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Abstract The purpose of this work is to establish a priori C2,α estimates for mesh function solutions
of nonlinear difference equations of positive type in fully nonlinear form on a uniform mesh, where the
fully nonlinear finite difference operator Fh is concave in the second-order variables. The estimate is an
analogue of the corresponding estimate for solutions of concave fully nonlinear elliptic partial differential
equations. We use the results for the special case that the operator does not depend explicitly upon the
independent variables (the so-called frozen case) established in part I to approach the general case of
explicit dependence upon the independent variables. We make our approach for the diagonal case via a
discretization of the approach of Safonov for fully nonlinear elliptic partial differential equations using
the discrete linear theory of Kuo and Trudinger and an especially agreeable mesh function interpolant
provided by Kunkle. We generalize to non-diagonal operators using an idea which, to the author’s
knowledge, is novel. In this paper we establish the desired Hölder estimate in the large, that is, on the
entire mesh n-plane. In a subsequent paper a truly interior estimate will be established in a mesh n-box.
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1. Introduction

In this paper the setting and notation are as in [6], where we derived a discrete a priori
C2,α estimate for solutions of difference equations involving operators of the form

Fh[u](x) ≡ Fh(δ2u(x)).

Here our purpose is to use that estimate to derive a discrete a priori C2,α estimate for
solutions of the problem

Fh[u](x) = 0, ∀x ∈ Z
n
h,

for more general difference operators

Fh[u](x) ≡ Fh(x, δ2u(x)), (1.1)
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where, with YN = {y ∈ Z
n
h \ {0} : ‖y‖∞ 6 Nh},

δ2u(x) = {δ2yu(x) | y ∈ YN},
and Fh is a given real-valued function on Γ = R

n ×R
YN . We do not address the question

of existence in this paper.
Denote points of Γ by ordered pairs (x, s). We assume that Fh is differentiable in sy

for each y ∈ YN and symmetric with respect to s±y for each y ∈ YN . We assume that
there is Y ′ ⊂ YN such that {he1, . . . , hen} ⊂ Y ′, and, for all (x, s) ∈ Γ , Fh satisfies

0 < λ 6 ∂Fh(x, s)
∂sy

6 Λ for all y ∈ Y ′, and
∂Fh(x, s)
∂sy

≡ 0 for all y ∈ YN \ Y ′,

for some positive constants λ, Λ. By the symmetry above, y ∈ Y ′ if and only if −y ∈ Y ′.
Again, our major assumption in addition to the above is that Fh is concave in the
second-order variables {sy}.

The only such estimate known to the author is for the two-dimensional case by Hack-
busch in [4].

As in the continuous case (see [11,12]), we derive our estimate by viewing (1.1) locally
as a perturbation in x of an equation of the same form but with x fixed.

As in [6], in order to achieve our goal we rely upon the existence of a special interpolant
of mesh functions, provided by Kunkle [8] (generalizes [2] and [1] to n-dimensional real-
valued mesh functions) (see [6, § 4]). Let us restate [6, Theorem 4.1], augmenting it
somewhat.

Again we denote the set of points used in the definition of a difference quotient by
supp, the support of the difference quotient, and for any set of mesh points S ⊂ Z

n
h we

define
|δαu|0;S = max

x∈S, supp δαu(x)⊂S
|δαu(x)|.

Lemma 1.1 (Theorem 13.2 in [7]). Let Ω be the Cartesian product of n closed
(not necessarily finite) intervals such that the corners of Ω are themselves lattice points,
and assume that in each of the coordinate directions ej , Ω has diameter at least 3h. With
Ωh = Ω∩Z

n
h, let u : Ωh → R be a mesh function on Ωh. Then there exists an interpolant

ue = Fhu ∈ C∞(Rn) (so ue(x) = u(x) for all mesh points x ∈ Ωh) and a constant
C depending only upon n and the choice of a particular compactly supported function
ψ : R → R (we fix a choice for the duration of this paper, thus rendering later definitions
of semi-norms unambiguous) such that for all multi-indices β satisfying 0 6 βi 6 3 for
each i = 1, . . . , n, we have

|Dβue|0;Ω 6 C|δβu|0;Ωh
.

In fact, if z ∈ Ωh and dist(z, ∂Ω) > 2h, then

|Dβue|0;z+[0,h]n 6 C|δβu|0;z+[−h,2h]n∩Z
n
h
.

If δβu is not bounded (for instance if Ω is not compact), then for every compact subset
K of Ω there is a compact K ′ ⊂ Ω such that

|Dβue|0;K 6 C|δβu|0;K′∩Z
n
h
.
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Furthermore, for all multi-indices β satisfying ‖β‖1 = 3:

|Dβue|0;Ω 6 C sup
16i6n, w∈Y1

|δ+hei
δ2wu|0;Ωh

. (1.2)

Again, if z ∈ Ωh and dist(z, ∂Ω) > 2h, then

|Dβue|0;z+[0,h]n 6 C sup
16i6n, w∈Y1

|δ+hei
δ2wu|0;z+[−h,2h]n∩Z

n
h
.

We still have, of course, that for fixed x ∈ Ω such that dist(x, ∂Ω) > 2h, Fhu(x) is
independent of u(z) for z ∈ Z

n
h when ‖z − x‖∞ > 2h.

The operator Fh is linear, and it reproduces polynomials of maximum degree 2 in each
variable in the sense that if u is the restriction to the mesh of such a polynomial, then Fhu

is that polynomial. The Taylor polynomial of total degree at most two of the extension
about a mesh point agrees with the extension at orthogonally adjacent mesh points. That
is, if Tx̄,2ue is the said Taylor polynomial of the extension ue (of u) about x̄, where x̄ ∈ Z

n
h

is a mesh point, then for any i ∈ {1, 2, . . . , n}, Tx̄,2ue(x̄±hei) = ue(x̄±hei). It follows that
the centred second-order coordinate-direction difference quotients of Tx̄,2ue(x) (which
are constant) coincide with the corresponding difference quotients of the mesh function
u at x̄.

This results from a straightforward modification of Kunkle’s [7] result. (See [5] for an
exposition of Kunkle’s construction and details of the said modification, as well as proofs
of the facts contained in the above lemma.)

The restriction to the form δ+hei
δ2wu, w ∈ Y1, in the above lemma is very useful, because

we can relate such terms to C2,α estimates via the following manipulation:

δ+hei
δ2wu(x) =

δ2wu(x+ hei) − δ2wu(x)
h

=
δ2wu(x+ hei) − δ2wu(x)

hα
hα−1.

Our goal is to prove Theorem 4.1. We prove this theorem first in the case of diagonal
operators by discretizing Safonov’s derivation of a Hölder estimate for second derivatives
of solutions of concave fully nonlinear elliptic partial differential equations (see [11] and
[12]). Kunkle’s extension facilitates the application of technical calculus lemmas from
Safonov’s work. We establish (in § 2) that on Z

n
h a mesh function u and its extension ue

of Lemma 1.1 have equivalent C2,α Hölder norms. We prove this equivalence non-globally
as well, for a mesh function defined on an n-rectangle. We will then follow Safonov’s proof,
moving to or from a Hölder semi-norm of an a priori solution of (4.1) from or to the
corresponding Hölder semi-norm of the extension by equivalence of semi-norms as is
convenient; that is, when we wish to use information from the difference equation (4.1)
we move by equivalence of semi-norms to the discrete Hölder semi-norm of the mesh
function. When we wish to use calculus-based technical lemmas from Safonov’s work we
move by equivalence of semi-norms to the Hölder semi-norm of the extension of the mesh
solution. We generalize the proof to non-diagonal operators using an idea which, to the
author’s knowledge, is novel.
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2. Semi-norms

Here we add to the definitions in [6, § 1.1]. With the exception of the semi-norms on
the left in (2.1), the definitions in this section are trivial modifications of definitions
in [11,12]. Let Ω be a domain (open or closed) in R

n, and u : Ω → R. For m a non-
negative integer and 0 < α < 1, we set

[u]0,α;Ω = sup
x,y∈Ω,x6=y

|u(x) − u(y)|
‖x− y‖α

2
, 〈u〉(α)

Ω = sup
x∈Ω,ρ>0

ρ−α osc
Ωρ(x)

u,

[u]m,α;Ω = max
‖β‖1=m

[Dβu]0,α;Ω , 〈u〉(m+α)
Ω = max

‖β‖1=m
〈Dβu〉(α)

Ω ,


 (2.1)

where oscΩρ(x) u = supy,z∈Ωρ(x) |u(y) − u(z)| and Ωρ(x) = Ω ∩Kρ(x). Recall that Kρ(z)
is the closed cube, parallel to the coordinate axes, with centre z and side length 2ρ:
Kρ(z) = {x ∈ R

n : ‖x− z‖∞ 6 ρ}. The semi-norms on the left in (2.1) are equivalent,
respectively, to those on the right, the constant of equivalence being dependent only
upon n since 0 < α < 1.

Let Pm, for non-negative integerm, denote the collection of allmth-degree polynomials

p(x) =
∑

‖β‖16m

Cβx
β , Cβ = const.,

where β is a multi-index, and xβ =
∏

i x
βi

i . Then, for example, the Taylor polynomial of
total degree at most m for the function u at the point x is

Tx,mu(y) =
∑

‖β‖16m

Dβu(x)
β

(y − x)β ∈ Pm. (2.2)

We define the following:

ωm(u, V ) = max
‖β‖1=m

osc
V
Dβu;

Em[u;V ] = inf
p∈Pm

sup
x∈V

|u(x) − p(x)|.

If a function v : R
n → R has finite semi-norm 〈v〉(m+α)

Rn , then this semi-norm is equivalent
to the semi-norm

µ∗
m+α(v) = sup

x∈Rn,ρ>0
ρ−m−αEm[v;Kρ(x)],

a Campanato semi-norm [11,12]; that is, for some constant C = C(n,m, α) > 0 we have

C−1〈v〉(m+α)
Rn 6 µ∗

m+α(v) 6 C〈v〉(m+α)
Rn . (2.3)

This is proved in [12, Theorem 2.1′]. Observe that with the notation introduced above,
we may write the semi-norm 〈v〉(m+α)

Rn as

〈v〉(m+α)
Rn = sup

ρ>0,x∈Rn

ρ−αωm(v,Kρ(x)).
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Let u : Z
n
h → R be a mesh function and let ue : R

n → R be the extension of u in
Lemma 1.1. We define the quantities

µ
2+α

(u) = sup
ρ>h,x∈Rn

ρ−αω2(ue,Kρ(x)),

µ∗
2+α

(u) = sup
ρ>h,x∈Rn

ρ−2−αE2[ue;Kρ(x)].

We also extend the domain of the semi-norms 〈·〉(2+α)
Rn and µ∗

2+α(·) to include mesh
functions by defining

〈u〉(2+α)
Rn = 〈ue〉(2+α)

Rn , µ∗
2+α(u) = µ∗

2+α(ue).

3. Semi-norm equivalences

The first lemma gives some well-known interpolation inequalities in terms of Safonov’s
semi-norms. The proof is almost identical to the proof of [3, Lemma 6.32, § 6.8], but is
made easier by virtue of being in an n-cube rather than a ball.

Lemma 3.1 (Lemma 2.1 in [12]). If x ∈ R
n, ρ > 0, 0 < k + α′ < m+ α (k and m

non-negative integers; 0 6 α, α′ 6 1), and u ∈ Cm,α(Kρ(x)), then

ρk+α′〈u〉(k+α′)
Kρ(x) 6 ερm+α〈u〉(m+α)

Kρ(x) + C(ε, n, k,m, α, α′) sup
Kρ(x)

|u|,

for all ε > 0.

A consequence is the following lemma.

Lemma 3.2 (Corollary 2.2 in [12]). If x ∈ R
n, ρ > 0, m a non-negative integer,

0 6 α 6 1, and u ∈ Cm,α(Kρ(x)), then

ρmωm(u,Kρ(x)) 6 ερm+α〈u〉(m+α)
Kρ(x) + C(ε, n,m, α)Em[u;Kρ(x)],

for all ε > 0.

The following lemma is Lemma 2.2 of [12] stated for cubes rather than for balls. It
is another consequence of Lemma 3.1 and the fact that for arbitrary p ∈ Pm we have
〈u− p〉(m+α) = 〈u〉(m+α).

Lemma 3.3 (modification for cubes of Lemma 2.2 in [12]). If x ∈ R
n, ρ > 0,

m a non-negative integer, and u ∈ Cm,α(Kρ(x)), where 0 6 α < 1, or u ∈ Cm+1(Kρ(x)),
where α = 1, then

sup
Kρ(x)

|u− Tx,mu| 6 C(n)ρm+α〈u〉(m+α)
Kρ(x) ,

where Tx,mu is the Taylor polynomial defined in (2.2).

We may now prove the following theorem wherein continuous semi-norm of interpolant
meets discrete semi-norm of mesh function via equivalence.
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Theorem 3.4. Suppose 0 < α < 1. Let Ω be the Cartesian product of n closed (not
necessarily finite) intervals such that the corners of Ω are themselves lattice points, and
assume that in each of the coordinate directions ej , Ω has diameter at least 3h. With
Ωh = Ω∩Z

n
h, let u : Ωh → R be a real-valued mesh function on Ωh and let ue ∈ C∞(Rn)

be the Kunkle extension of u to R
n, as in Lemma 1.1. There exist positive constants

C = C(n,N) and D = D(n) such that

C N[u]2,α;Ωh
6 [ue]2,α;Ω 6 D 1[u]2,α;Ωh

,

when one of these quantities is finite.

Proof. We prove the left-hand inequality first. Recall from [6, § 1.1] that

N[u]2,α;Ωh
= sup

x,y∈Ωh,x 6=y,z∈YN
x±z,y±z∈Ωh

|δ2zu(x) − δ2zu(y)|
‖x− y‖α

2
.

Choose distinct x, y ∈ Ωh and z ∈ YN such that x ± z, y ± z ∈ Ωh. By the mean value
theorem we have

|δ2zu(x) − δ2zu(y)|
‖x− y‖α

2
=

|Dẑẑue(x′) −Dẑẑue(y′)|
‖x− y‖α

2

6 n
|Dβue(x′) −Dβue(y′)|

‖x− y‖α
2

,

where ẑ = z/‖z‖2, x′ = x + tz for some t ∈ (−1, 1), y′ = y + sz for some s ∈ (−1, 1),
and where ‖β‖1 = 2 gives the maximum of |Dβue(x′) − Dβue(y′)| over all such multi-
indices. It follows that ‖x′ − x‖2 6 N

√
nh and ‖y′ − y‖2 6 N

√
nh. Therefore, if x′ 6= y′

(if x′ = y′, then δ2zu(x) = δ2zu(y)), then

‖x′ − y′‖2

‖x− y‖2
6 2N

√
n+ 1

by the triangle inequality. Hence,

|δ2zu(x) − δ2zu(y)|
‖x− y‖α

2
6 n(2N

√
n+ 1)α |Dβue(x′) −Dβue(y′)|

‖x′ − y′‖α
2

6 n(2N
√
n+ 1)[ue]2,α;Ω .

Taking the supremum over distinct x, y ∈ Ωh, z ∈ YN , we have

N[u]2,α;Ωh
6 n(2N

√
n+ 1)[ue]2,α;Ω .

For the right-hand inequality the proof is similar to the proof of Lemma 4.3 of [6].
Choose distinct x, y ∈ Ω and multi-index β such that ‖β‖1 = 2. Consider two cases:
(i) ‖x− y‖∞ 6 h and (ii) ‖x− y‖∞ > h.
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Case (i): ‖x − y‖∞ 6 h. With η̂ = (x − y)/‖x − y‖2 we have, by the mean value
theorem, for some t ∈ (0, 1), ξ = tx+ (1 − t)y, that

|Dβue(x) −Dβue(y)|
‖x− y‖α

2
= |Dη̂D

βue(ξ)|‖x− y‖1−α
2 6 |Dη̂D

βue(ξ)|(
√
nh)1−α.

Then by (1.2), Lemma 1.1, there exists z ∈ Ωh, v ∈ {he1, . . . , hen}, and w ∈ Y1 with
supp δ+v δ

2
wu(z) ⊂ Ωh such that

|Dη̂D
βue(ξ)| 6 C(n)|δ+v δ2wu(z)|,

and, hence,
|Dβue(x) −Dβue(y)|

‖x− y‖α
2

6 C
√
n 1[u]2,α;Ωh

.

Case (ii): ‖x − y‖∞ > h. Choose one of the mesh points nearest to x (if x is not
a mesh point); that is, we choose xh ∈ Ωh such that 0 6 ‖xh − x‖∞ < h. Likewise
choose yh ∈ Ωh such that 0 6 ‖yh − y‖∞ < h. We further restrict the choice so that
‖xh − yh‖2 6 ‖x − y‖2. Select i, j ∈ {1, 2, . . . , n}, and set w = hz, where z = ei or
z = ei + ej . We have, denoting z/‖z‖2 by ẑ, that

|Dẑẑue(x) −Dẑẑue(y)|
‖x− y‖α

2

6 |Dẑẑue(x) −Dẑẑue(xh)|
‖x− y‖α

2
+

|Dẑẑue(xh) − δ2wu(xh)|
‖x− y‖α

2
+

|δ2wu(xh) − δ2wu(yh)|
‖x− y‖α

2

+
|δ2wu(yh) −Dẑẑue(yh)|

‖x− y‖α
2

+
|Dẑẑue(yh) −Dẑẑue(y)|

‖x− y‖α
2

. (3.1)

If xh 6= x, then the first summand on the right-hand side satisfies

|Dẑẑue(x) −Dẑẑue(xh)|
‖x− y‖α

2
6 (

√
n)α |Dẑẑue(x) −Dẑẑue(xh)|

‖x− xh‖α
2

6 2Cn 1[u]2,α;Ωh
,

by case (i), using the triangle inequality and the fact that

Dẑẑue ≡ (2Dijue +Diiue +Djjue)/‖z‖2
2,

when z = ei+ej . The last summand on the right-hand side of (3.1) is dealt with similarly.
The second summand on the right-hand side of (3.1) satisfies

|Dẑẑue(xh) − δ2wu(xh)|
‖x− y‖α

2
=

|Dẑẑue(xh) −Dẑẑue(x′)|
‖x− y‖α

2
,

by the mean value theorem where x′ = xh + tz, t ∈ (−1, 1), and, hence,

‖xh − x′‖2 <
√

2h <
√

2‖x− y‖∞ 6
√

2‖x− y‖2.

Thus, if x′ 6= xh, the summand in question satisfies

|Dẑẑue(xh) − δ2wu(xh)|
‖x− y‖α

2
6

√
2
|Dẑẑue(xh) −Dẑẑue(x′)|

‖xh − x′‖α
2

6 2
√

2C 1[u]2,α;Ωh
,
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again by case (i) as above. The fourth summand on the right-hand side of (3.1) is dealt
with in the same way. Finally, since ‖xh−yh‖2 6 ‖x−y‖2, if xh 6= yh, the third summand
on the right-hand side of (3.1) clearly satisfies the same inequality. Ultimately we have

|Dẑẑue(x) −Dẑẑue(y)|
‖x− y‖α

2
6 C 1[u]2,α;Ωh

,

which implies the same bound for |Dijue(x) −Dijue(y)|/‖x− y‖α
2 , i 6= j, using the fact

that
Dijue ≡ 1

2 (Dzzue −Diiue −Djjue) = 1
2 (‖z‖2

2Dẑẑue −Diiue −Djjue),

when z = ei + ej , i 6= j, i, j ∈ {1, 2, . . . , n}. Taking the supremum over distinct x, y ∈ Ω,
‖β‖1 = 2, we have the desired inequality. �

Lemma 3.5. Let u : Z
n
h → R be a real-valued mesh function and suppose that 0 <

α < 1. There is a positive constant C = C(n) such that

C−1〈u〉(2+α)
Rn 6 µ

2+α
(u) 6 C〈u〉(2+α)

Rn . (3.2)

Proof. Certainly, since

〈u〉(2+α)
Rn = 〈ue〉(2+α)

Rn = sup
‖β‖1=2

〈Dβue〉(α)
Rn

and [ue]2,α;Rn = sup‖β‖1=2[Dβue]0,α;Rn , it follows by the equivalence of semi-norms in
(2.1) (see comment after (2.1)) that there exists a constant C = C(n) such that

〈u〉(2+α)
Rn 6 C[ue]2,α;Rn .

Then by Theorem 3.4

〈u〉(2+α)
Rn 6 C(n) sup

x,y∈Z
n
h ,x 6=y,z∈Y1

|δ2zue(x) − δ2zue(y)|
‖x− y‖α

2
. (3.3)

By the mean value theorem, for fixed x, y, z, there exists t ∈ {x+ sz : s ∈ (−1, 1)} such
that δ2zue(x) = Dẑẑue(t), where ẑ = z/‖z‖2, and there exists r ∈ {y + sz : s ∈ (−1, 1)}
such that δ2zue(y) = Dẑẑue(r). If ‖t− r‖2 6 ‖x− y‖2 and t 6= r (if t = r, then δ2zue(x) =
δ2zue(y)), then, with ρ = ‖x− y‖2 > h,

|δ2zue(x) − δ2zue(y)|
‖x− y‖α

2
6

oscKρ(t)Dẑẑue

ρα
6 n sup

‖β‖1=2

oscKρ(t)D
βue

ρα
, (3.4)

and if ρ = ‖t− r‖2 > ‖x− y‖2, in which case

1
‖x− y‖2

6 1 + 2
√
n

‖t− r‖2
,
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we have

|δ2zue(x) − δ2zue(y)|
‖x− y‖α

2
6 (1 + 2

√
n)α

oscKρ(t)Dẑẑue

ρα

6 n(1 + 2
√
n) sup

‖β‖1=2

oscKρ(t)D
βue

ρα
.

This together with (3.4) implies that there exists positive C = C(n) such that for all
x, y ∈ Z

n
h, z ∈ Y1,

|δ2zue(x) − δ2zue(y)|
‖x− y‖α

2
6 C sup

‖β‖1=2,t∈R
n

ρ>h

oscKρ(t)D
βue

ρα

= Cµ
2+α

(u).

Taking the supremum over all such x, y and z we obtain from (3.3) the left-hand inequality
in (3.2). The reverse inequality with C = 1 is obvious. �

Lemma 3.6. Let u : Z
n
h → R be a real-valued mesh function and suppose that 0 <

α < 1. There is a positive constant C = C(n, α) such that

C−1〈u〉(2+α)
Rn 6 µ∗

2+α
(u) 6 C〈u〉(2+α)

Rn .

Proof. In the following, the first inequality is obvious, and the second follows from
(2.3) with v ≡ ue:

µ∗
2+α

(u) 6 µ∗
2+α(u) 6 C〈u〉(2+α)

Rn ,

giving the right-hand inequality in the statement of the lemma.
For the opposite inequality, we establish µ

2+α
(u) 6 Cµ∗

2+α
(u) by following Safonov’s

[12, Theorem 2.1′] proof of the equivalence

〈v〉(m+α)
Rn ∼ µ∗

m+α(v)

for general v ∈ Cm,α(Rn) satisfying 〈v〉(m+α)
Rn < ∞. We use Lemmas 3.2 and 3.5 to do

this. A further application of Lemma 3.5 then gives us the desired inequality.
Specifically, by Lemma 3.2 and then Lemma 3.5 we have, for ρ > h and x ∈ R

n,

ρ−αω2(ue,Kρ(x)) 6 ε〈u〉(2+α)
Rn + C(ε, n, α)µ∗

2+α
(u)

6 εC ′(n)µ
2+α

(u) + C(ε, n, α)µ∗
2+α

(u),

for any ε > 0. It follows that

µ
2+α

(u) 6 C ′(n)εµ
2+α

(u) + C(n, ε, α)µ∗
2+α

(u).

Setting ε = 1/(2C ′) and applying Lemma 3.5 to the left-hand side we obtain C =
C(n, α) > 0 such that

〈u〉(2+α)
Rn 6 Cµ∗

2+α
(u),

the left-hand inequality in the statement of the lemma. �
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4. C2,α estimate in/on Z
n
h: explicit x-dependence

Theorem 4.1. Let u : Z
n
h → R be a mesh function solution of

Fh[u](x) ≡ Fh(x, δ2u(x)) = 0, ∀x ∈ Z
n
h, (4.1)

where Fh(x, ·) ∈ C1(RY ′
) for each x ∈ Z

n
h, {hei}n

i=1 ⊂ Y ′ ⊂ YN , and δ2u(x) = {δ2yu(x) |
y ∈ Y ′}. Suppose that there exist λ,Λ > 0 such that, for each (x, s) ∈ Z

n
h × R

Y ′
,

λ 6 ∂Fh(x, s)
∂sy

6 Λ, ∀y ∈ Y ′.

Assume that for each x ∈ Z
n
h, Fh(x, s) is concave in s, and that Fh is symmetric with

respect to s±y for all y ∈ Y ′. Assume, further, that for some γ ∈ (0, α), where α =
α(n,N, λ, Λ) ∈ (0, 1) is the constant of [6, Theorem 3.2], there exist k1, k2 > 0 such that,
for all {sy} ∈ R

Y ′
,

[Fh(·, {sy})]0,γ;Zn
h

6 k1

∑
y∈Y ′

|sy| + k2, (4.2)

where

[Fh(·, {sy})]0,γ;Zn
h

= sup
x,z∈Z

n
h , x 6=z

|Fh(x, {sy}) − Fh(z, {sy})|
‖x− z‖γ

2
;

then, there exists a positive constant C = C(n,N, λ, Λ, k1, γ) such that

N[u]2,γ;Zn
h

6 C(N[u]2;Zn
h

+ k2). (4.3)

If the semi-norms above are finite and |u|0;Zn
h

is finite and 0 < h 6 h0, then

N[u]2,γ;Zn
h

6 C(|u|0;Zn
h

+ k2), (4.4)

where C depends in addition upon h0.

Proof of Theorem 4.1. We first prove (4.3) in the case when Fh is diagonal, that
is, N = 1 and Fh depends only upon difference quotients {δ2±he1

u, . . . , δ2±hen
u} (and

x, of course). Our proof of this case is a discretization of Safonov’s derivation in the
corresponding situation for partial differential equations [11,12].

Let u : Z
n
h → R be a solution of (4.1), where h > 0 is fixed. Let ue ∈ C∞(Rn) be

the Kunkle extension of u to R
n, as provided in Lemma 1.1. Fix x̄ ∈ R

n, ρ > h and
ε ∈ (0, 1

6 ]. Let r = ρ/ε, in which case r > 6h.
Choose x ∈ Z

n
h so that ‖x − x̄‖∞ 6 h. Let r be the smallest even multiple of h larger

than or equal to r. We have, of course, that r/2 = mh for some m ∈ N, and, since r > 6h,
we have r/2 > 3h. Note also that ρ/r 6 ρ/r = ε, and r < r+2h 6 r+2r/6 = 4r/3, and
hence

3
4ε 6 (ρ/r) 6 ε. (4.5)
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It then follows that

Kρ(x̄) ⊂ Kr/2(x) ⊂ Kr/2(x). (4.6)

Define
ϕ = ue − Tx,2ue,

where Tx,2ue is the Taylor polynomial of ue about x of total degree at most 2 (see (2.2)).
Let the mesh function v : Kr(x)h → R be the solution of the (frozen) Dirichlet problem

F0h[v](x) ≡ Fh0(δ
2v(x)) = Fh(x, δ2u(x) + δ2v(x)) = 0, ∀x ∈ Kr(x)i

h,

v = ϕ, ∀x ∈ Kr(x)b
h,

}
(4.7)

where
Ωi

h = {x ∈ Ωh | x+ y ∈ Ωh, ∀y ∈ Y1}, Ωb
h = Ωh \Ωi

h.

The existence of v follows from [6, Theorem 1.1] (see [10, Theorem 3.6]), noting that in
the case where Fh0 is diagonal, the interior of Kr(x)h relative to Fh0 (see [6]) coincides
with Kr(x)i

h, and hence also the boundary of Kr(x)h relative to Fh0 coincides with
Kr(x)b

h. Let ve be the Kunkle extension of v to the closed cube with mesh point corners
Kr(x), as provided in Lemma 1.1. Let γ ∈ (0, α) be such that (4.2) is satisfied. Then,
with a view to estimating µ∗

2+γ
(u), we have

ρ−2−γE2[ue;Kρ(x̄)] = ρ−2−γE2[ϕ;Kρ(x̄)]

6 ρ−2−γE2[ve;Kρ(x̄)] + ρ−2−γE2[ϕ− ve;Kρ(x̄)]. (4.8)

Dealing with the first summand on the right-hand side we have by Lemma 3.3, (4.6),
equivalence of semi-norms in (2.1), and Theorem 3.4, in turn, that

ρ−2−γE2[ve;Kρ(x̄)] 6 C(n)ρα−γ〈ve〉(2+α)
Kρ(x̄) 6 Cρα−γ〈ve〉(2+α)

Kr/2(x)

6 Cρα−γ [ve]2,α;Kr/2(x) 6 C(n)ρα−γ
1[v]2,α;Kr/2(x)h

.

Applying Theorem 3.2 of [6] to F0h, which satisfies F0h[0] = 0, it follows from the above
that

ρ−2−γE2[ve;Kρ(x̄)] 6 C(n, λ, Λ)ρα−γr−2−α max
Kr(x)b

h

|ϕ|.

Then the definition of ϕ, Lemma 3.3 and (4.5) give the following

ρ−2−γE2[ve;Kρ(x̄)] 6 Cρα−γr−2−αr2+γ〈ue〉(2+γ)
Kr(x) 6 C(n, λ, Λ)εα−γ〈ue〉(2+γ)

Kr(x). (4.9)

Now consider the second summand on the right-hand side of (4.8). By definition of E2

and ϕ, by (4.6) and by the final paragraph of Lemma 1.1, we have

ρ−2−γE2[ϕ− ve;Kρ(x̄)] 6 ρ−2−γ sup
Kr(x)

|ue − Tx,2ue − ve|

6 C(n)ρ−2−γ max
Kr(x)h

|ϕ− v|. (4.10)
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Now we estimate ϕ − v on Kr(x)h. We have by linearization (see the proof of Theo-
rem 3.2 in [6] and [10, § 3])

F0h[ϕ] = F0h[ϕ] − F0h[v] = L0h(ϕ− v), ∀x ∈ Kr(x)i
h,

where L0h =
∑n

i=1 a(x, hei)δ2hei
and

a(x, y) =
∫ 1

0

∂Fh0(δ2wt)
∂sy

dt, wt = tϕ(x) + (1 − t)v(x), 0 6 t 6 1,

and of course, by the assumptions on Fh, a(x, y) > λ > 0. Letting

A = r−γ max
Kr(x)i

h

|F0h[ϕ]|,

we have |L0h(ϕ− v)| 6 Arγ in Kr(x)i
h, and, by definition, ϕ− v = 0 for all x ∈ Kr(x)b

h.
We compare ϕ− v with the function

w(x) =
Arγ

2nλ
((

√
nr)2 − ‖x− x‖2

2).

Note that ‖x − x‖2
2 6 nr2 for all x ∈ Kr(x)b

h, so that w(x) > 0 for all x ∈ Kr(x)b
h. By

elementary calculation we find that

δ2yw(x) =
−Arγ

nλ
,

for any y 6= 0. Therefore,

L0hw(x) =
n∑

i=1

a(x, hei)δ2hei
w(x) =

−Arγ

nλ

n∑
i=1

a(x, hei)

6 −Arγ .

Hence,
L0h(±(ϕ− v) − w) = ±L0h(ϕ− v) − L0hw > −Arγ +Arγ = 0.

Applying the discrete maximum principle, [9, Theorem 2.1], and denoting max{f, 0} by
f+, we obtain

max
Kr(x)i

h

(|ϕ− v| − w) 6 max
Kr(x)b

h

(|ϕ− v| − w)+,

which must be zero since ϕ− v = 0 for all x ∈ Kr(x)b
h and w > 0 for all x ∈ Kr(x)b

h. It
follows that

max
Kr(x)h

|ϕ− v| 6 max
Kr(x)h

w 6 Arγ

2nλ
nr2 =

1
2λ
Ar2+γ . (4.11)

Now let us recall the concluding paragraph of Lemma 1.1, from which we see that for
each i = 1, . . . , n, the function ϕ as defined here satisfies

δ2±hei
ϕ(x) = δ2±hei

ue(x) − δ2±hei
Tx,2ue(x) = δ2±hei

ue(x) − δ2±hei
ue(x), ∀x ∈ Z

n
h;
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that is,

δ2ϕ(x) = δ2ue(x) − δ2ue(x), ∀x ∈ Z
n
h, (4.12)

since Fh is diagonal. From (4.7) it follows that for all x ∈ Kr(x)i
h,

F0h[ϕ](x) = Fh(x, δ2u(x) + δ2u(x) − δ2u(x)) = Fh(x, δ2u(x)),

and, hence, since Fh[u] ≡ 0,

|F0h[ϕ](x)| = |F0h[ϕ](x) − Fh[u](x)| = |Fh(x, δ2u(x)) − Fh(x, δ2u(x))|.

Then, with r > h, we have, by (4.2), that

A = r−γ max
Kr(x)i

h

|F0h[ϕ]| 6 max
Kr(x)i

h\{x}
|Fh(x, δ2u(x)) − Fh(x, δ2u(x))|

‖x− x‖γ∞

6 (
√
n)γ max

Kr(x)i
h\{x}

|Fh(x, δ2u(x)) − Fh(x, δ2u(x))|
‖x− x‖γ

2

6
√
n max

Kr(x)i
h

(
k1

n∑
i=1

|δ2±hei
u(x)| + k2

)
.

Note that the maximum above is over the interior, Kr(x)i
h, of Kr(x)h, so that for each

x in this interior, the support of δ2hei
u(x) is contained in Kr(x)h. We may therefore

conclude that A 6 √
n(2nk1 +[u]2;Kr

h(x) + k2) (see [6, § 1.1] for definition of semi-norm).
Inserting this in (4.11) gives

max
Kr(x)h

|ϕ− v| 6
√
n

2λ
r2+γ(2nk1 +[u]2;Kr(x)h

+ k2).

Returning, then, to (4.10), we deduce, using the above and (4.5), that

ρ−2−γE2[ϕ− ve;Kρ(x̄)] 6 C(n, λ)ε−2−γ(2nk1 +[u]2;Kr(x)h
+ k2).

This with (4.9) allows us to rewrite (4.8):

ρ−2−γE2[ue;Kρ(x̄)] 6 C(n, λ, Λ)εα−γ〈ue〉(2+γ)
Kr(x) + C ′(n, λ)ε−2−γ(2nk1 +[u]2;Kr(x)h

+ k2)

6 Cεα−γ〈ue〉(2+γ)
Rn + C ′ε−2−γ(2nk1 +[u]2;Zn

h
+ k2).

Now take the supremum on the left-hand side over all ρ > h, x̄ ∈ R
n, to find that

µ∗
2+γ

(u) 6 Cεα−γ〈ue〉2+γ
Rn + C ′ε−2−γ(2nk1 +[u]2;Zn

h
+ k2).

It then follows from this and Lemma 3.6 (and the fact that α = α(n, λ, Λ)) that there
are positive constants C1 = C1(n, λ, Λ) and C2 = C2(n, λ, Λ) such that

〈ue〉2+γ
Rn 6 C1ε

α−γ〈ue〉2+γ
Rn + C2ε

−2−γ(2nk1 +[u]2;Zn
h

+ k2).
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Now choose ε small enough so that C1ε
α−γ < 1, and it follows that

〈ue〉2+γ
Rn 6 C(2nk1 +[u]2;Zn

h
+ k2),

C depending only upon n, λ, Λ and γ. Finally, we move to the mesh function u on the
left by the equivalence of semi-norms in (2.1) and in Theorem 3.4 for the extension ue,
thus establishing

N[u]2,γ;Zn
h

6 C(2nk1 +[u]2;Zn
h

+ k2), (4.13)

for Fh explicitly dependent upon x and upon centred second-order difference quotients
in directions {±he1, . . . ,±hen} only.

If Fh is not diagonal, that is, if Fh depends upon centred second-order difference
quotients other than δ2±hei

u for i = 1, . . . , n, then (4.12) is not true, in general.
We can rectify the foregoing proof for the more general equation where Fh does depend

upon some δ2yu for y ∈ YN \ {±he1, . . . ,±hen}. Specifically, our approach is to transform
the equation Fh(x, δ2u(x)) = 0 to a higher dimension so that the directions y ∈ Y ′ are
mapped to orthogonal directions in the higher dimension and, hence, the discrete Hessian
becomes discretely local (that is, (4.12) is true); the equation becomes diagonal.

In Y ′ ⊂ YN = {z ∈ Z
n
h | 0 < ‖z‖∞ 6 Nh} there are at most (2N + 1)n − 1 non-

zero directions, where, if y ∈ Y ′, then −y ∈ Y ′ (recall the symmetry assumed of Fh

with respect to s±y). We choose half of these directions so that if y is chosen, then
−y is excluded. Defining M 6 [(2N + 1)n − 1]/2 to be half the number of directions
in Y ′, we transform our difference equation in Z

n
h dependent upon x ∈ Z

n
h and the

centred second-order difference quotients in directions y ∈ Y ′ to a difference equation
in Z

M
h dependent upon x ∈ Z

M
h and the centred second-order difference quotients in

the orthogonal directions and their negatives. We map each direction y ∈ Y ′ to an
orthogonal direction ±hei ∈ Z

M
h . Specifically, choose all y ∈ Y ′ such that the first non-

zero component (with respect to the standard basis) of y is positive, and enumerate
these as {y1, y2, . . . , yM}. We now associate yi with hei ∈ Z

M
h for each i = 1, . . . ,M .

If u : Z
n
h → R is an n-dimensional mesh function, then define the M -dimensional mesh

function uM : Z
M
h → R as

uM (x1, . . . , xM ) = u

( M∑
i=1

xiy
i/h

)
,

for each x = (x1, . . . , xM ) ∈ Z
M
h . Observe that if on the left-hand side we increase xj

by h, on the right-hand side the argument is incremented by yj , and we would expect
that orthogonal difference on the left-hand side would correspond to differences in the
directions yj ∈ Y ′ on the right-hand side, modulo a constant depending upon N and n.
Making this explicit, we have

δ2±hej
uM (x) =

‖yj‖2
2

h2 δ2±yju

( M∑
i=1

xiy
i/h

)
. (4.14)

With yj ∈ Y ′ we have h 6 ‖yj‖2 6 Nh
√
n, and hence

1 6 ‖yj‖2
2

h2 6 nN2. (4.15)

https://doi.org/10.1017/S0013091598000200 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091598000200


Higher-order estimates for fully nonlinear difference equations. II 101

Notice that (4.14) and (4.15) imply that

+[uM ]2;ZM
h

6 nN2
N[u]2;Zn

h
. (4.16)

Also, by our choice of the yi there exist i1, i2, . . . , in ∈ {1, . . . ,M} such that yij = hej ,
j = 1, 2, . . . , n. Suppose, without loss of generality, that ij = j; that is, suppose that
y1 = he1, y2 = he2, . . . , y

n = hen. Then

u(x1, x2, . . . , xn) = uM (x1, x2, . . . , xn, 0, 0, . . . , 0),

for all x = (x1, x2, . . . , xn) ∈ Z
n
h. It follows that

N[u]2,γ;Zn
h

6 N[uM ]2,γ;ZM
h
. (4.17)

Now, with Fh as in the hypothesis of the theorem, arguments ordered as follows:

Fh(·, s) = Fh(·, sy1 , sy2 , . . . , syM , s−y1 , s−y2 , . . . , s−yM ),

define for x ∈ Z
M
h , (s1, s2, . . . , sM , s−1, s−2, . . . , s−M ) ∈ R

2M ,

FhM (x, {s±i}M
i=1) = Fh

( M∑
i=1

xiy
i/h,

{
h2

‖yi‖2
2
s±i

}M

i=1

)
.

Then
∂FhM

∂s±i
=

h2

‖yi‖2
2

∂Fh

∂s±yi

,

and so (4.15) and the fact that λ 6 ∂Fh/∂s±yi 6 Λ imply that

λ

nN2 6 ∂FhM

∂s±i
6 Λ,

for i = 1, . . . ,M . Also, FhM is γ-Hölder continuous in x ∈ Z
M
h since Fh is γ-Hölder

continuous in x ∈ Z
n
h. To see this, choose x and z in Z

M
h for which

∑M
i=1 xiy

i and∑M
i=1 ziy

i are distinct, and observe that, using (4.15) and (4.2) as necessary,

|FhM (x, {s±i}M
i=1) − FhM (z, {s±i}M

i=1)|
‖x− z‖γ

2

=

|Fh(
∑M

i=1 xiy
i/h, {(h2/‖yi‖2

2)s±i}M
i=1)

−Fh(
∑M

i=1 ziy
i/h, {(h2/‖yi‖2

2)s±i}M
i=1)|

‖x− z‖γ
2

6 (
√
n
√
nN)γ

|Fh(
∑M

i=1 xiy
i/h, {(h2/‖yi‖2

2)s±i}M
i=1)

−Fh(
∑M

i=1 ziy
i/h, {(h2/‖yi‖2

2)s±i}M
i=1)|

‖ ∑M
i=1 xiyi/h− ∑M

i=1 ziyi/h‖γ
2

6 (nN)γ

(
k1

M∑
i=1

h2

‖yi‖2
2
(|si| + |s−i|) + k2

)

6 nN

(
k1

M∑
i=1

(|si| + |s−i|) + k2

)
.
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Finally, if u : Z
n
h → R is a solution of (4.1), then uM satisfies

FhM (x, δ2uM (x)) = 0, ∀x ∈ Z
M
h ,

and FhM is diagonal, so that uM satisfies (4.13). Thus, by (4.17), (4.13) and (4.16) we
have

N[u]2,γ;Zn
h

6 C(n, λ/(nN2), Λ, γ)nN(2k1n
2N2

N[u]2;Zn
h

+ k2),

which is (4.3).
The global interpolation inequality

N[u]2;Zn
h

6 C(h0, ε,N, n, γ)|u|0;Zn
h

+ εN[u]2,γ;Zn
h
,

where 0 < h 6 h0, is easily deduced from the corresponding interior interpolation inequal-
ity [6, Lemma 5.2], so that, provided each semi-norm is finite, we may deduce (4.4) from
(4.3). �
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