
SOME ALGEBRAIC PROPERTIES OF ASYMPTOTIC 
POWER SERIES 

T. E. HULL 

1. Introduction. Let us consider all power series of the form 

Co + CiZ + C2Z
2 + . . . + CnZ

n + . . . . 

It was shown first by Borel (1) that to each such series there corresponds a 
non-empty class of functions such that each function in the class has the given 
series as its asymptotic expansion about z — 0, the expansion being valid in a 
sector of the right half z-plane with vertex at the origin. Various generaliza­
tions of Borel's theorem have been given by Carleman (1), van der Corput 
(2),andErdélyi(3). 

We shall be interested only in the case where the cn are real and where z 
is a real, non-negative variable x. We are then led to the following special case 
of Borel's theorem. To any series 

C0 + CiX + C2X
2 + . . . + CnX

n + . . . , 

there corresponds at least one function/(x) such that 

Rn(x) xn = o(xn~l), x - > 0 , 

where 

Rn(x) xn = f(x) — Co — c\x — c2x
2... — cn-\x

n~l, n = 1, 2, 3, . . . , 

is the remainder after n terms. 
Because of Borel's theorem the expressions ''asymptotic power series" and 

"formal power series" are equivalent; we shall refer to them as "asymptotic 
series" or simply as "series." We shall refer to the class of all sum functions 
f(x) corresponding to a particular series as the asymptotic sum of the series. 

It is obvious that the collection of all asymptotic series forms a ring under 
formal addition, subtraction, and multiplication and it is known (4) that this 
ring is isomorphic to the ring of all asymptotic sums. 

It is the purpose of this paper to discuss, using primarily algebraic notions, 
some of the properties of these rings. To do so we pay particular attention to 
the fundamental role played by those special asymptotic series for which 

(i) Co > 0, 
(ii) there exists a sum function/(x) such that, for all x > 0, |i?w(x)| < \cn\ 

(n = 0, 1, 2, . . .), where Ro(x) = f(x) and otherwise Rn(x) is defined as above. 
Condition (ii) means that the remainder, with respect to / (x) , is numerically 

less than the first neglected term. Any series satisfying the properties (i) and 
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(ii) will be referred to as an S-series. Such series often arise in physical prob­
lems and because of their remainder property are especially useful in compu­
tations. 

Our plan is to show first that the collection of all 5-series is closed under 
formal addition and multiplication (but not subtraction). Since the distribu­
tive law will hold too, we shall call such a collection a semiring. Then we shall 
show that the full ring of all asymptotic series is generated from this semiring 
when we adjoin all differences to the semiring. 

We may mention that such an imbedding of a semiring in a ring can arise 
in other contexts. The simplest of these is the imbedding of the semiring of all 
integers greater than or equal to some fixed non-negative number in the ring 
of all integers. 

2. The S-series form a semiring. We proceed now to prove the first of 
our two theorems. 

THEOREM 1. The S-series form a semiring. That is, the formal sum or product 
of two S-series is an S-series and the distributive law holds. 

We show first that the coefficients in an 5-series must alternate in sign 
unless the series consists of only the constant term. Suppose that cn > 0 
(n = 0, 1, 2, , . . .). Then, since 

Rn(x) = Cn + JR„+I(*0 X 

\Rn(x)\ < \cn\, 

Rn+i(x) x < 0, 

Rn+1(x) < 0. 

Rn+i(x) = cn+i + Rn+2(x) x 

and, letting x —» 0, we obtain 

Rn+l(0 + ) = Cn+1, 
so that 

Cn+l < 0 . 

Similarly, if cn < 0, we obtain cn+i > 0. 
We have still to show that the coefficients must all be non-zero except in 

the special case where the series consists of only the constant term. We 
obviously cannot have any coefficient equal to zero unless the series terminates ; 
but the series cannot terminate with the term cnx

n (n = 1, 2, 3, . . .), because 
if it did we would have 

Rn-i(x) = £n_i + cnx, 

and 

we obtain 

so that 

Moreover, 
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and x could always be chosen so large that 

\Rn-l(x)\ > \cn-i\. 

From now on we shall denote the non-constant 5-series by, for example, 

/« = a0 - ai X + a2 x2 - . . . + ( - î y - W - i xn~l + (-l)nRn
a xn 

and 

f = jSo - |9i x + 02 x
2 - . . . + ( -1)*- 1 /^- ! X*"1 + ( - l )n 2V xn, 

where an, fin > 0 and i?n
a, i ? / > 0. 

The Theorem requires us to show that the sum or product of two 5-series 
is an 5-series. The "sum" part of the proof is trivial. The "product" part is 
also trivial if one or both of the series is constant; for the other case we note 
that the remainder, with respect to fafP, after n terms in the formal product of 
the above two series can be written 

( - l)n+1 («o Rn* + CCI Rn-S + • • • + « « - I RS + Rna #0*) X»+1 

while the (n + l ) th term in the formal product is 

(-I)**"1 (aof3n + « A - i + . . . + aj3o) x?+l. 

The first of these two expressions is numerically less than or equal to the 
second so that condition (ii) is satisfied. The first term in the formal product is 
«o0o > 0 and so condition (i) is also satisfied. The product series is therefore 
an S-series with respect to the function fa p. It is obvious that the distributive 
law holds and so the Theorem is proven. 

In fact we have shown that the semiring of all 5-series is isomorphic to the 
semiring whose elements are the classes of sum functions which satisfy condi­
tion (ii). The semiring possesses a unit and a zero element which are simply 
the numbers 1 and 0 respectively. 

It can also be shown that the formal substitution of an 5-series in place of 
the variable in a convergent series produces another 5-series, provided the 
coefficients of the convergent series are positive and its radius of convergence 
is greater than the constant term in the first 5-series. 

Incidentally, the non-constant 5-series alone form a semiring without, of 
course, either a unit or a zero element. This semiring is an ideal, if differences 
are not allowed, in the larger semiring of all 5-series. 

3. The semiring generates the ring. We shall now show that the full 
ring of all asymptotic series is generated from the semiring of all 5-series 
when we adjoin all differences to the semiring. The result can be formulated 
in the following way. 

THEOREM 2. Any asymptotic series can be written as the difference between two 
S-series. 
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Suppose that «o, OL\ > 0 and consider the series 

a& — ai x + a2x
2 — . . . + ( — l)n anx

n . . . . 

We shall show shortly that, if an+i/an-* oo asw->oo and the inequalities 

an+i/an > an/an-u n = 1, 2, 3, . . . , 

are also satisfied, the series is an 5-series. The proof of the Theorem is then 
straightforward ; for, given any series 

Co + Ci X + C2X
2 + . . . + Cn Xn + . . . , 

one can always choose some a0, au i#o, i#i > 0 so that a0 — /50 = c0 and 
on — 0i = — Ci. Then one can always choose pairs a2, 02 > 0, a3, 03 > 0 , . . . 
in turn so that an+i/an and 0w+i/0n ->œ a s w - ^ œ , and 

— - > - — , -5— > - 5 — , » = 1 , 2 , 3 , . . . 
an an-i pn pn-i 

and so that an — 0n = (—1)%. The «-series and the /3-series so formed are 
then both 5-series and their difference is the given series. The Theorem is then 
proven. 

We have only to show that the conditions assumed for an in the above 
paragraph ensure that the corresponding «-series is an 5-series. For a series 
to be an 5-series, conditions (i) and (ii) must be satisfied. Condition (i) is 
satisfied since we have assumed that ao > 0 ; in fact our assumptions guarantee 
that all an > 0. We can show that condition (ii) is also satisfied by constructing 
the required "sum" function. 

We define the intervals In in the following way: I0 is the interval 0 < x < 00 
and In (n = 1, 2, 3, . . .) is the interval 0 < x < an-i/an. Putting 

we define 
CO 

/(*) = 2 ( - 1 ) */*<(*)<*« **• 

This series converges for all x —in fact, it terminates for each x. Therefore 
fix) is defined. 

For our purposes the essential points are the following. For each x, the 
terms which appear in the series for/(x) decrease in magnitude with increasing 
subscript (unless only the first term appears). The terms which do not appear 
in the series for/(x) are non-decreasing in magnitude with increasing subscript. 

Then, if we suppose that x G IN — IN+i (N = 0, 1, 2, . . .) and if we take 
account of the fact that all terms are alternating in sign, we can easily pick 
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out one term which dominates Rn+i(x) xn+1 (n = — 1, 0, 1, . . .). We obtain 

(<an+1x
n+\ n <N, 

\Rn+i(x) xn+1\l = 0, n = N, 
[<awxw , n > N. 

The last expression is, in turn, <aw+i xn+l when n > N, so that condition 
(ii) is satisfied. (If N = oo we of course need to consider only the case where 
n < N, and if N = 0 we need to consider only the cases where n > N.) 

The conditions assumed for an are not necessary for the series to be an 
•S-series; this can be seen by considering the expansion of e~x. Moreover it 
can be shown that the S-series which do satisfy these conditions are closed 
under addition but not under multiplication. 

Incidentally we have in fact shown that the semiring of non-constant 
S-series also generates the full ring with the adjoining of all differences. 

4. Concluding remarks. D. C. Murdoch has pointed out that the above 
results enable one to define a partial ordering on the ring of all power series. 
One series a(x) can be defined to be "greater than or equal to" another series 
b(x) if and only if their difference is an 5-series. By using a procedure analogous 
to that used in the first part of Theorem 2, one can then always construct 
an upper bound and a lower bound to any pair of series. However, it is also 
possible to show that neither the least upper bound nor the greatest lower 
bound required for a lattice can exist. 

Algebraic and other properties of asymptotic series have been considered 
by Popken (5). He discusses the ring of all asymptotically finite functions 
(and so does not restrict his attention to power series) and he shows, for 
example, that this ring is complete with respect to a certain non-Archimedean 
pseudo-valuation. 

We wish to thank B. N. Moyls for many interesting discussions during the 
preparation of this paper, and also the referee, particularly for pointing out an 
error in the proof of Theorem 2. 
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