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1. Introduction

1.1. The Modularity Theorem

The modularity theorem asserts that all rational elliptic curves arise from modular forms;
this result is tremendously important, since it leads to a spectacular proof of Fermat’s
Last Theorem. Anyone reading the excellent book [4] will find the following interest-
ing object. Denote by fN ∈ S2(Γ0(N)) a Hecke eigenform and by fσ

N all its conju-
gates and consider a lattice ΛfN

generated by the complex periods of holomorphic forms
ωσ

N = fσ
N dz on the Riemann surface X0(N) = H∗/Γ0(N) (see § 2 for definitions of these

concepts). If |σ| is the number of conjugates, the abelian variety AfN
:= C|σ|/ΛfN

is said
to be associated to the eigenform fN ; it has the following remarkable property: there
exists a homomorphism of AfN

onto a rational elliptic curve.
Let φN = Re(ωN ) be the real part of ωN ; it is a closed form on the surface X0(N).

(Alternatively, one can take for φN the imaginary part of ωN .) Clearly, ωN defines a
unique form, φN ; the converse follows from the Hubbard–Masur Theorem [6]. Since ωN

and φN define each other, what object will replace the associated variety AfN
in the case

of φN? Roughly speaking, it is shown in this paper that such a replacement is given by
an operator algebra AfN

coming from the real periods of the form φN ; we study the basic
properties of such an algebra (Theorem 1.1).

1.2. The AF-algebra AfN

Let f ∈ S2(Γ0(N)) be a cusp form and let ω = f dz be the corresponding holomor-
phic differential on X0(N). We shall denote by φ = Re(ω) a closed form on X0(N)
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and consider its periods λi =
∫

γi
φ against a basis γi in the (relative) homology group

H1(X0(N), Z(φ); Z), where Z(φ) is the set of zeros of φ. Assume λi > 0 and consider
the vector θ = (θ1, . . . , θn−1) with θi = λi+1/λ1. The Jacobi–Perron continued fraction
of θ [2] is given by the formula(

1
θ

)
= lim

i→∞

(
0 1
I b1

)
· · ·

(
0 1
I bi

) (
0
I

)
= lim

i→∞
Bi

(
0
I

)
,

where bi = (b(i)
1 , . . . , b

(i)
n−1)

T is a vector of non-negative integers, I is the unit matrix
and I = (0, . . . , 0, 1)T. By Af we shall understand the approximately finite C∗-algebra
(AF-algebra) given by its Bratteli diagram with partial multiplicity matrices Bi. Recall
that an AF-algebra is called stationary if Bi = B = const. [5]. When two non-similar
matrices B and B′ have the same characteristic polynomial, the corresponding stationary
AF-algebras will be called companion AF-algebras. Denote by AfN

an AF-algebra such
that fN ∈ S2(Γ0(N)) is a Hecke eigenform. Our main result can be stated as follows.

Theorem 1.1. The AF-algebra AfN
is stationary unless fN is a rational eigenform,

in which case AfN
∼= C; moreover, AfN

and Afσ
N

are companion AF-algebras.

The paper is organized as follows. The minimal preliminary results are expounded
in § 2, where we review the Hecke eigenforms, the AF-algebras and the Jacobi–Perron
continued fractions. Theorem 1.1 is proved in § 3.

2. Preliminaries

2.1. The Hecke eigenforms

Let N > 1 be a natural number and consider a (finite index) subgroup of the modular
group given by the formula

Γ0(N) =

{ (
a b

c d

)
∈ SL(2, Z)

∣∣∣∣∣ c ≡ 0 mod N

}
.

Let H = {z = x + iy ∈ C | y > 0} be the upper half-plane and let Γ0(N) act on H by
the linear fractional transformations; consider an orbifold H/Γ0(N). To compactify the
orbifold at the cusps, one adds a boundary to H, so that H∗ = H∪Q∪{∞} and the com-
pact Riemann surface X0(N) = H∗/Γ0(N) is called a modular curve. The meromorphic
functions f(z) on H that vanish at the cusps and such that

f

(
az + b

cz + d

)
= (cz + d)2f(z) for all

(
a b

c d

)
∈ Γ0(N)

are called cusp forms of weight 2; the (complex linear) space of such forms will be
denoted by S2(Γ0(N)). The formula f(z) �→ ω = f(z) dz defines an isomorphism
S2(Γ0(N)) ∼= Ωhol(X0(N)), where Ωhol(X0(N)) is the space of holomorphic differentials
on the Riemann surface X0(N). Note that

dimC(S2(Γ0(N))) = dimC(Ωhol(X0(N))) = g,
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where g = g(N) is the genus of the surface X0(N). A Hecke operator Tn acts on
S2(Γ0(N)) by the formula

Tnf =
∑
m∈Z

γ(m)qm,

where γ(m) =
∑

a| GCD(m,n) acmn/a2 and f(z) =
∑

m∈Z
c(m)qm is the Fourier series

of the cusp form f at q = e2πiz. Furthermore, Tn is a self-adjoint linear operator on
the vector space S2(Γ0(N)) endowed with the Petersson inner product; the algebra
TN := Z[T1, T2, . . . ] is a commutative algebra. Any cusp form fN ∈ S2(Γ0(N)) that
is an eigenvector for one (and hence all) of Tn is referred to as a Hecke eigenform; such
an eigenform is called rational whenever its Fourier coefficients c(m) ∈ Z. The Fourier
coefficients c(m) of fN are algebraic integers, and we denote by KfN

= Q(c(m)) an exten-
sion of the field Q by the Fourier coefficients of fN . Then KfN

is a real algebraic number
field of degree 1 � deg(KfN

/Q) � g, where g is the genus of the surface X0(N) [4, Propo-
sition 6.6.4]. Any embedding σ : KfN

→ C conjugates fN by acting on its coefficients; we
write the corresponding Hecke eigenform as

fσ
N (z) :=

∑
m∈Z

σ(c(m))qm.

2.2. The AF-algebras

A C∗-algebra is an algebra A over C with a norm a �→ ‖a‖ and an involution a �→ a∗

such that it is complete with respect to the norm and ‖ab‖ � ‖a‖ ‖b‖ and ‖a∗a‖ =
‖a2‖ for all a, b ∈ A. Any commutative C∗-algebra is isomorphic to the algebra C0(X)
of continuous complex-valued functions on some locally compact Hausdorff space X;
otherwise, A represents a non-commutative topological space. The C∗-algebras A and A′

are said to be stably isomorphic (Morita equivalent) if A ⊗ K ∼= A′ ⊗ K, where K is the
C∗-algebra of compact operators; roughly speaking, the stable isomorphism means that
A and A′ are homeomorphic as non-commutative topological spaces.

An AF-algebra is defined to be the norm closure of an ascending sequence of finite-
dimensional C∗-algebras Mn, where Mn is the C∗-algebra of the n × n matrices with
entries in C. Here the index n = (n1, . . . , nk) represents the semi-simple matrix alge-
bra Mn = Mn1 ⊕ · · · ⊕ Mnk

. The ascending sequence mentioned above can be written
as M1

ϕ1−→ M2
ϕ2−→ . . ., where Mi are the finite-dimensional C∗-algebras and ϕi are the

homomorphisms between such algebras. The homomorphisms ϕi can be arranged into
a graph as follows. Let Mi = Mi1 ⊕ · · · ⊕ Mik

and Mi′ = Mi′
1
⊕ · · · ⊕ Mi′

k
be the semi-

simple C∗-algebras and ϕi : Mi → Mi′ be the homomorphism. One has two sets of vertices
Vi1 , . . . , Vik

and Vi′
1
, . . . , Vi′

k
joined by brs edges whenever the summand Mir

contains brs

copies of the summand Mi′
s

under the embedding ϕi. As i varies, one obtains an infinite
graph called the Bratteli diagram of the AF-algebra. The matrix B = (brs) is known as
a partial multiplicity matrix ; an infinite sequence of Bi defines a unique AF-algebra.

For a unital C∗-algebra A, let V (A) be the union (over n) of projections in the n × n

matrix C∗-algebra with entries in A; projections p, q ∈ V (A) are equivalent if there exists
a partial isometry u such that p = u∗u and q = uu∗. The equivalence class of projection
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p is denoted by [p]; the equivalence classes of orthogonal projections can be made into a
semigroup by setting [p]+[q] = [p+q]. The Grothendieck completion of this semigroup to
an abelian group is called the K0-group of the algebra A. The functor A → K0(A) maps
the category of unital C∗-algebras into the category of abelian groups, so that projections
in the algebra A correspond to a positive cone K+

0 ⊂ K0(A) and the unit element 1 ∈ A

corresponds to an order unit u ∈ K0(A). The ordered abelian group (K0, K
+
0 , u) with

an order unit is called a dimension group; we denote an order-isomorphism class of the
latter by (G, G+).

2.3. The Jacobi–Perron fractions

Let a1, a2 ∈ N such that a2 � a1. Recall that the greatest common divisor of a1, a2,
GCD(a1, a2) can be determined from the Euclidean algorithm

a1 = a2b1 + r3,

a2 = r3b2 + r4,

r3 = r4b3 + r5,

...

rk−3 = rk−2bk−1 + rk−1,

rk−2 = rk−1bk,

where bi ∈ N and GCD(a1, a2) = rk−1. The Euclidean algorithm can be written as the
regular continued fraction

θ =
a1

a2
= b1 +

1

b2 +
1

+ · · · +
1
bk

= [b1, . . . bk].

If a1, a2 are non-commensurable in the sense that θ ∈ R−Q, then the Euclidean algorithm
never stops, and θ = [b1, b2, . . . ]. Note that the regular continued fraction can be written
in matrix form (

1
θ

)
= lim

k→∞

(
0 1
1 b1

)
· · ·

(
0 1
1 bk

) (
0
1

)
.

The Jacobi–Perron algorithm and connected (multidimensional) continued fraction gen-
eralizes the Euclidean algorithm to the case GCD(a1, . . . , an) when n � 2. Namely, let
λ = (λ1, . . . , λn), λi ∈ R − Q and θi−1 = λi/λ1, where 1 � i � n. The continued fraction⎛

⎜⎜⎜⎜⎝
1
θ1
...

θn−1

⎞
⎟⎟⎟⎟⎠ = lim

k→∞

⎛
⎜⎜⎜⎜⎝

0 0 · · · 0 1
1 0 · · · 0 b

(1)
1

...
...

. . .
...

...
0 0 · · · 1 b

(1)
n−1

⎞
⎟⎟⎟⎟⎠ · · ·

⎛
⎜⎜⎜⎜⎝

0 0 · · · 0 1
1 0 · · · 0 b

(k)
1

...
...

. . .
...

...
0 0 · · · 1 b

(k)
n−1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0
0
...
1

⎞
⎟⎟⎟⎟⎠ ,
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where b
(j)
i ∈ N ∪ {0}, is called the Jacobi–Perron algorithm (JPA). Unlike the regular

continued fraction algorithm, the JPA may diverge for certain vectors λ ∈ Rn. However,
for points of a generic subset of Rn, the JPA converges [1]; in particular, the JPA for
periodic fractions is always convergent.

3. Proof of theorem 1.1

A standard dictionary [5] between AF-algebras and their dimension groups is adopted.
Instead of dealing with Af , we work with its dimension group GAf

= (G, G+), where
G ∼= Zn is the lattice and G+ = {(x1, . . . , xn) ∈ Zn | θ1x1 + · · ·+θn−1xn−1 +xn � 0} is a
positive cone. Recall that GAf

is abelian group with an order that defines the AF-algebra
Af up to a stable isomorphism. We arrange the proof in a series of lemmas. First, let us
show that Af is a correctly defined AF-algebra.

Lemma 3.1. The Af does not depend, up to a stable isomorphism, on a basis in
H1(X0(N), Z(φ); Z).

Proof. Denote by m := Zλ1+· · ·+Zλn a Z-module in the real line R. Let {γ′
i} be a new

basis in H1(X0(N), Z(φ); Z), such that γ′
i =

∑n
j=1 aijγj for matrix A = (aij) ∈ GLn(Z).

Using the integration rules, one gets

λ′
i =

∫
γ′

i

φ =
∫

∑n
j=1 aijγj

φ =
n∑

j=1

∫
γj

φ =
n∑

j=1

aijλj .

Thus, m′ = m and a change of basis in the homology group H1(X0(N), Z(φ); Z) amounts
to a change of basis in the module m. It is an easy exercise to show that there exists
a linear transformation of Zn sending the positive cone G+ of GAf

to the positive cone
(G+)′ of GA′

f
. In other words, A′

f and Af are stably isomorphic. �

Lemma 3.2. The (scaled) periods λi belong to the field KfN
.

Proof. Let m = Zλ1 + · · ·+Zλ2g be a Z-module generated by λi; we seek the effect of
the Hecke operators Tm on m. By the definition of a Hecke eigenform, TmfN = c(m)fN

for all Tm ∈ TN . In view of the isomorphism S2(Γ0(N)) ∼= Ωhol(X0(N)), one gets
TmωN = c(m)ωN , where ωN = fN dz. Then Re(TmωN ) = Tm(Re(ωN )) = Re(c(m)ωN ) =
c(m) Re(ωN ). Therefore, TmφN = c(m)φN , where φN = Re(ωN ). The action of Tm on
Z-module m can be written as

Tm(m) =
∫

H1

TmφN =
∫

H1

c(m)φN = c(m)m,

where H1 := H1(X0(N), Z(φN ); Z). Thus, the Hecke operator Tm acts on the module m

as multiplication by an algebraic integer c(m) ∈ KfN
.

The action of Tm on m = Zλ1 + · · · + Zλn can be written as Tmλ = c(m)λ, where
λ = (λ1, . . . , λn); thus, Tm is a linear operator (on the space Rn), whose eigenvector λ

corresponds to the eigenvalue c(m). It is an easy exercise in linear algebra to show that
λ can be scaled so that all λi lie in the same field as c(m); Lemma 3.2 follows. �
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Case 1. Let fN be a non-rational eigenform; then n = deg(KfN
/Q) � 2. Note that

m = Zλ1 + · · ·+ Zλn is a full (i.e. the maximal rank) Z-module in the number field KfN
.

Indeed, rank(m) cannot exceed n, since m ⊂ KfN
and KfN

is a vector space (over Q) of
dimension n. On the other hand, (λ1, . . . , λn) is a basis of the field KfN

and, as such,
rank(m) cannot be less than n; thus, rank(m) = n.

Lemma 3.3. The vector (λ1, . . . , λn) has a periodic (Jacobi–Perron) continued frac-
tion.

Proof. Since m ⊂ KfN
is a full Z-module, its endomorphism ring End(m) = {α ∈

KfN
: αm ⊆ m} is an order (a subring of the ring of integers) of the number field KfN

;
let u be a unit of the order [3, p. 112]. The action of u on m can be written in a matrix
form Aλ = uλ, where λ is a basis in m and A ∈ GLn(Z); with no loss of generality, one
can assume the matrix A to be non-negative in a proper basis of m.

According to Proposition 3 of [1], the matrix A can be uniquely factorized as

A =

(
0 1
I b1

)
· · ·

(
0 1
I bk

)
,

where vectors bi = (b(i)
1 , . . . , b

(i)
n−1)

T have non-negative integer entries. By Satz XII of [7],
the periodic continued fraction(

1
θ′

)
= Per

(
0 1
I b1

)
· · ·

(
0 1
I bk

) (
0
I

)
(3.1)

converges to a vector λ′ = (λ′
1, . . . , λ

′
n), which satisfies the equation Aλ′ = uλ′. Since

Aλ = uλ, the vectors λ and λ′ are collinear, but collinear vectors have the same continued
fractions [2]. �

The first case of Theorem 1.1 follows from Lemma 3.3, since AfN
is a stationary AF-

algebra, whose period is given by the matrix A.

Case 2. Let fN be a rational eigenform; in this case n = 1 and KfN
= Q. The

Bratteli diagram of AfN
is finite and one dimensional; therefore, AfN

∼= M1(C) = C.
This argument finishes the proof of the first part of Theorem 1.1.

To prove the second part by contradiction, let A 
= A′ be similar matrices. To
find S such that A′ = S−1AS, notice that mσ = λσ

1Z + · · · + λσ
nZ. Since mσ = m,

λσ
j =

∑
sijλi, where S = (sij); but σk = Id for some integer k and thus Sk = I. There-

fore, (A′)k = (S−1AS)k = Ak and A′ = A, which contradicts our assumption. On the
other hand, λσ

j ∈ KfN
implies that the characteristic polynomials ch(A) = ch(A′); there-

fore, AfN
and Afσ

N
are companion AF-algebras.
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