Thus, (c) implies (a) and the proof is 
complete. 

4.3. COROLLARY. If P is a k-polyhedron and j is an integer > 1 , then the 
following two statements are equivalent: 

(a) P is affinely equivalent to the intersection of On with some (k + j)-flat 
in dln. 

(b) P contains no line and P has at most n — j — 1 (k — 1)-faces. 

Proof, (a) => (b). Let G be a (k + i)-flat in $ln such that the intersection 
G r\ £)n is affinely equivalent to the ^-polyhedron P. Let Ol (an /-dimensional 
orthant in £)n) be the smallest face of £)n which contains the set G r\ £)w. 
If / = n, then G intersects the interior of £)n and it is clear that 

dim(G H On) = dim G = k +j > k, 

an impossibility. Thus, I < n — 1 and G misses the interior of £)n. Since On 

is polyhedral, the supporting flat G must lie in a supporting hyperplane H 
of Dn. By the minimality of /, G includes a point of the relative interior of O \ 
and this implies that £)1 C H, whence H contains the linear hull 9Îl of © l . 
It can be verified that 

dim(GPi$Rz) = d i m ( G n O z ) = *. 

Since the (k + j)-flat G and the /-flat 9Î* both lie in the (n - l)-flat i ï , we 
conclude from a well-known inequality that 

(k +j) + / - k < w - 1, 

whence / < ^ — j — 1. Since the ^-polyhedron P is affinely equivalent to a 
^-section of £)', we conclude from 4.2 that condition (b) is satisfied. 

(b) => (a). Suppose P is as in (ô), whence by 4.2 P is affinely equivalent 
to the intersection of O71^'1 by a fc-flat P in fô*-*-1. We may regard O*-*-1 

as a face of Dn and then 9?ra contains a hyperplane if such that 

H n on = D*1-'-1 c fô*-'-1. 
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In the (n — l)-flat H there is a j-flat F' whose intersection with 9?n-, /_1 con­
sists of a single point of F, and then the affine hull G of F U Ff is a (j + k)-
flat in W1 such that G (^ On = F r\ On-j~\ a set affinely equivalent to P . 

The following result is useful for its corollary, which justifies a restriction 
to bounded sets in the problem of Dantzig. 

4.4. PROPOSITION. For positive integers d, m, and n the following two state­
ments are equivalent: 

(a) There exists an unbounded d-polyhedron F which contains no line and 
which has exactly m (d — 1)-faces and exactly n vertices. 

(b) There exist a d-polytope Q and a boundary point z (not necessarily a vertex) 
of Q such that Q has exactly m vertices ?^z and exactly n (d — 1) -faces disjoint 
from z. 

Proof. To see that (a) implies (b), suppose that 0 6 int P C 9îd and let 
Q be the polar body of P, Q = P° C 9?d. With z = 0, the desired conclusion 
follows from the standard polarity theory. To see that (b) implies (a), take 
0 = z G bdry Q C 3?d and let P = Q°. Again the polarity theory is applicable. 

4.5. COROLLARY. Suppose that P is an unbounded d-polyhedron which con­
tains no line and has f (d — \)-faces. Then f > d, and if f > d + 1, there 
exists a d-polytope which has f (d — 1)-faces and has more vertices than P. 

Proof. Recall that P is the intersection of the supporting half-spaces deter­
mined by its (d — l)-faces. If / = k < d, then P contains a flat of deficiency 
d — k > 0, contrary to our assumption. Hence, / > d, and when / = d it 
is easily verified that P is a convex cone which is affinely equivalent to an 
orthant in 9?d. 

Now suppose that / = m > d + 1. Let n denote the number of vertices 
of P and let Q and z be as in 4.4 (b). If z is not a vertex of Q, then Q is a d-
polytope having m vertices and more than n (d — 1)-faces. Translating Q 
so as to contain the origin in its interior and then forming the polar body, we 
obtain a d-polytope which h a s / (d — 1)-faces and has more vertices than P. 
Now suppose z is a vertex of Q. If n = 1 the assertion of 4.5 is obvious, so 
we suppose that n > 2 and denote by S the polytope which is generated by 
the vertices of Q other than z. With n > 2 it is easy to see that S is a d-polytope 
which has more than n (d — 1)-faces, and then we proceed as we did earlier 
with Q. 

The next result is a partial solution of Dantzig's problem. 

4.6. THEOREM. Suppose the set P in 9ÎW is the intersection of the positive 
orthant Ow with a flat of deficiency m in 9îw, where n — 2\/(n + 1) < m < n 
(a restriction that is unnecessary if the JSG conjecture is correct). Then the 
number of extreme points of the set P is at most 
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2n 
m + n\ m ) 

when n — mis even 

and at most 

JUm + n-l)\ 
2\ J when n — mis 

\ m / 

odd. 

The upper bounds are attained if and only if P is an (n — m)-polytope such 
that each vertex of P is on exactly n — m edges and such that for all k < [ (n 
— m)/2], each k (n — m — 1)-faces of P intersect in an (n — m — k)-face of P. 

Proof. Let V(f, d) denote, as in §3, the maximum number of vertices 
achieved by any d-polytope which h a s / (d — l)-faces. By 4.5, this is greater 
than the maximum number of vertices achieved by any unbounded J-poly-
hedron which has / (d — 1)-faces. Let k = dim P and j = n — m — & > 0. 
If j = 0 it follows from 4.2 that fo(P) < V(n, k), where equality implies 
boundedness of P. If j > 0 it follows from 4.3 tha t / 0 (P ) < V(n — j — I, k) 
< V(n, k). We conclude that fo(P) < V(n, n — m), where equality cannot 
obtain unless P is an (n — m) -polytope which has n faces of dimension 
n — m — 1. Now if n — 2^/{n + 1) < m < n, then n > [%(n — m)}2 — 1, 
so from 3.2 it follows that V(n,n — m) is equal to the upper bounds listed in 
4.6. By 4.2, V(n, n — m) can really be attained as the number of vertices of 
some set P of the sort described in 4.6. To characterize those sets P for which 
the upper bound is actually attained, one applies certain results from §§1 and 2, 
the reasoning being similar to that of 3.1. 

If a flat in din is determined by a system of m linear equations, then without 
checking the redundancy of the system we know only that the flat is of de­
ficiency <m. Thus, the following remark is also of interest in connection with 
Dantzig's problem. It can be proved by the reasoning of 3.4. 

4.7. PROPOSITION. Suppose the JSG conjecture is correct. Let m and n be 
integers with 0 < m < n > 2 and let v be the maximum number of vertices 
which is realized by the intersection of On with a flat of deficiency <ra in dln. 
Let 

s = [(5» + 6 - V($n2 - 4))/10] and t = [(5n + 12 - V(5»2 + 4))/10]. 

Then at least one of the following statements is true: 

(a) 2s > n — m and v = I ) ; 
v J ^ n — s \ s / 

(b) 2t - 1 > n - mandv = 2 ( ? ~ / ; 

2n 
(c) 2s < n — m,n — mis even, and v = -
v ' m + 

( ±-(yn + n 1) i 
(d) 2t — 1 < n — m,n — m is odd, and ^ = 2l 2 ), 

_(h(m + n)\ 
n\ m / ' 

https://doi.org/10.4153/CJM-1964-067-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1964-067-6


720 VICTOR KLEE 

REFERENCES 

1. M. Bruckner, Ùber die Ableitung der allgemeinen Poly tope und die nach Isomorphismus 
verschiedenen Typen der allgemeinen Achtzelle {Oktatope), Verh. Nederl. Akad. Wetensch. 
Sect. I, 10 (1909), 1-27. 

2 . C. Carathéodory, Ùber den Variabilitdtsbereich der Fourier schen Konstanten von positiven 
harmonischen Funktionen, Rend. Circ. Mat . Palermo, 32 (1911), 193-217. 

3 . George B. Dantzig, Ten unsolved problems (Hectographed notes; Berkeley, 1962). 
4 . Chandler Davis, Remarks on a previous paper, Michigan Math. J., 2 (1953), 23-25. 
5. L. Euler, Elementa doctrinae solidorum—Demonstratio nonnullarum insignium porprietatum, 

quibus solida hedris planis inclusa sunt praedita, Novi Comment. Acad. Sci. Imp. 
Petropol., 4 (1752-53), 1-60. 

6. Martin Fieldhouse, Linear programming, Ph.D. thesis, Cambridge Univ., 1961 (Reviewed 
in Operations Res., 10 (1962), 740). 

7. David Gale, Neighboring vertices on a convex polytope. Linear Inequalities and Related Systems 
(Princeton, 1958), pp. 255-263. 

8. Neighborly and cyclic polytopes, Proceedings of Symposia in Pure Mathematics, 
vol. 7, Convexity (Amer. Math. Soc , 1963), pp. 225-232. 

9. On the number of faces of a convex polytope. Can. J. Math., 16 (1964), 12-17. 
10. W. W. Jacobs and E. D. Schell, The number of vertices of a convex polytope, Amer. Math. 

Monthly, 66 (1959), 643. 
11. Victor Klee, Some characterizations of convex polyhedra, Acta Math., 102 (1959), 79-107. 
12. A combinatorial analogue of Poincaré's duality theorem, Can. J. Math., 16 (1964), 

517-531. 
13. T. S. Motzkin, Comonotone curves and polyhedra, Abstract 111, Bull. Amer. Math. Soc , 

63 (1957), 35. 
14. T. L. Saaty, The number of vertices of a polyhedron, Amer. Math. Monthly, 62 (1955), 

326-331. 
15. H. Weyl, Elementare Théorie der konvexen Polyeder, Comment. Math. Helv., 7 (1935), 

290-306.—English translation by H. W. Kuhn in Contributions to the theory of games 
(Princeton, 1950), pp. 3-18. 

16. H. G. Eggleston, Branko Grunbaum, and Victor Klee, Some semicontinuity theorems for 
convex polytopes and cell-complexes, Comment. Math. Helv., 89 (1964-65), to appear. 

University of Washington 
and 
Boeing Scientific Research Laboratories 

https://doi.org/10.4153/CJM-1964-067-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1964-067-6

