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A Stone-Weierstrass theorem for
random functions

A. Mukherjea

It is shown in this note that if & 1is an algebra of uniformly
bounded mean-square continuous real-valued random functions
indexed in a compact set T , containing all bounded random
variables and separating points of T (i.e., given ¢; and ¢,

in T , there is a random function X in & such that

t

th - th = 1), then given any mean square continuous random

function, there is a sequence in ¢ converging in mean square to

the given random function uniformly on T .

The purpose of this note is to present a Stone-Weierstrass type
theorem for random functions which might find possible future applications
in probability theory or analysis. Tzannes in [Z] showed that a mean
square continuous (m.s.c.) second order random function (r.f.) can be
approximated uniformly in mean square by a sequence of random polynomials
(i.e., polynomials with random variables as co-efficients). So it is
natural to consider the same problem in the more general situation which

we describe in the following paragraph.

Let T be a compact set in some topological space. Let us restrict
our attention to real-valued random functions on some probability space
indexed in the parameter set 7 . A r.f. Xt is said to be m.s.c. on

T if for every ¢ in T , E[X% = J X% < ® ang
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1
N3
and n(Xt_Xs) = {f [Xt-Xé] }2 tends to 0 as s tends to ¢ . A r.f.

Xt is uniformly bounded if there is a constant M such that for every

t , lth <M. A family & of random functions is called an algebra if
(1) X, and Y, in Q implies that XX, (pointwise

multiplication) is also in ¢ and

(i1) Xt and Yt in @ implies that Xt + Yt is also in @ .

The uniformly bounded m.s.c. random functions can be easily seen to form
an algebra. € 1is said to separate points in T if given ¢; and ¢t3

in T , there exists a r.f. X, in ¢ .such that th - th =1 . If

T = [0, 1] , the algebra of random polynomials separate points of 7T .
This is the desired Stone-Weierstrass setting in which we consider the
problem mentioned in the first paragraph. We have, as can be expected,

the following theorem.

THEOREM. Let & be an algebra of uniformly bounded m.s.c. random
functions containing all bounded random variables. Let @ also separate
points of T . Then given a m.s.c. r.f. , there exists a sequence in @

which converges in mean square to the given r.f. wuniformly on T .
Proof. The proof follows closely the classical pattern.

Following the classical proof (see page 131, [71]), one can easily

check that if X, is in @ , then lXil is in & , the closure of § in

the uniform mean square limit sense.

Next, given ¢, and ¢, and any two random variables X; and X

¢ in € such that Zt1 = X; and th = X, ;3 for

we can take 2, = X; + |X, - .(Xo-Xy;) where X, is in @ such that
t t t

in @ , we can find 2

th - th =1.
Now let Wt be any m.S.c. non-negative r.f. . We wish to show
that Wi is in & . With no loss of generality, we can assume that W%

is uniformly bounded. For, given € > 0 , using the mean square continuity
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of Wt and the r.f. Wﬁw = inf{m, Wt} , where m 1is a constant, and the

compactness of T , we can find a m such that n[Wt—Wem) < g for every

t in T . [Note that here »n denotes the L,-norm.]

So we assume that Wt is uniformly bounded by a constant m . Let
ID be the characteristic function of the measurable set D and so it is
a random variable in @ . Let t  be in T . Then for every t' in

T , we can find a neighbourhood Nt' of t' and Yi in @ such that

] '
Yz = Wt and n[Yz
o o]

.IDJ < n(Wt.ID) +€/3m for every t in N,, and

t’
every measurable set D . Then using the compactness of T and noting

t
that inf{Xt, Yt} is in § for Xt and Yt in § , we can find a Yto

in § such that

t t
o} o]
= . < .
Y, W, and n[Yt ID] n[Wt ID) + €/3m
o] o]
for every ¢t in T and every measurable set D . Now we can find a
neighbourhood Nt of to such that for every ¢ in Nt and every
o} o]

measurable set D ,

t
0
> -
n[Yt .liJ n[Wt.ID) e/3m .
Doing this for every ¢, in T , then we can find @ Y, 1in @ such

that ln(Yt.ID) - n(Wt.ID]I < €ef3m for every t in T and every

measurable set D . Then lE(Y%.ID) - E[W%.ID)| <€ . Now let

4, = [Wt;Yt] . Then

n(t,-w,) s n[IAt. (yt-wt)J + n[IAg. (¥,-w, ] ,

each of which is less than /e y for
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E’[IA .(yt-wt)zl = E[W%.IA ) + E[Y§.IA ] - QE[Yt.Wt.IA )
t t t t
= E’[W%.IA J - E[Y%.IA J <e
t t
and similarly the other one.
Finally, let Wt be any m.s.c. r.f. . Then since T is compact
and Wt is m.s.c. , given € > 0, we can find B > 0 such that
P(B) < B (where P is the measure in the probability space) implies that
n(Wt.IB) < g for every ¢t in T . Noting that E(Wi) is a bounded

function of ¢ , we can find a number k > O such that for every t in

T , there is a Bt , a measurable set such that P(Bt) < B and on Bi R

thI is less than k . Then we write Ut = sup{-k, inf[Wt, k)} so that

Ut is clearly a m.s.c. r.f. bounded by k for all ¢ . We note that

c = $ < . .
on Bt R Ut Wt and therefore, since IUtI = IWtI , it is easy to see

that n(W,-U,) = n[IBt.(Wt-Ut)] <2 . Now k

Ut is a non-negative

m.s.c. r.f. and so we can find Yt in § such that n[Ut - (k—Yt)] <€

and this proves that there is a 2, = k -Y, in @ such that

t
n(Wt—Zt) < 3t for every ¢ in T . This completes the proof of the

theorem.
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